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“Soft Matter” is one of the fastest growing fields in physics, as illustrated
by the APS Council’s official endorsement of the new Soft Matter Topical Group
(GSOFT) in 2014 with more than four times the quorum, and by the fact that
Isaac Newton’s chair is now held by a soft matter theorist. It crosses traditional
departmental walls and now provides a common focus and unifying perspective
for many activities that formerly would have been separated into a variety of
disciplines, such as mathematics, physics, biophysics, chemistry, chemical en-
gineering, materials science. It brings together scientists, mathematicians and
engineers to study materials such as colloids, micelles, biological, and granular
matter, but is much less tied to certain materials, technologies, or applications
than to the generic and unifying organizing principles governing them. In the
widest sense, the field of soft matter comprises all applications of the principles
of statistical mechanics to condensed matter that is not dominated by quantum
effects.

The lecture takes a two-fold approach to this vast field. It introduces generic
principles of interacting many-body physics, i.e. the “condensed matter” aspect
of its title, in the first part (which could similarly also be covered in a solid-state
or stat-mech class). The main theme is the emergence of the macroscopic mate-
rial properties of soft materials from their interacting parts (atoms). The second
part pursues a more practical approach to selected model systems, which will
give a better feeling for the typical origin (low-dimensional mesostructures) and
main consequences (large fluctuations and deformations) of “softness”. It also
introduces “activity” as a feature specific to many soft and, in particular, bio-
logical systems, giving rise to the new physical paradigm of “active soft matter”.
There is clearly no chance to discuss the physics of rubbers, foams, plastics, liquid
crystals, pastes, gels, and living cells and tissues in all detail here, but the lecture
may be helpful as a starting point for addressing some of these systems. The
prevailing theoretical methodology used and developed throughout the lecture is
classical field theory.
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Part I

Interacting Many-Body Systems
The aim of this part is to introduce general theoretical tools that have been
developed and used in many areas of physics to address interacting many-body
systems on a microscopic basis.

The empty canvas

Statistical mechanics provides a microscopic foundation of the thermodynamics
of many-body systems. The central paradigmatic many-body system discussed
in introductory courses is an isothermal classical ideal gas. This trivial case
with no interactions and no packing structure is briefly recapitulated to set the
stage. Thermodynamically, the ideal gas is defined in an operational way by two
equations of state: (i) the caloric equation or energy equation (in d = 3 space
dimensions)

Uig =
3

2
NkBT , (1)

which can be measured in a calorimeter and (ii) an equation linking thermal and
mechanical properties,

pV = NkBT . (2)

Using Eqs. (1) and (2) to express the intensive variables in terms of the exten-
sive ones, and invoking homogeneity, the differential fundamental relation (per
particle)

ds(u, v) =
1

T
du+

p

T
dv (3)

in a three-dimensional thermodynamic state space spanned by U , V , and N can
be integrated to yield the fundamental relation S(U, V,N) = Ns(U/N, V/N) and
thus all thermostatic properties of the gas from these two equations of state.

In statistical mechanics, one recognizes Eq. (1) as the statement of equipar-
tition of energy in “bits” of kBT/2 among all degrees of freedom, and one could
deduce Eq. (2) from it by appealing to the kinematics of free massive particles,
which links the pressure p = 2u/3 to the kinetic energy density u ≡ U/V . But
one can also address the fundamental relation directly via the (e.g. canonical)
partition sum

Z ≡
∫

dΓ e−βH = e−βF (T,V,N) dΓ ≡ Πidqidpi
N !hdN

. (4)

With the Hamiltonian Hig =
∑

i p
2
i /2m, one easily finds the ideal-gas fundamen-

tal relation

Zig = (V/λ3
T )N/N ! ⇒ Fig = −kBT lnZig = NkBT [ln(λ3

Tn)− 1] (5)
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The thermal wavelength

λT ≡
h√

2πmkBT
(6)

appears as a natural length scale if the phase space is measured in units of a
smallest action quantum ~, as appropriate for a quantum statistical description.
It is essentially the de Broglie wavelength of a gas particle of mass m carrying its
thermal energy bit and acts an elementary unit cell size in configuration space.
The naive interpretation of V/λ3

T as the number of “available classical states” for
each of N non-interacting particles in a volume V turns out to be inappropriate
if these are indistinguishable, though. Particle permutations do not produce new
states in this case, as indicated by the factor N ! in the denominator of Zig. Each
particle can only explore the volume v = V/N = 1/n, before changing place
with an identical particle, which does not lead to a new state. So there are only
W ≈ v/λ3

T classical states per particle available, which is also apparent from the
entropy1,

Sig/(NkB) = 5/2− ln(λ3
Tn) ' − ln(λ3

Tn) . (7)

Not too surprisingly, the model therefore breaks down if one attempts to raise
the density or to lower the temperature beyond the limit defined by nλ3

T ≈ 1,
which causes the condensation of an increasing fraction of particles into their
quantum ground states. These particles do not scatter any more between states
and therefore they carry no heat or entropy. The number of particles available to
contribute to the classical gas behavior, or to any sort of thermodynamics, is thus
reduced by the “sleeping” condensed fraction, and all thermodynamic quantities
are diminished by a corresponding factor.

Equations (4) and (5) show how the derivation of a complete material relation
(also called fundamental relation of constitutive law) from a microscopic Hamilto-
nian works, in principle. But in practice, the integral cannot be computed beyond
the realm of a few toy models. In fact, most of this chapter serves to introduce
more practical approaches to interacting many-body systems, circumventing the
task of doing such a monstrous integral.

1 Pair interactions and pair correlations

Pair interactions

In the real world, potential interactions between atoms and molecules can rarely
be neglected. It is through direct interactions that we usually notice the existence
of these particles, in the first place. And the physical properties of real gases and
plasmas as well as of condensed phases and the transitions between them are
primarily the result of strong mutual interactions. The reason that the model

1Here, ' means “up to arbitrary gauge constants”.
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of an ideal (interaction-free) gas is useful at all, and in fact highly successful, is
due to the fact that many elementary excitations in condensed matter may, to a
good approximation, effectively be described as dilute gases of quasi-particles. In
their quantized version, they govern the low-temperature physics of hard matter
as so-called “phonons”, “magnons”, “electrons”, “holes”, etc. Strong interactions
govern the phase transitions that bring atoms into a condensed state, in the first
place, as well as its packing structure and energetics, and, last but not least, the
often complex and composite (hybrid) nature of the elementary excitations.

As a rule of thumb, quantum effects come into play, when “statistical interac-
tions” arising from the exchange statistics of indistinguishable particles become
important, as discussed above for the ideal gas. To extend the argument to
interacting particles, one compares the range λT and strength kBT of the sta-
tistical interactions, as betrayed by the chemical potential µ ' −TSig/N of the
non-interacting gas, with the direct interactions. A common feature of all direct
interactions between atoms and molecules is their strong hard-core repulsion at
particle distances on the order of a few Bohr radii aB = ~2/mee

2, requiring

λT/aB � 1 ⇒ kBT � (e2/aB)me/m ' m eV (8)

for noticeable quantum effects. This argument demands temperatures substan-
tially below room temperature (kBT ≈ 25 meV), where, however, the strength
of the statistical interactions diminishes. Namely, as entropic interactions, which
deprive the particles of the phase space to roam around with their thermal mo-
mentum, they are themselves merely of strength kBT . Condensing atoms with
hard-core repulsions by their exchange interactions (which produces superfluids
and Bose–Einstein condensates) is therefore a very tricky task and only achieved
at very low temperatures. And the energetics and packing structure of condensed
atoms and molecules is therefore, in contrast to electronic excitations in solids,
usually completely dominated by “direct” potential interactions — which them-
selves arise from a combination of the wave-like nature of matter (uncertainty
relation), exchange effects (Pauli principle), and Coulomb interactions.

The most convenient starting point for studying the effects due to such direct
interactions are situations where pair interactions V({rj}) =

∑
i<j ν(ri − rj)

dominate, corresponding to the Hamiltonian

H =
∑
i

p2
i

2m
+
∑
i<j

ν(ri − rj) . (9)

A useful example is provided by the Hamiltonian for a fluid of hard spheres, for
which the pair interaction potential is given by

ν(r) =

{
∞ r < σ

0 r > σ .
(10)
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This model idealizes the most salient feature of all atomic, molecular and most col-
loidal interactions, a strong hard-core repulsion at short center-of-mass distances,
which plays the major role in determining the characteristic packing structure of
most simple fluids and crystals. This is why the hard sphere fluid may justly be
called a paradigm of condensed matter.

Attractive interactions are often less pronounced than the hard-core repulsion
and can be taken into account perturbatively once the hard sphere fluid is un-
der control. A practical way of adding attractive interactions to the hard-sphere
potential is to add more hard spheres (or small polymer coils, etc.). To see this,
start with a pair of “tagged” hard spheres of diameter σ>. Adding a solvent of
other (usually smaller and possibly not visible) particles then induces an attrac-
tion between them. The crucial point is that the solvent particles behave like
hard spheres of diameter σ< when interacting with the tagged spheres, i.e. their
centers of mass cannot enter the spherical depletion zone of diameter σd ≡ σ>+σ<
around the tagged particles. The attraction can then alternatively be thought
to arise either from the pressure imbalance associated with the particle depletion
in a narrow gap between the tagged spheres or from the entropy gain associated
with the free-volume gain for the small particles if the depletion zones around the
tagged spheres overlap. In the limit where the interactions of the bath particles
among themselves can be neglected, the bath may be idealized as an ideal gas.
The induced attraction potential is then simply given by the ideal-gas osmotic
pressure n<kBT due to the bath particles times the overlap volume Vx of the
depletion zones, and known as the Asakura–Oosawa potential

νAO(r) = n<kBTVx = n<kBTσ
3
d

π

6

[
1− 3

2

r

σd
+

r3

2σ3
d

]
(σ> < r < σd) . (11)

Despite the appearance, the so-called depletion attractions between two spheres
are generally2 not pair-wise additive, even on this simple level, although they
arise from purely pairwise interactions between the individual hard spheres. In
other words, Eq. (9) with Eq. (10) is a perfect model for a suspension of hard
spheres, whereas the use of νAO(r) in Eq. (9) would not generally represent a
valid description of a hard-sphere suspension in a bath of other particle. This
exemplifies two important points: i) that, even without invoking quantum me-
chanics, there are many situations, where a pair Hamiltonian as in Eq. (9) may
be too simple to describe the interactions; and ii) that complex many-body inter-
actions may always (and generally will) arise from elementary pair interactions
upon coarse-graining.

Pair correlations: the radial distribution function

A convenient and powerful tool to characterize the packing structure of con-
densed matter are correlation functions. As a rule, the most salient features

2Consider a third tagged sphere that approaches the first two (exercises).
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of homogeneous materials are contained in the pair correlation functions of the
atoms. Higher-order correlations usually contain essential additional information
(in particular if the Hamiltonian is not restricted to pair-interactions), but they
are certainly more difficult to measure and to calculate. For example, dense
hard spheres exhibit a dramatic slowing down of their dynamics, called a glass
transition, without any obvious sign in their pair correlations. Similarly, com-
plex ring-like bridges involving subtle correlations between many particles are
responsible for the jamming of granular flows, as may be observed in a poorly
designed hourglass. Yet, for most practical purposes, a framework based on pair-
correlations is still the most common and most practical way forward.

In the following, the grand canonical formulation is applied and for the mi-
croscopic particle concentration the abbreviation

n̂(r) ≡
∑
i

δ(r− ri) (12)

is introduced. The position-dependent “1-body” or “1-point” density

n(r) = 〈n̂(r)〉 = 〈
∑
i

δ(r− ri)〉 = 〈Nδ(r− r1)〉 (13)

simply contains the information how many particles are found on average in a
certain region of configuration space. The 2-point density or pair correlation
function shall here be defined as 〈n̂(r)n̂(r′)〉 minus the self-correlations3,

n(r′, r′′) ≡ 〈
∑
i 6=j

δ(r′ − ri)δ(r
′′ − rj)〉 = 〈N(N − 1)δ(r′ − r1)δ(r′′ − r2)〉 . (14)

The pair correlation function encodes the neighbor correlations in the simplest
possible form, namely in the form of a local particle density as seen from the cen-
ter of mass positions of the particles themselves. There are usually still interesting
pair correlations even if the system is translation invariant, in which case n(r′, r′′)
is solely dependent on the relative vector r = r′ − r′′ and n(r) = n = 〈N〉/V
is spatially constant. This can be exploited by setting the origin of the coordi-
nate system at the center of an arbitrary particle and defining the dimensionless
correlation function g(r)

n2g(r) ≡ 1

V

∫
dr′ n(r + r′, r′)

ng(r) =
1

〈N〉

∫
dr′ n(r + r′, r′) =

1

〈N〉

∫
dr′ 〈

∑
i 6=j

δ(r + r′ − ri)δ(r
′ − rj)〉

=
1

〈N〉
〈
∑
i 6=j

δ(r + rj − ri)〉 =
1

〈N〉
〈N(N − 1)δ(r + r1 − r2)〉 ;

g(r)
r12≡r2−r1=

V

〈N〉2
〈N(N − 1)δ(r− r12)〉 N=const.

= V 〈δ(r− r12)〉

(15)

3Experts often tacitly omit the distinction between functions with/without self-correlations.
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If the system is moreover isotropic, the argument of g(r) is actually the distance
r ≡ |r|, and one speaks of the radial distribution function g(r). It gives the
probability density 4πr2g(r)/V to find a particle at distance r from an arbitrar-
ily chosen test particle. For a statistically homogeneous and isotropic system
the full information about the packing structure, as far as pairs of particles are
concerned (i.e. excluding the information, with which probability three or more
particles are found in a certain correlated state), is thus encoded in a single
scalar function of a scalar variable. For hard core particles g(r → 0) = 0 (re-
member that the self-correlations, which would contribute a δ(r) to ng(r) were
subtracted). For systems without long-range order, such as liquids and gases, the
limit g(r → ∞) = 1 exists, for crystals g(r) will oscillate indefinitely around it.
For Fourier transforming g(r), it is customary to subtract the 1, which would oth-
erwise always produce a δ-function corresponding to the forward scattering4 of a
homogeneous material. The resulting function, which only retains the non-trivial
pair correlations or “pair fluctuations”, is often denoted by

h(r) ≡ g(r)− 1 =
[
〈n̂(r)n̂(0)〉 − 〈n̂(0)〉2

]
/n2 . (16)

(If not formulated on a lattice, the last expression should be understood as a
mere notational convention; the self correlations are understood to drop out.)

Pair correlations: the structure factor

It should be familiar from elementary optics that the Fraunhofer interference
patterns resulting from scattering in optically dilute (i.e. essentially transparent)
media correspond to a Fourier transform of the pattern of point scatterers. The
relevant non-technical information about the (relative) scattering intensity with
scattering vector q is contained in the structure factor

Sq ≡
1

〈N〉
〈
∑
ij

exp[−iq · (ri − rj)]〉

=
1

〈N〉

∫
dr′dr′′ exp[−iq · (r′ − r′′)]〈

∑
ij

δ(r′ − ri)δ(r
′′ − rj)〉

=
1

〈N〉

∫
dr′dr′′ exp[−iq · (r′ − r′′)]〈n̂(r′)n̂(r′′)〉

=1 +
1

〈N〉

∫
dr′dr′′ exp[−iq · (r′ − r′′)]n(r′, r′′)

=1 + n

∫
dr exp(−iq · r)g(r)

=1 + (2π)dnδ(q) + n

∫
dr exp(−iq · r)h(r) .

(17)

4As an experimentalist setting up a scattering experiment you would also better like to
subtract this contribution by a beam stop to save your detector.
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The leading 1 corresponds to the incoherent scattering from 〈N〉 independent
particles and results from the self-correlations in the density auto-correlation
〈n̂(r)n̂(r′)〉. The remaining terms are due to interference and encode correla-
tions. The δ-function amounts to the forward scattering from the homogeneous
contribution contained in g(r) and subtracted in h(r). It is quite often tacitly
omitted, which makes the limit q → 0 of the structure factor continuous, in
agreement with the experimental procedure in small (non-zero) angle scattering.
The information encoded in this limit is the integral over the fluctuations h(r),
hence according to Eqs. (15), (16) and using a result from introductory statistical
mechanics relating number fluctuations to the compressibility (see exercises), we
have

Sq→0 ∼ 1 + n

∫
drh(r) = 1 +

〈N(N − 1)〉 − 〈N〉2

〈N〉
= nkBTκT (18)

This so-called compressibility sum rule relates an equation of state (for the pres-
sure) to the structural fluctuations encoded in Sq. It also provides a reverse
perspective at the relation between fluctuations and response. While the fluc-
tuations are usually understood to increase in magnitude as a consequence of a
decrease of the response coefficient that determines the restoring forces, Eq. (18),
in return, expresses the value of a response coefficient by an integral over the
fluctuations. It thereby clearly displays the connection between a diverging cor-
relation length, which entails a (spatially) slow decay of the fluctuations encoded
in h(r), and a divergence of response coefficients at a critical point.

In summary, the pair distribution completely determines one of the most
important experimental observables of the packing structure of a material, namely
the (static) structure factor. Its spatial integral moreover also determines the
materials’ mechanical strength (its compression modulus) via a sum rule, which
provides a special case of the general fluctuation-response theorem, one of the
major predictions by statistical mechanics that repeatedly reappears in various
generalizations throughout the lecture.

2 Packing structure and material behavior

Exploiting the simplifications ensuing from the limitation to pair interactions,
the relation (18) between packing structure and material behavior can be taken
somewhat further, to express the two constitutive equations (or equations of
state) of an interacting gas in terms of the pair distribution function g(r).

The caloric equation of state or energy equation, Eq. (1) is readily generalized,

U = 〈H〉 = 3〈N〉kBT/2 + 〈V〉 . (19)

Noting that all N(N − 1)/2 particle pairs give the same contribution to the last
term, it may be rewritten as

〈V〉 = 〈N(N − 1)ν(r12)〉/2 . (20)
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Now, introducing a 1 in the form
∫
dr δ(r− r12), just as in the above calculation

for the structure factor, and using Eq. (15), this may immediately be rephrased
in the form

U = 〈H〉 =
3

2
〈N〉kBT

[
1 +

n

3

∫
dr g(r)βν(r)

]
. (21)

Similarly, the thermal (mechanical) equation of state may be extended and related
to the radial distribution,

βp = −β∂V F |T = ∂V ln
(
ZigQ

)
= n+Q−1∂VQ . (22)

The normalized configuration integral Q is defined via Z ≡ ZigQ, hence (in the
canonical ensemble)

Q =

∫
dNr

V N
e−βV({rj}) , (23)

with the short-hand notation dNr for the real-space measure in Eq. (4). Due to
the normalization the only volume dependence inQ is due to ν(rij), i.e. ∂V ν(rij) =
∇ν(rij)∂V rij. Exploiting homogeneity, rij = V 1/3ξij, one finds ∂V rij = rij/3V
and, with Eq. (20) (N ’s inside averages allow for a grand canonical interpreta-
tion),

∂VQ = −
∫

dNr

V N

N(N − 1)

2

[
β r12

3V
· ∇ν(r12)

]
e−βV({rj}) (24)

Q−1∂VQ = − 1

6kBTV

∫
dr 〈N(N − 1)δ(r− r12)〉r · ∇ν(r) (25)

Using again Eq. (15) to rewrite the average over the δ−function in terms of g(r),
the correction to the thermo-mechanical constitutive equation of the ideal gas
resulting from the potential interactions is thus given by the average of the virial
(weighted by the pair distribution), hence the name virial equation of state

p = nkBT

[
1− n

6kBT

∫
dr g(r)r · ∇ν(r)

]
. (26)

Equations (18), (21) and (26) show how thermodynamics follows from packing
structure5. They reduce the task of deriving the thermodynamic equations of
state to integrations over the spatial density fluctuations. In other words, the
thermodynamics of a homogeneous isotropic fluid with pair interactions has en-
tirely been expressed in terms of a two-point correlation function g(r). To make
any practical use of this formal result, one has to find g(r) in a continuous pa-
rameter region, which is indeed the central task of so-called liquid state theories.
In particular, a very educated guess about the general form of g(r) or at least of

5Three constitutive equations cannot be independent, of course, and errors of approximate
liquid-state theories are sometimes estimated (or reduced) by comparing (or superimposing)
the predictions obtained from Eq. (26) and Eq. (18), respectively.
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ν(r) is indispensable to apply the result in reverse, namely to infer aspects of the
microscopic packing structure and interaction potential from macroscopic ther-
modynamic measurements. Historically, we owe much of our knowledge about
molecular interactions to this connection, and thanks to recent developments in
microscopy, it might become a fruitful path to explore more, in the future.

Dilute systems and the second virial coefficient

It is intuitively obvious that encounters between particles in a dilute gas are rare.
Then, multiple collisions are probably very weakly correlated and exponentially
rare.6 Hence, to extract the dominant thermodynamic effect of the interactions
it suffices to calculate it for any pair of particles. But this amounts to knowing
the radial distribution of one of the interacting particles in the field created by
the other, which may be located at the origin of the coordinate system for a
homogeneous system. Given the interpretation of g(r) as a real space probabil-
ity distribution for finding partners, this problem is of course equivalent to the
derivation of the barometer equation, with the known result (see the exercises)

g(r) ∼ e−βν(r) (n→ 0) . (27)

The symbol ∼ means “asymptotically equal”, i.e. an exact equality in the per-
tinent limit. This implies that the pair fluctuation function h(r) = g(r) − 1 is
asymptotically given by the so-called Mayer function

f(r) ≡ e−βν(r) − 1 . (28)

Its integral is the so-called second virial coefficient

B(T ) ≡ −1

2

∫
dr f(r) . (29)

For hard spheres, the Mayer function is the box function f(r) = −θ(σ − r) and
the second virial coefficient B(T ) is the excluded volume per sphere in a pair
collision. For more general interactions, a positive/negative B(T ) is indicative of
a predominantly repulsive/attractive interaction, which increases/decreases the
pressure, correspondingly.

The second virial coefficient completely quantifies the leading corrections to
the ideal gas limit of the constitutive equations. Namely, inserting Eq. (27)
into the energy and virial equations of state, Eqs. (21), (26), respectively, one
immediately deduces the equations of state of a dilute interacting gas7

U

3NkBT/2
∼ 1− 2n

3
T∂TB(T ) (30)

6The chance of finding a single particle in a volume corresponding to the interaction range
σ is nσ3 � 1. For two particles, as required for pair interactions, it is ∝ n2σ6, and so on.

7Use βνe−βν = −β∂βf = T∂T f , and the definitions of f(r) and B(T ).
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and
p

nkBT
∼ 1 +

n

6

∫
dr r · ∇f(r) = 1 + nB(T ) . (31)

The Mayer function vanishes at large arguments for fast-decaying interactions,
thanks to the subtracted 1. This renders the occurring integrals finite. One
may expect this property to carry over to h(r), even at higher densities, which
is indeed borne out by many observations and calculations. An exception occurs
near critical points, where the correlation length diverges, so that h(r) becomes
long-ranged. A more formal derivation and an extension of the above idea to
higher orders in the density is given by the Mayer cluster expansion. Calculations
beyond the leading orders are laborious, though, and the whole expansion will
break down at the first really interesting occasion (e.g. a phase transition, or long-
ranged interactions, which jeopardize the otherwise plausible fast convergence of
the series), which is why it is omitted, here.

In summary, for dilute systems, the corrections to the thermodynamics of an
ideal gas are completely contained in B(T ), which is a two-body configuration
integral. Assuming the general functional form of the interaction potential to
be given — e.g. Lennard–Jones, (sticky) hard sphere, etc. — measurements of
B(T ) can be used (and have excessively been used) to determine the potential
parameters for atoms, simple molecules, colloidal particles or globular proteins.
Dilute interacting gases are not more complex than ideal gases in an external
field, i.e., they boil down to the barometer equation.

Potential of mean force

Motivated by Eq. (27), one writes also the pair distribution g(r) of a dense fluid
in the form

g(r) = e−βw(r) , (32)

which can be used to define the potential of mean force w(r). With Eq. (15)

∇w(r) =
V

βg(r)
〈∇r12δ(r− r12)〉 =

V

g(r)
〈δ(r− r12)∇r12ν(r12)〉 = 〈∇r12ν(r12)〉r12=r

by partial integration, which explains the name and provides an alternative def-
inition. From the last expression — or by analogy with the barometer formula
from Eq. (32) — w(r) is seen to be the reversible work needed to approach two
infinitely distant particles of the fluid to a distance r through the “background
solvent” provided by all the other particles. Splitting off the corresponding work
ν(r) for the pair in empty space,

w(r) = ν(r) + ∆w(r) , (33)

one obtains the work — or, in fact, free energy — ∆w(r) isothermally absorbed
by the solvent during this process, i.e. the part of the reversible work solely

12



due to the presence of the solvent. In other words, the other particles induce an
effective interaction ∆w(r) between a chosen pair of test particles. This is further
discussed in the exercises for the example of depletion attractions induced in a
fluid of purely repulsive particles.

The work in displacing a pair of hard spheres for distances r > σ is completely
due to the effective interactions ∆w(r) induced by the solvent, i.e. by the solvent
of surrounding spheres. The function ∆w(r) can therefore be identified as the
free energy cost for bringing two cavities of the size of the spheres from infinity to
a distance r. The corresponding part of the radial distribution function gc(r) =
e−β∆w(r) is therefore also known as the “cavity distribution”. Inserting Eq. (32)
into the virial equation (26) yields a relation between the pressure and the contact
value g(σ) of g(r),

p

nkBT
= 1− n

6

∫
dr e−βν(r)−β∆w(r)βν ′(r)r

= 1 +
2πn

3

∫
dr
(
e−βν(r)

)′
e−β∆w(r)r3

= 1 +
2πn

3

∫
dr δ(r − σ)gc(r)r

3

= 1 +
2π

3
nσ3gc(σ) = 1 + 4φg(σ) .

(34)

The final g(σ) should be understood8 as gc(σ) = g(r → σ+), and φ ≡ nπσ3/6
denotes the volume fraction of the spheres. The take-home message is that the
equation of state of a hard sphere fluid is determined by the contact value of the
radial distribution function, i.e. by the collisions between the spheres. For con-
centrations n ≈ ncp = 1/vcp near close-packing9, a free-volume consideration sug-
gests that the radial distribution function must develop a pointed next-neighbor
peak of width ∆ ≈ (v − vcp)/3σ2 at r = σ. The spatial integral over the next
neighbor peak,

4πn

∫ σ+∆

σ

dr r2g(r) ≈ C (n ≈ ncp) (35)

gives an estimate for the number of nearest neighbors or “coordination number”
C. For dense fluids and close-packed crystals C ≈ 12. A simple unsystematic
guess of the hard-sphere equation of state p(φ) is thus obtained by parametrizing
the next-neighbor peak for r & σ by some function such as g(σ)e−(r−σ)/∆, plugging
it into Eq. (35), and solving for g(σ) as a function of n = 1/v. This produces the
form p = nkBT [1 + c φ/(1− φ/φcp)] with a (poorly determined) constant c that
one might wish to set to c = 4 in order to get Eq. (31) right.

8In contrast to g, gc is smooth at r = σ, which helps to avoid ambiguities at the discontinuity.
9In three dimensions, closest packing is attained in a fcc/hcp-crystal with n = ncp ≡

√
2/σ3

corresponding to φcp ≈ 0.74, as conjectured by J. Kepler, proved by K. F. Gau with respect to
all crystalline packings, and, at the end of the 20th century, by T. C. Hales in full generality.
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3 Ornstein–Zernike integral equation

A central task in many-body theory is the prediction of phase transitions and the
accompanying structural changes, as these provide not only the most spectacular
applications but also the most significant and critical tests of the theory. The
challenge then is to demonstrate how long-range correlations and divergent re-
sponse coefficients emerge from a typically short-ranged interaction potential. At
a critical point or at a spinodal, the pair correlation function h(r) = g(r)− 1 has
to become long ranged such that its integral and, according to Eq. (18), the com-
pressibility Sq→0/(nkBT ) diverges within a narrow parameter range. A standard
trick to guarantee that this subtle structure is preserved in practical calculations
(which are, of course, approximate calculations) consists in introducing a new
function c(r) and its Fourier transform cq, called the direct correlation function,
via

Sq = 1 + nhq =
1

1− ncq
(36)

A small change in the density n then translates into singular behavior of Sq→0,
and a finite error in cq will only affect the precise location of the phase transition
but not wreck its singular nature. This equation, and its transformation into real
space

h(r) = c(r) + n

∫
dr′ c(r− r′)h(r′) , (37)

are called Ornstein–Zernike (integral) equations (OZE). A formal justification of
the pertinence of this structure and the interpretation of c(r) are postponed to
the next section, while the remainder of this section first attempts to provide an
intuitive physical interpretation.

By expanding the denominator in Eq. (36) or iterating Eq. (37), respectively,
one immediately sees that the OZE decomposes the correlations in h(r) into
chains of “direct correlations” as expressed by c(r) (each ∗ stands for a convolu-
tion integral in real space or multiplication in Fourier space, respectively)

h = c+ nc ∗ c+ n2c ∗ c ∗ c+ . . . . (38)

Indeed, the intuition of long-range correlations in g(r) building up as chains of
short-range correlations in c(r) is an important guide in applications of the OZE.
For long-ranged interactions, such as a Coulomb potential, the trick also works
backwards and helps to explain how a long-ranged pair interaction gets screened
by the presence of other charges.

There are essentially two different ways of applying Eq. (37) to a system of
interest. First, as an exact self-consistency relation that has to be solved for
the functions h and c, simultaneously. To this end, one has to supply closure
conditions to constrain the two unknowns. Ideally, one would like to choose
closures that avoid violations of any a priori known properties of g(r), but there
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is no general systematic way how to find an exact closure. In practice, the self-
consistent solutions are therefore non-perturbative, uncontrolled approximations
corresponding to partial resummations of the virial series. A popular example is
the Percus–Yevick closure for hard spheres,

g(r < σ) = 0 c(r > σ) = 0 . (39)

While the first equation is obviously exact, the second expresses the expectation
that the direct correlation function should be of similar range as the interaction
potential itself. With this closure (and some effort), the OZE is analytically
solvable and yields

c(r < σ) =
1

(1− φ)4

[
6φ(1 + φ/2)2r/σ − (1 + 2φ)2(1 + φ r3/2σ3)

]
. (40)

From this one gets pretty accurate approximations (see the yellow curve in Fig. 1)
to the numerically exact g(r) and Sq, which are known from Monte Carlo simu-
lations (not shown). After integration, it yields approximate expression for the
equation of state and the free energy, similar to the phenomenologically very
successful Carnahan–Starling relation

p

nkBT
≈ 1 + φ

4− 2φ

(1− φ)3
,

F

NkBT
≈ Fig

NkBT
+ φ

4− 3φ

(1− φ)2
. (41)

These expressions can be understood as results of mixing the slightly different
predictions for the pressure obtained by inserting Eq. (40) into Eqs. (18) and
(26), and also of a heuristic approach called “scaled particle theory”, or of a Borel
resummation of the leading terms of the virial expansion, respectively. Reality is
more complex. There is a fluid-crystal phase coexistence with p(n) = constant for
0.49 . φ . 0.55, which is overlooked by all these approaches, and best addressed
by density functional theories, as outlined further below. And at φ ≈ 0.58 one
observes a dramatic slowdown of the dynamics attributed to a glass transition
that can not quantitatively be assessed by simple free-volume arguments or by
any other of the mentioned theories, but is very well described by mode-coupling
theory10, a dynamic theory that builds on liquid state theory.

The second reading of the OZE is as a kind of perturbation series that es-
sentially “creates a highbrow h(r) out of a lowbrow c(r)”. This view can also
provide some insight as to what might be a good closure. For example, one may
start from the observation that in the low-density limit

n→ 0 ⇒ h(r) ∼ c(r) ∼ f(r) = e−βν(r) − 1 . (42)

10W. Gtze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Oxford
Univ. Press, Oxford 2009.
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Using this approximation for c(r) in the OZE, one obtains the first correction to
the limiting form for h(r) ∼ f(r), namely

h(r) ∼ f(r) + n

∫
dr′ f(r− r′)f(r′) . (43)

In particular, for hard spheres, this simple procedure gives already qualitatively
quite reasonable approximations for the structure factor Sq, as illustrated in
Fig. 1. Using f(r > σ) = 0 and h(r > σ) = e−β∆w(r) − 1 ∼ −β∆w(r) (the
final expression holds asymptotically at low densities, where β∆w � 1), one
moreover immediately reads off

β∆w(r12) = −n
∫

dr3 f(r13)f(r23) +O(()n2) . (44)

Inserting the hard-sphere Mayer function and doing the integral, one thus obtains
the interesting prediction that the pair of test spheres experiences an effective
attraction (∆w < 0), the depletion attraction, due to the unbalanced pressure
exerted by the surrounding particles (see exercises). The product of the two
Mayer functions indicates that to leading order ∆w(r) takes the effect of a single
additional particle onto the pair of test particles into account. The leading order
approximation therefore amounts to treating the solvent as an ideal gas except
for its interactions with the two test particles, which is known as the Asakura–
Oosawa approximation in colloid science. A more accurate expression for ∆w
that takes the interactions of the solvent particles into account, is easily obtained
from Eqs. (32), (33) and the Percus–Yevick form for g(r), of course. (Consider
first the case that the solvent spheres are of the same type as the test spheres
and contemplate how this will change the form of the depletion potential; then
consider the case of smaller solvent particles.)

To summarize, by an apparently simple rewriting (expressing h or S in terms
of c), one has thus gained a robust and efficient approximation scheme for the
otherwise forbiddingly complicated many-body problem. Remember that the
original task was to solve a ridiculously high-dimensional configuration integral
for N ' 1023 strongly interacting particles. The OZE involves only a single
integration and the guessing of appropriate closures. With the OZE, already the
simple limiting form of the direct correlation function for vanishing density (in
fact, nothing but the good old barometer equation) yields interesting predictions
for the pair correlations and the structure factor that moreover stay qualitatively
trustworthy for finite (not too large) densities n and may even give a rough idea
whereabout and how a liquid-gas phase transition might occur.

The following section establishes the above structure of pair correlations and
direct correlations that are related by the OZE on a more systematic basis, the
double hierarchy of correlation functions generated from a twin couple of gener-
ating functionals, namely the free energy and the grand canonical potential. This
field theoretical formalism has widespread applications in physics. In particular,
it is the starting point of density functional theories.
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Figure 1: The structure factor of a hard sphere fluid of volume fraction φ = 0.3
(purple) and φ = 0.6 (blue) as estimated by the simplistic procedure described
in the main text, which uses the hard sphere Mayer function f(r) = θ(r− σ)− 1
as a first approximation for the direct correlation function c(r) as its only input.
While not quantitatively useful, it captures the qualitative features of the exact
result (and, in fact, of the structure factor of any simple fluid) surprisingly well,
as demonstrated by the comparison with the quite accurate Percus–Yevick result,
Eq. (40) for φ = 0.3 (yellow).

4 Density functional theory

The 2-lane stairway of correlations & response

The field theory formalism to be introduced in this section may be familiar
to some readers from other areas of physics (e.g. QFT). It provides the for-
mal grounds for the Ornstein–Zernike equation and also for the discussion of
the fluctuation-dissipation theorem and the density functional theories in the
remainder of this part of the lecture.

The whole formalism is nothing but a generalization of the double hierarchy of
isothermal derivatives of the equilibrium free energy F (T, V,N) and grand canon-
ical potential J(T, V, µ), or rather their volume densities f and j, respectively,

∂nf = µ , ∂2
nβf = ∂nβµ = (n2kBTκT )−1

−∂µj = n , −∂2
βµβj = ∂βµn = nSq→0 ,

(45)

where β and V are understood to be constant throughout. The procedure can
clearly be continued to higher-order derivatives, which will however not be pur-
sued in the following. Note that the compressibility sum rule, Eq. (18) is equiva-
lent to the statement that the second derivatives of the potentials are inverse to
each other,

(∂2
nβf)(−∂2

βµβj) = (∂2
nf)(−∂2

µj) = 1 (46)

This double hierarchy becomes a very useful tool when it is upgraded to allow
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for spatial variations of all quantities involved except for the temperature T =
1/kBβ, which parametrizes the local equilibrium, and the volume V used to turn
all extensive quantities into local densities. Spatial variations can arise from
external forces, here represented by an external potential U(r), or from the (pair-
)interaction potential V(r). In a field-theoretic framework, it is useful to express
the Hamiltonian in terms of the microscopic densities n̂(r), namely

H =
∑
i

p2
i

2m
+ V({ri}) + U({ri}) =

∑
i

p2
i

2m
+
∑
i<j

ν(ri − rj) +
∑
i

u(ri)

=
∑
i

p2
i

2m
+

1

2

∫
drdr′ n̂(r)ν(r− r′)n̂(r′)−Nν(0)/2 +

∫
dr n̂(r)u(r)

(47)

The subtraction of Nν(0)/2 and the prefactor 1/2 in front of the interaction
term help to avoid counting the self-interactions and double counting all pairs,
respectively. One must not forget the magic hats on the density, since this would
turn the microscopic densities n̂(r) into coarse-grained ensemble-averaged densi-
ties n(r), and thereby the Hamiltonian into an approximate expression for the
free energy (the so-called random-phase approximation).

The main difference of this local formalism compared to the above homoge-
neous free energies and their derivatives is that partial derivatives of the free
energy densities now turn into functional derivatives of the free energies them-
selves and that multiplications have to be interpreted as convolutions. (By a
Fourier transform, one can always get rid of this complication). The benefit
is that derivatives generate correlation and response functions and not merely
moments of some global quantities and response coefficients, respectively. With
the notion of a spatially heterogeneous generalized chemical potential (known as
“electrochemical potential” in solid state physics)

µ(r) ≡ µ− u(r) (48)

one has via the grand potential route

−δJ
δµ(r)

= n(r) ,
−δ2βJ

δβµ(r)δβµ(r′)
=

δn(r)

δβµ(r′)
= 〈δn̂(r)δn̂(r′)〉 ≡ G(r, r′) , (49)

with δn̂(r) ≡ n̂(r) − 〈n̂(r)〉. Recall that the pair correlation function G(r, r′)
is essentially the Fourier transform of the structure factor (times the particle
number).

To obtain the corresponding free energy route, one notices that after subtract-
ing the average potential energy

〈U({ri})〉 =

∫
dr 〈n̂(r)〉u(r) =

∫
drn(r)u(r) (50)
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from the total free energy corresponding to the Hamiltonian in Eq. (47), the
remaining intrinsic free energy

F [n(r)] = J +

∫
drn(r)µ(r) , (51)

is the Legendre transformation of the functional J [µ(r)] with respect to the gen-
eralized chemical potential µ(r). Its functional derivatives are

δF

δn(r)
= µ(r) ,

δ2βF

δn(r)δn(r′)
=
δβµ(r)

δn(r′)
= G−1(r, r′) , (52)

so that∫
dr′′

δ2F

δn(r)δn(r′′)

−δ2J

δµ(r′′)δµ(r′)
=

∫
dr′′G−1(r, r′′)G(r′′, r′) = δ(r− r′) . (53)

It is often useful to isolate the exactly known ideal gas contribution (or, more
generally, any other “known” reference free energy)

βFig[n(r)] =

∫
drn(r)

(
ln[n(r)λ3

T ]− 1
)

(54)

with the derivatives

δFig

δn(r)
= kBT ln[n(r)λ3

T ] ≡ µig(r) ,
δ2βFig

δn(r)δn(r′)
=

1

n(r)
δ(r− r′) . (55)

This suggests to introduce the so-called excess free energy Fex ≡ F − Fig, with
the derivatives

δFex

δn(r)
= µ(r)− µig(r) ≡ µex(r) ,

δ2βFex

δn(r)δn(r′)
=
δβµ(r)

δn(r′)
− 1

n(r)
δ(r− r′) =

δβµex(r)

δn(r′)
≡ −c(r, r′).

(56)

By comparison with the second line of Eq. (47), c(r, r′) can be said to be the
dressed version of the bare pair interaction ν(r − r′) (the free energy looks like
the Hamiltonian but with n and c in place of n̂ and ν, respectively). The notation
c(r, r′) is not an accident. The quantity thus defined, or rather n(r)c(r, r′), is seen
to encode “excess” correlations beyond the δ-correlations of the ideal gas. Indeed,
it reduces to the direct correlation function n c(r− r′), introduced above, in the
special case of a translation invariant system. Inserting Eq. (56) and the total
(pair) correlation function

n(r)n(r′)h(r, r′) ≡ n(r, r′)− n(r)n(r′) = G(r, r′)− n(r)δ(r− r′) , (57)
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with n(r, r′) the usual 2-point correlation function without self-correlations, into
Eq.(53), one finds (exercises):

h(r, r′) = c(r, r′) +

∫
dr′′ h(r, r′′)n(r′′)c(r′′, r′) . (58)

This is, of course, nothing but the Ornstein–Zernike equation in new garment.
The earlier versions are immediately recovered for a homogeneous system with
constant density n(r) = n, for which also the definition of h(r, r′) reduces to that
of h(r− r′).

This now further clarifies the pertinence of the OZE and the direct correlation
function. The OZE constitutes a relation between the 2-point correlation and/or
response functions of different hierarchies, one obtained along the free-energy
route, the other along the grand-potential route. In terms of response functions,
it simply states the (trivial) reciprocity of the excess parts of ∂µn and ∂nµ. The
response of the density to an infinitesimal fluctuation of the chemical potential is
the reciprocal of the response of the chemical potential to an infinitesimal density
fluctuation. As the above discussion tried to convey, despite this seemingly trivial
content, it can serve as a powerful door-opener to the complicated many-body
problem.

Fluctuation-response theorem

As already pointed out, the second derivatives of the generalized thermodynamic
functionals F [n(r)] and J [µ(r)] in Eqs. (49) and (52) can be interpreted as spa-
tially varying susceptibility functions or correlation functions, respectively. These
equations thus generalize results about the equivalence of fluctuations and re-
sponse coefficients; e.g. the relation between grand canonical number fluctuations
and the compressibility derived in introductory texts on statistical mechanics, or
the compressibility sum rule in Eq. (18). They can also be understood as a local,
differential version of the virial equation from Sec. 1 for spatially variable pressure.
The relation between packing structure, thermal fluctuations, and macroscopic
material properties is thereby cast into a form that includes detailed spatial in-
formation on both the structural and material side, to leading order. To bring
it into a more familiar form, which also exposes more clearly its perturbative
nature, it shall now be re-derived for the special case of a homogeneous fluid. For
the sake of the argument, the external perturbation is assumed to be periodic
(a Fourier component of a weak but otherwise arbitrary perturbing electric or
gravitational potential, say),

u(r) =
uq
V
eiq·r . (59)

This corresponds to the perturbation Hamiltonian U = uqn̂−q/V , with n̂q =∑
i e
−iq·ri the Fourier transformed microscopic density. Then, the resulting den-

sity field 〈n̂q〉U , in presence of the perturbation U , is obtained to leading order in
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the perturbing field as

〈n̂q〉U =
〈n̂qe−βU〉
〈e−βU〉

∼ 〈n̂q(1− βU)〉
〈1− βU〉

∼ nq +
βuq
V

(
〈n̂q〉〈n̂−q〉 − 〈n̂qn̂−q〉

)
.

Here and in the following, quantities calculated in, or pertaining to the perturbed
state are marked with a subscript U to distinguish them from corresponding
quantities in the reference fluid. Note that the last term is, up to a missing
factor 1/〈N〉, actually the definition of the structure factor. The strength of the
deviations from the homogeneous reference state are controlled by the structure
factor Sq of the unperturbed system, which—at the same time—characterizes the
fluctuations and packing structure,11

∆n(U)
q ≡ 〈n̂q〉U − 〈n̂q〉 = −βuq

V
〈δn̂qδn̂−q〉 = −βuqnSq . (60)

The local susceptibility generalizing the overall isothermal compressibility κT
is the functional derivative of the local density with respect to the perturbing
potential, which turns into an ordinary partial derivative in Fourier space,

χ(r, r′) ≡ δn(r)/δu(r′) = −βG(r, r′) , χq = ∂nq/∂uq = −βnSq . (61)

The structure factor, the two-point correlation function of the density fluctua-
tions, is at the same time the susceptibility controlling the density change in
response to an external perturbing potential. This is the fluctuation-response
theorem, which contains the compressibility sum rule as the special case q → 0,
and which is itself a specialization (to temporally stationary situations) of the
more general (dynamic) fluctuation-dissipation theorem (FDT).

Basic notions of density functional theory

Density functional theory (DFT) is a very successful and popular framework
based on the above formalism that extends (and includes as a special case) the
Ginzburg–Landau theory usually discussed in statistical mechanics lectures. Al-
though it exploits and builds on the above formally exact relations and admits
fluctuations via the spatially varying density field n(r), it is mean-field like in
practice. The approximation schemes required to address real-life applications
introduce some uncontrolled errors in the direct correlation function that spoil
the critical behavior and other subtle correlation effects. Another limitation of
DFT is that it usually does not get rid of some guessing of trial functions or,
in more elaborate versions, at least of some free parameters. With respect to
the task of obtaining numerically precise predictions this freedom may suit the

11Note the (initially confusing but common) overloading of the symbol Sq (with or without
the forward scattering at q = 0) and the prefix δ (delta function, functional derivative and
variation δn̂ ≡ n̂− n around some local or global average density n ≡ 〈n̂〉).
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practitioner, while it is somewhat less satisfying with respect to the task of gen-
erating insight into fundamental physical mechanisms. Examples that serve as
paradigms for applications in many areas of physics are the Landau theory, the
freezing and melting transition in simple fluids, the isotropic-nematic transition,
and the Poisson–Boltzmann and Debye–Hckel theory. Appropriately extended
versions of DFT involving particle exchange effects are very useful in quantum
mechanical many-body problems, e.g. in describing electrons and more complex
quasi-particles, e.g. in (semi-)conductors and large atoms, which are not consid-
ered here.

Inhomogeneous ideal gas

Basically the only exactly known density functional of an inhomogeneous fluid
is that of the inhomogeneous ideal gas. It is obtained by replacing the constant
density n by the spatially varying field n(r) in the known bulk formula,

βFig[n(r)] =

∫
drn(r)

(
ln[n(r)λ3

T ]− 1
)
⇒ βδ2Fig

δn(r)δn(r′)
=

1

n(r)
δ(r− r′) . (62)

In the homogeneous state the fields degenerate to n(r) = n, G(r, r′) = nδ(r− r′),
and hence ng(r) = n, h(r) = c(r) = 0, and Sq ≡ 1.

Slightly inhomogeneous fluids

Even for a strongly interacting many-body system, weak fluctuations around a
homogeneous reference state may often be treated as a weakly interacting gas.
The corresponding model of a slightly inhomogeneous fluid is among the most
commonly applied models in many-body physics. It is the (classical) basis for
the quantized elementary excitations and quasi-particles that govern the world of
solid-state physics, but it is equally useful in soft matter physics. The inhomoge-
neous part of the free energy in terms of the density fluctuations δn(r) = n(r)−n
(around a global average density n) is defined as the intrinsic free energy minus
its homogeneous part, i.e., with n(r) ≡ n. Subtracting N [ln(nλ3

T ) − 1] from
Eq. (62) gives the contribution of the ideal gas to the inhomogeneous free energy
βFih. And the interaction or excess part is written as a quadratic form in the
small quantities δn(r) that reproduces Eq. (56) upon differentiation. The direct
correlation function c(r, r′) is taken to be that of the homogeneous reference state
(i.e., it may depend on r− r′ and on n but not on r and r′ independently and on
δn) and assumed to be known from somewhere (e.g. from the OZE, or estimated
via the random-phase approximation). Hence, altogether one has

βFih =

∫
dr {n(r) ln[n(r)/n]− δn(r)} − 1

2

∫
drdr′ c(r− r′)δn(r)δn(r′) . (63)
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(The last term in the curly brackets actually vanishes upon integration, but is
kept here as a gauge term for later cancellations with the first term.) A famil-
iar example for such theories is the square-gradient expansion familiar from the
Ginzburg–Landau free energy for the fluctuations, that amounts to the additional
small wave vector approximation cq ∼ c0 + c1q

2/2. Here, c1/4β would become
the coefficient in front of the square gradient term in the free energy after Fourier
back transformation.

The minimum condition for the grand potential reads

J

δn(r)
= 0 ⇒ βδFih

δn(r)
= βµih(r) = ln[n(r)/n]−

∫
dr′ c(r, r′)δn(r′) . (64)

The last expression has to vanish or to balance an external potential −βu(r), if
present — given that the overall chemical potential µ is already taken care of by
the reference fluid. In other words, the spatial density profile n(r) = n + δn(r)
obeys the self-consistency relation

n(r) = ne−βueff(r) with βueff(r) = βu(r)−
∫

dr′ c(r− r′)δn(r′) (65)

a position dependent effective potential, which is self-generated by the inter-
actions. This generalizes the well-known self-consistency equation (usually dis-
cussed in the mean-field theory for the Ising model in introductory statistical-
mechanics texts) to a spatially varying mean field and incidentally improves it by
replacing the bare pair interaction potential with the direct correlation function.
For vanishing interactions the barometer equation is recovered. The calculation
of the density for an interacting fluid thus parallels the solution of the barome-
ter equation for an ideal gas with the additional problem of finding a consistent
self-generated “mean field” (the last term in the equation), which encodes the
corrections due to the self interactions in the linear-response approximation for
small density variations. As usual, if the direct correlation function of the homo-
geneous reference state is not yet known (e.g. from the OZE), it can be replaced
by the bare potential or by the Mayer function, in the random-phase approxima-
tion. In any case, such an approach will become poor if the self-induced density
fluctuations become too pronounced.

5 Applications: mesophase transitions, freez-

ing, screening

Onsager 1949: nematic transition, mesophases

A historically most significant early example of a density functional theory is On-
sager’s theory from 1949 for the isotropic-nematic transition in fluids or solutions
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of rod-shaped macromolecules. It is instructive in various ways: it combines two
independent theoretical concepts introduced above, the low-density approxima-
tion and density functional theory; it is a paradigm of partial ordering (orienta-
tional ordering without positional ordering) into a so-called micro- or mesophase,
a theme with countless variations in (soft) condensed matter theory; and finally
it is an early example for a purely entropic or “geometric” transition. Thereby,
it anticipates later theories of freezing and melting of simple fluids.

The essential physics of the nematic transition is that isotropic rods of length
L and diameter a jam up at high densities, as familiar from the mikado game.
To avoid an entropy crisis, i.e., a complete loss of conformational entropy at
the isotropic jamming density n = nc, the system sacrifices a bit of its orien-
tational disorder to retain some more of its translational freedom. This trick
only works if a macroscopic fraction of the molecules can agree on an average
preferred orientation. In other words, spontaneous long-range orientational order
has to emerge. In contrast, no positional long-range ordering occurs in the ne-
matic phase. The center-of-mass coordinates retain their fluid-like (or liquid-like)
distribution, whence the name liquid crystal.

For idealized symmetric (non-polar) molecules there is no preferred direction,
only a preferred orientation, which is mathematically represented by the tensor

Ψ = 〈(3uu− 1)/2〉 = ψ(3d̂d̂− 1)/2 (66)

constructed from a unit vector u, the “direction” of a representative molecule,
which should not be confused with the potential u. The strength of the orienta-
tional order is measured by the scalar order parameter

ψ ≡ 〈d̂ ·Ψ · d̂〉 =
(
3〈(u · d̂)2〉 − 1

)
/2 =

(
3〈cos2 θ〉 − 1

)
/2 ∈ [0, 1] , (67)

the component of Ψ parallel to the average orientation of the molecules. The
tensor

d̂d̂ ∝
∑
i

uiui = 〈uu〉 =

∫
du p(u)uu (68)

pointing along the average orientation12 of the molecules (or also the vector d̂) is
called the “director”. Here, p(u) denotes the normalized orientational distribu-
tion of the rods. In the limit of total alignment, u · d̂ = ±1, the angle θ between
u and d̂ vanishes (or becomes π) as the angular distribution p(u) degenerates to
a δ−function, so that ψ → 1. For the isotropic state cos θ is evenly distributed,
so that p(u) = 1/4π, 〈cos2 θ〉 = 1/3, ψ = 0, and the director d̂ is not defined.

Onsager realized that, for extreme aspect ratios a/L of the rods, the nematic
transition in a gas of hard rods occurs at very low densities, a fact familiar from
the mikado game. With a careful analysis of the virial series, he proved that

12A slight intervention to break ergodicity, as familiar from the discussion of ferromagnetic
order, is tacitly assumed in the formulation involving the ensemble average.
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Figure 2: The nematic transition of slender rods. Left: Excluded volume for the
centers of mass of a pair of slender hard rods. Right: The free energy cost fih

to turn the isotropic state into an inhomogeneous state as a function of the pa-
rameter α quantifying the strength of the nematic order. Up to a critical volume
fractions φ1 there is only the global minimum corresponding to the isotropic state
(α = αiso = 0). At higher volume fractions a metastable second local minimum
emerges that corresponds to a partially ordered nematic phase. With increasing
particle concentration, it gains stability. At φ = φ2, the isotropic phase eventually
becomes unstable. In the intermediate concentration range, the free energy can
be lowered further by partitioning the fluid into coexisting isotropic and nematic
phases.

in the limit a/L → 0 simultaneous multiple collisions become rare. The pair
interactions between the rods may then, right up to the nematic transition, be
treated on the two-particle level (i.e. in low-density approximation). The direct
correlation function is thus given by the Mayer function

c(r,u; r′,u′) ∼ e−βν(r,u;r′u′) − 1 , (69)

which, for hard rods, takes the value −1 upon overlap and vanishes otherwise.
Because of the low density at the transition, one expects the center-of-mass

degrees of freedom to remain essentially gas-like up to the transition, while some
nontrivial behavior should arise in the orientational degrees of freedom controlled
by the weight p(u), as indeed experimentally observed13. Hence, the generalized
density n(r,u) of rods with orientation u at position r simplifies to

n(r,u)→ n p(u) . (70)

As an immediate consequence, the spatial integrals in the excess free energy will
only contain the direct correlation function in Eq. (69), which then moreover only

13In fact, near the critical density, the isotropic and nematic phases turn out to coexist and
have slightly different densities, but this can be taken into account later.
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depends on the relative positions r12. After the positional degrees of freedom have
been integrated out, what remains is the orientational direct correlation function

c(u,u′) ≡
∫

drdr′ c(r− r′; u,u′) = V

∫
dr12 [e−βν(r12,u,u′) − 1] (71)

From the sketch in Fig. 2 one quickly convinces oneself that

c(u,u′) = −2aL2V |u× u′| = −2aL2V | sin θ| , (72)

which is identified as the (negative) excluded volume, which depends on the
relative orientation, i.e. on the angle θ between the considered pair of rods. These
arguments are now put to work.

In the homogeneous and isotropic reference state, p(u) = 1/4π and the free
energy per particle is given by the ideal gas contributions from the center-of-mass
degrees of freedom (the constant contribution from the orientational degrees of
freedom can be gauged away), plus the excess part of the free energy:

βFex = − 1

2

∫
drdudr′du′ c(r− r′; u,u′)n(r,u)n(r′,u′)

= − n2

2

∫
dudu′ c(u,u′)p(u)p(u′)

= aL2V n2

∫
du

4π
| sin θ| = B n2V

(73)

with the second virial coefficient B = πaL2/4. The total free energy per particle
in the homogeneous and isotropic reference state is thus (not very surprisingly)

βfiso = ln(nλ3
T )− 1 +B n . (74)

So this is the rare case of a simple (and in the limit a/L → 0 exact) analytical
result for an interacting many-body system.

Now comes the hard part, namely dealing with the possible anisotropies. From
Eq. (63), the inhomogeneous free energy per particle βfih (the excess over the
isotropic state) reads

βfih =

∫
du
[
p(u) ln 4πp(u)− δp(u)

]
− n

2V

∫
dudu′ c(u,u′)δp(u)δp(u′) , (75)

with δp(u) ≡ p(u) − 1/4π the anisotropic part of the orientational distribution.
The self-consistency relation for p(u), Eq. (65), which results from minimizing
the total free energy (corresponding to fiso + fih) is

4πp(u) = e−βueff(u) with βueff(u) = φ
8L

πa

∫
du′ |u× u′| δp(u′) , (76)
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with the volume fraction φ = π(a/2)2Ln. Both Eqs. (75) and (76) are still
formally exact for a/L → 0, if the emerging orientational order is weak enough
to justify the quadratic form of the free energy. However, in contrast to the
homogeneous case, Eq. (74), all that is known about the excess orientational
distribution δp(u) is that it vanishes upon integration over all directions, and
also for small values of the control parameters φL/a → 0 (hence weak mean
field). To allow for a nematic transition, it somehow has to develop a peaked
structure. As a consequence, fih should turn negative above some critical volume
fraction φc and thus yield the isotropic state unstable in favor of nematic ordering.
In other words, one is looking for a bifurcation in a somewhat daunting infinite
dimensional nonlinear eigenvalue problem.

This is, where uncontrolled approximations come into play. One invents a
parameter-dependent trial function pα(u) which reduces the problem to a low-
dimensional eigenvalue problem. A reasonable guess for pα(u) could be a Gaus-
sian of width α−1 centered around the director, and one may expect that Onsager
tried this first. In his paper, he proposed the ansatz

pα(θ) =
α

4π

cosh(α cos θ)

sinhα
(77)

instead, which has also only a single free parameter α, is similarly analytically
tractable, and lowers the total free energy after minimization even further than
the Gaussian. The dependence of the order parameter on α is readily obtained

ψ = 1− 3(cothα− α−1)/α . (78)

The limits α = αiso = 0 and α→∞ correspond to an isotropic and perfectly ori-
ented system, respectively. By minimizing the free energy with the trial function,
Onsager indeed found a certain critical volume fraction φc ' a/L, where the in-
homogeneous contribution to the free energy turned negative for some α = αc > 0
indicating a discontinuous (“first order”) phase change with a corresponding jump
in the order parameter.

At this point, many studies of mesophase transitions would be satisfied. Upon
closer inspection, the situation turns out to be a bit more complex, though. The
shape of the inhomogeneous free energy contribution fih as a function α undergoes
qualitative changes from a convex monotonic to a “∼”-shaped and finally “∪”-
shaped form upon increasing the control parameter φL/a (sketch). Initially, it has
a single minimum at α = αiso = 0. At φ = φ1 = 3a/L it first develops a second
local minimum at α = αnem(φ) > 0, which deepens and shifts to higher α upon
further increase of φL/a, until the first minimum vanishes at φ2 = 4a/L. Hence,
in a certain concentration range around φc there is a chance that the system
lowers its total free energy by partitioning into domains of densities that are
slightly higher and lower than the overall average density, respectively. In other
words, there will be a coexistence region, where isotropic and nematic domains

27



coexist.14 As apparent from a sketch of the total free energies corresponding to
the local minima, fiso ≡ f(φ, αiso) and fih ≡ f(φ, αnem) over the volume fraction
φ, appropriate amounts of the two phases have to be present for this to happen.
The volume fractions φiso, φnem and particle numbers Niso, Nnem corresponding
to the absolute minimum of the free energy follow from the lever rule

Nf = Nisofiso +Nnemfih , f =
φnem − φ
φnem − φiso

fiso +
φ− φiso

φnem − φiso

fih . (79)

The concentration φiso ≈ 3.3a/L and φnem ≈ 4.5a/L of the coexisting phases
follow from the Maxwell construction.

Recall that the whole discussion applies to extreme aspect ratios a/L. In prac-
tice, it is found to give a fair description for L/a > 102. Otherwise, the numerical
values deviate substantially and other phases (“smectic”, “plastic”, crystalline)
appear in the phase diagram. Together with the Thomas–Fermi theory for atoms
with many electrons, Onsager’s ground breaking work has been a paradigm for
many later DFTs in condensed matter physics15.

“Ordinary” fluid-crystal coexistence

Following Onsager, in 1979, Ramakrishnan und Yussouff used Eq. (63) with good
success to elucidate the geometric nature of the freezing and melting transitions
in classical fluids, explain the universality of the packing structure near these
transitions, and numerically compute quantitative predictions for the phase dia-
gram. Their analysis provided a theoretical basis for successful phenomenological
rules of thumb, such as the Verlet rule and the Lindemann criterion, which are
widely used in practical applications. The Lindemann criterion states that crys-
tals melt if the mean-square fluctuations of the atoms exceed 10% of their average
next-neighbor distance (the lattice unit), and the Hansen–Verlet rule states that
fluids freeze if the height of the main peak in their structure factor exceeds 3,
thereby hinting at different underlying mechanisms for both transitions.

Their DFT approach regards the crystal as a (not so) slightly inhomogeneous
fluid. The procedure can be characterized as “fishing for crystal structures”.
Briefly, one looks for instances of a non-zero order parameter nKi

≡ 〈
∑

j e
iKi·rj〉 =

O(N) (“Bragg peaks”) in a preferably exhaustive set of possible reciprocal lattice
vectors Ki. To this end one needs an ansatz. A sum of Gaussian distributions of
width a centered at the lattice sites {R}

n(r) = ns
(√

πa/a0

)−3
∑
{R}

e−(r−R)2/2a2

(80)

14This is not a peculiarity of the nematic transition, but is in fact the generic situation in any
discontinuous (“first order”) phase transition, and should be familiar from the van der Waals
model, which is usually discussed in introductory thermodynamics lectures.

15See Phys. Rev. Lett. 102, 018302 (2009) for a closely related more recent example.
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is plugged into Eq. (63). Local minima of the resulting free energy other than
the homogeneous fluid reference state are then searched by varying the model
parameters ns, a0, and a for a prescribed trial crystallographic lattice {R(a0)}
such as BBC, FCC, etc., and the one with the lowest free energy is then proposed
as the equilibrium structure. While the average lattice constant a0 refers to the
abstract lattice, the density ns refers to the actual mass sitting on this lattice. If
it is treated as an independent parameter, the ansatz can account for vacancies.

Poisson–Boltzmann and Debye screening

Another useful and widely used application of the self-consistency relation Eq. (65)
is to dilute plasmas, represented by a mixture of two ideal gases of oppositely
charged particles that interact via the Coulomb interactions. The densities of the
particles are denoted by n+(r) and n−(r) and assumed to vary around the same
average n/2 to ensure neutrality. Only interactions of local excess charges are
considered, disregarding the (divergent) interaction energies within the homoge-
neous background. Each species obeys a self-consistent Barometer equation of
the type in Eq. (65) with a factor n/2 (instead of n) in front of the exponential
and ±δn(r) (the sign depending on the species considered) replaced by the net
charge density ne(r) ≡ n+(r)− n−(r), as it is only via the charges that the par-
ticles interact. The direct correlation function is approximated, in random-phase
approximation, by the bare Coulomb potential. In absence of external fields, the
effective potential for the species densities n±(r) is then given by

±βueff(r) =

∫
dr′

z2`B
|r− r′|

ne(r
′) . (81)

Here, the Bjerrum length `B ≡ βe2 emerges as the natural length scale that
distinguishes short distances (governed by the Coulomb force) from long distances
(governed by thermal forces). Subtracting the self-consistency equations for both
charge species from each other, and using the Poisson equation to express ne(r) in
terms of the self-generated electrical potential ueff(r), gives the so-called Poisson–
Boltzmann equation,

−4πz2`Bne(r) = ∇2βueff(r) = κ2 sinh βueff(r) , (82)

with κ2 ≡ 4πz2`Bn. Note that the Debye screening length κ−1 sets the natural
scale for the spatial derivative ∇, and therefore for any inhomogeneities in the
charge density, which are expected to vanish for κr � 1). This indicates the
effect of “screening”. The Coulomb force exerted by a charge fluctuation onto
the surrounding plasma induces a compensating charge cloud that neutralizes
and screens it for distant observers.

To pin down the effect more clearly, consider the OZE in the random-phase
approximation, i.e. with c(r) ≈ −βν(r) = z2`B/r, which becomes −4πz2`B/q

2 in
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Fourier space. The OZE then gives the charge structure factor and fluctuation
function

Seq =
q2

κ2 + q2
=⇒ heq = Seq − 1 = − κ2

κ2 + q2
(83)

The vanishing of the “charge compressibility” Seq→0 is of course nothing but a
reformulation of global charge neutrality. Fourier back transformation Eq. (83)
yields the Debye–Hckel form of he(r), which can, to the present order of approx-
imation, be identified with the (charge) potential of mean force βwe(r)

he(r) ≈ −βwe(r) ≈ −z
2`b
r

exp(−κr) . (84)

So the actual interaction potential between two charge fluctuations embedded in
a plasma is not the bare Coulomb potential, but a screened (or “dressed”) version
that decays exponentially over a distance κ−1. It is Coulombic at short distances
r � κ−1 but vanishes at large distances r � κ−1. A charge fluctuation is thus
not visible from large distances. The result can also be interpreted in terms of
the “solvent contributions” encoded in ∆w(r) = z2`b(e

−κr−1)/r, which suppress
the long-range part of the bare Coulomb potential.
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Part II

Soft-Matter Paradigms: Complex
Fluids, Soft Solids, Active Matter
Along with the general principles of many-body physics, the first part of the
lecture already briefly introduced some important model systems of soft matter
physics, such as the hard sphere fluid and liquid crystals. They serve well to
elucidate why and how soft matter is soft and slow and prone to large deforma-
tions and fluctuations. Namely, the softness of a hard sphere crystal, which has
an elastic modulus on the order of kBT/`

3, is primarily due to its large lattice
constant ` (on the order of 100 nm, say) and, to a lesser degree, also to its weak
entropic interaction strength (given by the thermal energy kBT itself). Together
with the viscous damping due to the solvent that usually dominates over inertia
effects, this also accounts for the relative slowness of the dynamics compared to
conventional hard-matter systems. This observation is very general and carries
over to a vast class of material structures, with only minor modifications. It
also rightly suggests that soft matter systems may take the role of an upscaled
and slowed-down laboratory for many of the physical principles at work in hard
matter systems.

The main aim of the present part of the lecture is to provide a slightly more
specific perspective on other paradigmatic properties of soft materials. Even if
a liquid froth or a dense solution of swimming bacteria, say, may share some
intriguing similarities with the packing of hard spheres, one would not expect
that their physics can entirely be understood by this analogy, alone. At some
point, additional aspects, such as surface tension, surfactants, wet electrostatics,
fluid flow, and self-propulsion will enter the stage and claim to make a difference.
And these effects are so ubiquitous and entail such a wide variety of phenomena
that their omission would amount to throwing out the baby with the bath water.
As a pars pro toto for such additional important (and still reasonably general)
aspects, the remainder of the lecture focusses on the floppy internal degrees of
freedom of low-dimensional mesostructures (such as phase boundaries, biologi-
cal membranes, or macromolecules16) and the dynamics of the solvent in which
they are dispersed, and eventually adds activity to the story. Many soft mate-
rials, and in particular all living ones, are well characterized as fluids with some
inter-dispersed low-dimensional elastic mesoscale structures (or vice versa), and
possibly activity. Elements of the theories of (fluctuating) hydrodynamics and of
the elasticity of low-dimensional manifolds, both near and far from equilibrium,
are therefore often useful companions in soft matter physics.

16Also magnetic flux lines in type-II superconductors could be mentioned as an example.
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6 Principles of hydrodynamics

Hydrodynamics is the general name for the dynamics of the slow variables of a
macroscopic material, if the emphasis is more on mechanical rather than thermal
properties17. The classical field theories discussed in the first part of the lecture
provide good examples for theories that one might subsume under the names
of generalized hydrodynamics and (continuum) elasticity. Yet, it is of some in-
terest to have a closer look at hydrodynamics in the narrower sense, namely at
the dynamic flow of simple (and not so simple) liquids. Technically speaking,
hydrodynamic theories are phenomenological descriptions of material behavior
based on symmetries and conservation laws. They become exact in the long-
wavelength limit but do not give a clue as to the microscopic scale where they
might fail to apply. This is generally a great advantage, because it allows for an
exact discussion of swimming without resorting to the microscopic details hidden
in the numerical values of some phenomenological coefficients (masses, couplings,
moduli, viscosities . . . ). It can be a nuisance if you need to decide whether
it is worthwhile to build an expensive particle accelerator supposed to discover
these hidden details behind the (essentially hydrodynamic) standard model of
particle physics. In practice, hydrodynamics often works reliably almost all the
way down to the omitted “molecular” scale itself. If the microscopic physics is
known, one can choose to approach the hydrodynamic equations either from a
phenomenological (thermodynamic) or microscopic starting point.

Phenomenological approach

The phenomenological approach does not require knowledge of any atomistic
details of a material. It rather builds on a macroscopic formulation of exact
conservation laws (which express the symmetries of the problem) in terms of
continuity equations. If the latter do not exhaust the degrees of freedom, material
laws (equations of state) are additionally required to arrive at a closed set of
equations.

The local conservation of a quantity X, say the particle number N, implies

∂tρ
X +∇ · JX = 0 (85)

with ρX(r, t) and JX(r, t) the density and flux of the conserved quantity X,
respectively. In Fourier space, this becomes

∂tρ
X
q = iq · JXq , (86)

which shows that long-wavelength modes (q → 0) of conserved quantities relax
slowly in time. They are therefore the natural candidates for good hydrodynamic

17Otherwise also known as nonequilibrium/dissipative thermodynamics.
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variables that can live a tranquil life of their own while the fast and furious mi-
croscopic degrees of freedom have long established their perfect local equilibrium
under the quasi-static constraints imposed by the slow variables. Other natu-
ral candidates for slow variables are broken-symmetry variables. These could be
said to be accidentally slow, as the restoring forces that confine their fluctuations
happen to be weak because of a nearby critical point. Think of the orientation
of the director of a nematic liquid crystal. It costs no energy to turn it globally
and therefore also not much to induce a slight bend, twist, or splay — which is
why such deformations are easy to achieve and relax slowly.

If the flux J in Eqs. (85), (86) is not externally prescribed or itself a conserved
quantity (a case deferred to further below), one has to find a closure, so that the
number of equations equals the number of unknown variables. The flux will
in general depend on the density and possibly on other quantities for which
one would need additional equations. In the simplest case, someone provides a
closure of the form JX [ρX ]. In fact, on the phenomenological level, this is not
necessarily very hard, as the following simple example demonstrates18. Take X to
be the number N of colloidal particles suspended in an isothermal isobaric liquid
solvent at rest. Then the form of the closure J[n(r)] for the flux in terms of
the number density n(r, t) ≡ ρN(r, t) is largely constrained by symmetry. First,
Galilei invariance suggests that a flux can be generated by looking at some fluid
of density n(r, t) in a comoving frame, so that

J[n(r)] = n(r)v(r, t) (87)

But this only defers the closure problem from the flux J to the hydrodynamic
velocity v. One still needs to relate either vector to the scalar n. This requires
another vector to take a scalar product, but there is none around in a homo-
geneous and isotropic fluid, so that J must vanish. A more interesting closure
results if there happens to be a density gradient ∇n which provides the sought-
after vector. Assuming moreover that the gradient is small (as appropriate for a
long-wavelength theory), the only possible closure

J(r, t) = −D∇n(r, t) (88)

with a phenomenological transport coefficient D(T, n) that can only depend on
the average density n but not on the density variations. By combining this
with particle conservation, Eq. (85), a closed hydrodynamic equation is obtained,
namely the diffusion equation

∂tn(r, t) = D∇2n(r, t) . (89)

Thermodynamics and statistical mechanics can provide some additional in-
sight. The thermodynamic approach starts from the second law, which suggests

18. . . but it quickly gets very laborious if more hydrodynamic variables enter the game
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that non-conserved (dissipative or entropy-producing) currents should always flow
“downhill” until the gradient is gone and the appropriate free energy is minimized.
For the chosen example of an isothermal isobaric colloidal suspension, the appro-
priate potential is the Gibbs free energy (per constant coarse-graining volume),
G/V = µn with19

d(µn)T,p = µdn (90)

Its time derivative is thus

∂t(µn)T,p = µ∂tn = −µ∇ · (nv) = −∇ · (µnv) + nv · ∇µ . (91)

This amounts to a continuity equation for the Gibbs free energy with a sink (it
must be a sink according to the second law), namely,

∂t(µn) +∇ · (µnv) = nv · ∇µ ≤ 0 . (92)

and is prototypical of the equations of irreversible thermodynamics. One con-
cludes that spontaneous particle fluxes nv (that are not excited by some means
from outside) always run in the direction of negative gradients in the chemical
potential, i.e. they can be understood to be driven by these gradients, which thus
play a role akin to external driving forces. This is indeed what Eq. (90) says,
namely that the force conjugate to a homogeneous density change is the chemical
potential. Chemical potential gradients excite fluxes of the density, accordingly.
Denoting by Γ the kinetic coefficient (acting as its friction coefficient) that fixes
the time scale for this flux, one thus has

J = nv = −Γ∇µ = −Γ∂nµ)T∇n . (93)

Using ∂nµ)T = n−2κ−1
T with the isothermal compressibility κT , the diffusion co-

efficient
D(T, n) = Γ∂nµ)T = Γn−2κ−1

T (94)

in Eq. (89) is seen to encode some kinetic (Γ) and some thermodynamic (n2κT )
information. In particular, for an ideal gas, D ∝ kBT/n, which indicates that
diffusion is an entropic transport process, driven by thermal fluctuations. Ac-
cording to Eq. (94), it slows down dramatically at a critical point, where the
compressibility diverges (so-called “critical slowing-down”). Moreover, it may re-
verse its direction (“uphill diffusion”) in a spinodal instability, where κT changes
sign, so that time may seem to run backwards for a while, when the particles
gather from a homogeneous dilute solution into dense clusters or droplets.

Microscopic approach

A recipe for deriving Eq. (88) microscopically from statistical mechanics would
roughly proceed along the lines introduced in the first part of the lecture, which

19Recall that dG)T,p = µdN .
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is not further pursued here, since it would only lead to equilibrium closure rela-
tions20. However, the softness of soft matter implies that it is easily driven far
from equilibrium. Therefore, the aim is to venture beyond equilibrium. This sub-
section thus follows the microscopic approach only up to the point where closures
come into play. In a microscopic approach the conservation laws are encoded
in the microscopic equations of motion. They have then to be coarse-grained to
arrive at the hydrodynamic equations, i.e. atomistic details have to be blurred.
If one can assume local equilibrium, it is easy to go from microscopic densities to
the local densities of hydrodynamics, as usual (X =

∑
i xi):

ρ̂X(r, t) =
∑
i

x̂iδ[r− r̂i(t)] → ρX(r, t) = 〈ρ̂X(r, t)〉 . (95)

But, as pointed out, one has to bear in mind that this local equilibrium is generally
a perturbed one (by the hydrodynamic flow) compared to the fluid at rest. More
generally, one might want to deal with a general nonequilibrium distribution that
is of course a priori unknown. Or one might resort to spatial coarse-graining by
introducing a low-pass filter, a normalized positive real space function that has
vanishing Fourier coefficients for wave vectors beyond a certain coarse-graining
scale. To obtain the hydrodynamic densities from the microscopic densities, the
latter are then convoluted with the filter function. With a slight overloading of
the symbol 〈. . . 〉, the definitions of hydrodynamic quantities look the same with
such a dynamic coarse-graining as with the nonequilibrium or local equilibrium
ensemble averages.

Focussing on the example of a simple one-component liquid (or gas) with
particle mass m one has the mass density

ρ̂M(r, t) = m
∑
i

δ[r− r̂i(t)] (96)

with its time derivative (v̂i = ∂tr̂i)

∂tρ̂
M(r, t) = −∇ ·

∑
i

mv̂i(t)δ[r− r̂i(t)] . (97)

The microscopic mass flux is thereby identified as

ĴM(r, t) =
∑
i

mv̂i(t)δ[r− r̂i(t)] , (98)

so that Eq. (97) is recognized as a microscopic continuity equation. The hy-
drodynamic continuity equation (85) is recovered upon coarse-graining. Also
the hydrodynamic transport velocity v(r, t) is defined, using the coarse graining
operation 〈. . . 〉,

〈ρ̂M(r, t)〉v(r, t) ≡ 〈ĴM(r, t)〉 . (99)

20Microscopic approaches to conditions far from equilibrium are still under development.
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In case of particles in vacuum, the mass flux JM is a conserved quantity itself,
namely the momentum density

ρ̂P(r, t) = ĴM(r, t) . (100)

In the absence of external forces, using Newton’s law of motion, one then has

∂tρ̂
P(r, t) = −∇ ·

∑
i

mv̂iv̂iδ(r− r̂i) +
∑
i

F̂iδ(r− r̂i) . (101)

with F̂i(t) the force exerted at time t on particle i by all other particles. (Some
time arguments are suppressed for brevity.) The equation for the momentum
density does not yet have the expected form of a continuity equation. Note,
however, that the mutual forces within any volume element cancel each other
exactly up to surface21 contributions arising from the interactions with particles
outside the volume element. This is Newton’s action-reaction law. Therefore,
integrating the force density over any volume element will contribute a surface
integral to the overall force, which is another way of saying that the force density
may be written as the divergence of a tensor.

Coarse-graining (locally averaging) Eq. (101) and omitting the mass index of
the density, one has on the left hand side

∂t(ρv) = ρ∂tv + v∂tρ = ρ∂tv − v∇ · (ρv) . (102)

Using the definition of the transport velocity, (minus) the first term on the right
hand side of Eq. (101) reads

∇ · ρvv +∇ ·
∑
i

m〈(v̂i − v)(v̂i − v)δ(r− r̂i)〉 ≡ ∇ · JP +∇ · Πig . (103)

Here, the first term is immediately identified as divergence of the hydrodynamic
flux JP of the momentum density ρv. It partly cancels with the last term of
Eq. (102) if written as v∇ · (ρv) + ρv · ∇v. The second term ∇ · Πig is due to
stresses arising from velocity fluctuations. It is labeled by “ig”, because it is the
only stress contribution that is already present for an ideal gas.

Finally, the mutual particle interactions represented by the last term on the
right-hand side of Eq. (101) also must have a representation as a divergence of a
tensor, as generally assured, above. Upon coarse-graining and partial integration
it can indeed somewhat sloppily but suggestively22 be rewritten as the divergence
of the locally coarse-grained virial of the forces F̂i acting on particles i in the
coarse-graining volume,

〈
∑
i

[∇i · r̂i]F̂iδ(r− r̂i)〉 = ∇ · 〈
∑
i

r̂iF̂iδ(r− r̂i)〉 ≡ −∇ · Πint . (104)

21Assume finite range interactions.
22An explicit integration (using Newton’s 3rd law) requires a bit more work. The mnemotech-

nic shortcut exploits that boundary terms on adjacent coarse-graining cells cancel, that
∇iF̂iδ(r− r̂i) = −∇F̂(r)δ(r− r̂i), and it replaces ∇i · r̂i in the 〈 〉 by its isotropic average.
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In principle, the task of explicitly calculating the interaction part Πint of the stress
tensor thus leads back to the virial equation of state discussed in the first part
of the lecture. It has to be emphasized again that one will thereby only obtain
equilibrium results, while the purpose of the hydrodynamic equations is of course
mainly to deal with situations where equilibrium is only locally attained, with
intensive parameters that slowly change in space and time and forces that deviate
from those in equilibrium. To illustrate the point, consider the stress contributed
by velocity fluctuations, i.e. the last term in Eq. (103). In a local equilibrium,
the averaging should be performed with a Maxwell distribution, which yields the
hydrostatic ideal gas pressure

Πig(r, t) = P (r, t)1 , P = n(r, t)kBT (r, t) . (local equilibrium) (105)

Similarly, the stresses resulting from the local-equilibrium virial in Eq. (104)
would be diagonal. This means that also the particle interactions only contribute
to the scalar hydrostatic pressure, which is, per definition, indeed the only type
of stress a fluid at rest can support.

Euler equation

Nevertheless, even on the level of a local equilibrium closure, and assuming P (ρ)
to be known from thermostatics, say, one obtains a practically useful hydrody-
namic equation. Collecting the above results, and using ∂t(ρv) + ∇ · (ρvv) =
ρ(∂t + v ·∇)v, one obtains the so-called Euler equation. Taken together with the
mass continuity equation, it represents a closed hydrodynamic model:

∂tρ+∇ · (ρv) = 0 , ∂t(ρv) +∇ · (ρvv) = ρ(∂t + v · ∇)v = −∇P (ρ) . (106)

The total stress (or pressure) tensor Π = Πig + Πint = P (ρ)1 is diagonal. The
operator in parentheses is known as the material derivative. The rate of change
noticed by an observer in a frame co-moving with a streamline, or, in other words,
by the streaming material itself, is different from the rate of change observed in
the lab frame, where it is partly due to advection of the material by the flow. In
other words, Eq. (106) is nothing but Newton’s second law, mdtv = −F for a
fluid element of mass m, after reformulating it in the lab frame for a continuum
fluid made up of many such fluid elements. This innocent-looking model describes
all inviscid flows, also called “dry water” by Feynman, and is indeed stunningly
successful in countless applications involving fast flows of liquids and gases on
large scales.

A particularly simple approximate set of solutions that is easily read off from
Eq. (106) by linearization, is that corresponding to sound modes. To leading
order in powers of the derivatives of v and ρ, Eq. (106) reduces to the simple
system (terms v ·∇ . . . are neglected, as not only derivatives of v but also v itself
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is supposed to be small)

∂tρ+ ρ∇ · v = 0 (107)

ρ∂tv +∇P = 0 . (108)

Using the (local) equilibrium equation of state P (ρ) for the hydrodynamic pres-
sure, these equations can be recast into the form

∂2
t ρ = c2∇2ρ , ∂2

t P = c2∇2P (109)

obviously admitting sound waves ρ(x− ct), P (x− ct) with the sound velocity

c(ρ, T ) ≡ (∂ρP )
1/2
X = (ρκX)−1/2 (110)

as their solution. Notice the similarity with Eq. (94) — thermodynamics gives
information about kinetic coefficients, e.g. that sound propagates with a velocity
similar to the thermal velocity in an ideal gas, for which ρκX ' ρκT = m/kBT .
One distinguishes the idealized cases of adiabatic and isothermal sound propaga-
tion, depending on whether X = S or X = T provides a better approximation.
(Sound attenuation could be studied, and seen to be of higher order in the wave
vector, by taking into account the viscous terms discussed in the next paragraph.)

Navier–Stokes equation

As announced above, there will in general be some additional (non-equilibrium,
possibly off-diagonal) dynamic contributions to the stress tensor Π, which remain
to be specified. For the special case of dilute gases, the Boltzmann equation allows
such dynamic contributions to be calculated, perturbatively23. For instance, it
predicts a dynamic shear viscosity η ∝

√
mkBT that is to a first approximation in-

dependent of the density of the gas but increases as a function of the particle mass
and temperature (a prediction first derived and then tested by Maxwell himself).
But such calculations cannot be extended to dense fluids, which exhibit the same
universal hydrodynamic behavior. This observation clearly calls for a more gen-
eral strategy. Again, one can use symmetry arguments and the long-wavelength
(or “hydrodynamic”) limit of slowly changing hydrodynamic variables.

In this way, one obtains the next more complex model of fluid flow, appropri-
ate to so-called Newtonian viscous fluids, which have diagonal and off-diagonal
nonequilibrium stress contributions that account for viscous damping of the flow.
These new stresses are a dynamical friction caused by the fluid flow and should
thus, in the simplest case, depend on (powers of) the instantaneous velocity, so
that the model remains local in time or “Markovian”. This means that state
changes depend only on the present state and not on its preceding history. How-
ever, to respect the global Galilei invariance, which is the fundamental symmetry

23See, e.g., Kerson Huang: Introduction to Statistical Mechanics.

38



of any non-relativistic dynamics, only gradients of the velocity can matter (the
physical friction force must not depend on the inertial frame of an observer). To
lowest order24 in the hydrodynamic variables ρ and v, the dynamic stresses have
to be of order O(∇v). Moreover, to avoid that a solid body rotations give rise
to internal stresses, this expression has to be made symmetric in the coordinate
indices: ∂αvβ + ∂βvα. This symmetric matrix now has diagonal and off-diagonal
contributions. Also a renaming of the indices cannot change the physics, hence
components related by a coordinate rotation are equivalent and must have the
same kinetic coefficient. But the kinetic coefficients for volume preserving shear
and uniform compression/dilation, corresponding to the trace-less parts and the
trace of the tensor, should generally be allowed to have different values, say η
and ζ, respectively, because they correspond to physically distinct types of defor-
mation. Altogether, one thus arrives at the following closure (the negative sign is
chosen to account for the fact that the viscous stress counteracts spatial velocity
variations),

Παβ = Pδαβ − η[∂αvβ + ∂βvα − (2/3)δαβ∇ · v]− ζδαβ∇ · v , (111)

corresponding (for spatially constant viscosities) to the compressible Navier–
Stokes equation

ρ(∂t + v · ∇)v = −∇P + η∇2v + (ζ + η/3)∇∇ · v (112)

Together with the continuity equation for the density and an equation of state
for the hydrostatic pressure P (ρ), this provides another complete hydrodynamic
model. If supplemented by boundary conditions (the microscopic derivation of
which is an equally challenging task as the derivation of the equations of state)
and initial conditions, it can in principle be solved to yield predictions for the
flow of any simple liquid or gas. It is important to say “in principle”, because in
practice one is somewhat limited by the lack of mathematical proofs that such
solutions exist and are unique etc. The millenium prize of one million dollars
for any relevant progress in this direction has not been awarded so far (though
unsuccessfully claimed), and the corresponding warnings25 in Gallavotti’s book

24The introduction of higher order terms or transport coefficients is a subtle issue, because
of what R. Zwanzig called “Dorfman’s lemma”: all relevant fluxes are non-analytics functions
of all relevant variables. So seemingly innocent power- or gradient expansions are not the way
to go (J. A. McLennan, Introduction to Non-Equilibrium Statistical Mechanics, 1988).

25Fearless engineers write gigantic codes that are supposed to produce solutions to the equa-
tions: they do not care the least (when they are conscious of the problem, which unfortunately
seems to be seldom the case) that what they study are not the Navier Stokes equations, but
just the informatic code they produced. No one is, to date, capable of writing an algorithm
that, in an a priori known time and within prefixed approximation, will produce the calculation
of any property of the equations’ solution following an initial datum and forces which are not
“very small” or “very special”. Statements to the contrary are not rare, and they may appear
even on the news: but they are wrong. (Giovanni Gallavotti, Foundations of Fluid Mechanics)
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on fluid mechanics are not yet outdated. In return, if you can find solutions of
the Navier–Stokes equations, these tend to be of great generality. Namely, these
equations essentially exhaust the world of “ordinary” fluid dynamics (all simple
liquids and gases).

For flows that are slow compared to the sound velocity (v � c), density
fluctuations have relaxed. In absence of externally imposed pressure gradients,
the density is then also homogeneous, and one can take ρ = constant, hence
∇ · v = 0. The last term in Eq. (112) then vanishes and one is left with the
incompressible Navier–Stokes equation

ρ(∂t + v · ∇)v = −∇P + η∇2v . (113)

Note that the role of the pressure has now changed compared to the compressible
case. It is no longer to be understood as a thermodynamic function of the (now
constant) density. Instead it plays the role of a dynamic Lagrange multiplier to
account for the auxiliary condition ∇ · v = 0. It makes sense to divide the whole
equation by the constant density ρ and introduce the (reduced) dynamic pressure
P̃ ≡ P/ρ as a new Lagrange parameter and the kinematic viscosity26 ν ≡ η/ρ as
the only material parameter that matters for divergence-free flows of any given
Newtonian liquid or gas:

(∂t + v · ∇)v = −∇P̃ + ν∇2v , ∇ · v = 0 . (114)

So these equations together represent a complete one-parameter hydrodynamic
model, and arguably one of the most powerful and most striking dynamic models
in all of physics. As mentioned above, exact mathematical knowledge about its
possible solutions is severely limited.

Reynolds number

Another instructive way of writing the Navier–Stokes equation is in dimensionless
form, using natural units. Measuring lengths as multiples of a characteristic
linear dimension L (e.g. a particle or container size) and velocity in terms of a
characteristic or typical flow speed u (and therefore time, accordingly, in units of
L/u), one has after dividing Eq. (114) with u2/L

(∂t + v · ∇)v = −∇P̃ + Re−1∇2v , (reduced units) , (115)

with yet another (now dimensionless) Lagrange multiplier P̃ and the Reynolds
number

Re ≡ uL/ν (116)

This form makes it clear that solutions of the equation should be invariant under
transformations of space and time that leave the Reynolds number invariant. A

26ν ≈ 10−6 m2/s for water and about 15 times higher for air, at about room temperature.
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small fast submarine and a large slow submarine should create the same flow
patterns. At extreme values of the Reynolds number, things should become
even simpler: all large and fast moving objects of the same shape should create
the same flow pattern, as should all small and slow ones. These statements
turn out to be quite useful in engineering and for the movies industry. The
Reynolds number can be understood as an index used to characterize the typical
ratio of the inertial and dissipative terms v · ∇v and ν∇2v, in Eq. (114), for
any given flow. If Re is large, momentum conservation is only weakly violated
by the dissipative term and provides the dominant transport mode. The flow
is inertial. If the Reynolds number is small, instead, the dynamics is highly
dissipative and momentum diffusion is the dominant transport mode, while there
is no inertia. The flow is viscous or over-damped. Typical Reynolds numbers are
about Re = 106 for a human swimmer and Re = 10−3 for a microbic swimmer
in water. The two extreme cases of inertial flows with Re−1 = 0 and viscous
“creeping” flows with Re = 0 lead to the Euler and Stokes equations, respectively,

(∂t + v · ∇)v = −∇P̃ , (Re =∞ , Euler) (117)

∂tv = −∇P̃ + ν∇2v , (Re = 0 , Stokes) . (118)

Both need to be closed by the equation of state, ∇ · v = 0 for incompressible
(or stationary) flows, which is used to eliminate the pressure. And they need to
be supplemented by suitable boundary conditions. Because of the different order
of the spatial derivatives, the Euler equation only allows for the specification
of one velocity component at a boundary (typically no-influx, v⊥ = 0), while
the Stokes equation for all velocity components (typically no influx and no-slip,
v⊥ = 0, v‖ = 0). Stokes flows have long-ranged velocity correlations, due to the
diffusive spread of momentum and because the fluid layers stick to each other.
In contrast, Euler flows can in principle be very erratic, since there is nothing to
prevent arbitrary changes of the flow speed to occur in adjacent fluid layers and
at solid boundaries. Indeed, flows at high Reynolds numbers tend to be turbulent
(full of turbulent structures or “eddies”) and very irregular.

7 Rheology of simple and complex fluids

Rheology is the lore of flows, including very complex flows not described by
the Navier-Stokes equations. Rheometry is the technique used to deduce ma-
terial properties from flow measurements. Various designs are used in practice.
Microrheology employs microspheres to investigate the viscous and viscoelastic
properties of small samples and inside living organisms. Couette and cone-plate
cells are used to measure macroscopic sample volumes. Obviously, the precise
flow pattern excited by a rheometer should be known in order to safely deduce
properties of the measured fluids from the recorded stresses and strain rates. So,
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one clearly faces a difficult hen-egg problem. To provide a first idea, this subsec-
tion, together with the accompanying exercises, introduces some paradigmatic
flow types. Euler flows are ubiquitous in Newtonian liquids and gases flowing
on macroscopic scales in natural environments and in large devices. In con-
trast, Stokes flows prevail in microscopic, biophysical applications, and in narrow
boundary layers near solid boundaries, in high-Re flows.

Some basic notions and Newtonian flows

If the divergence of the velocity vanishes identically, the most obvious thing of
interest left is its curl, the vorticity Ω ≡ ∇×v, which measures the local spinning
of the fluid flow. The vorticity naturally shows up in the Euler equation, if the
vector identity

∇(v2/2) = v · ∇v + v ×Ω (119)

is used, so that the Euler equation in an external potential U (normalized by the
fluid particles’ mass) reads

∂tv + Ω× v = −∇(P̃ + v2/2 + U) . (120)

For a stationary Euler flow (with ∂tv = 0), multiplication by v shows that

v · ∇(P̃ + v2/2 + U) = 0 , (Bernoulli) (121)

so that the sum P + ρv2/2 + ρU of kinetic and potential energy densities is
seen to be conserved along streamlines (i.e., in a frame co-moving with the mass
elements). Moreover, Eq. (120) shows that taking the curl of the Euler and Stokes
equations (117), (118) yields

∂tΩ +∇× (Ω× v) = 0 ⇒ (∂t + v · ∇)Ω = Ω · ∇v , (Re =∞) (122)

∂tΩ = ν∇2Ω , (Re = 0) . (123)

The second line is easier to interprete. It says that any Stokes flow amounts to a
diffusive spread of vorticity with the diffusivity ν. So the vorticity and its associ-
ated momentum are locally conserved but dispersed by the dynamics so that they
leak out to infinity, thereby revealing the physical interpretation of the kinematic
viscosity as a diffusion coefficient for the vorticity. This insight provides an easy
way to anticipate or even compute the solutios of the Stokes equation—if one
manages to formulate the boundary conditions and initial conditions in terms of
the vorticity rather than in terms of the velocity, as usual. The consequences
of the Euler equation for the vorticity in the first line are a bit less obvious.
First, notice that the second form of the Euler equation in Eq. (122) implies
that in planar flows, for which the vorticity is perpendicular to the velocity and
its gradient, vorticity is again conserved and passively advected along with the
flow. Planar incompressible Euler flows thus conserve the vorticity of each volume
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element—and along streamlines if steady. This has important consequences for
the stability of locally straight vortex lines (or tubes), as they emanate from the
wings of airplanes, for example. They govern the complicated turbulent flows at
high Reynolds numbers. Ultimately, vorticity will slowly diffuse away, of course,
if the neglected viscous term ν∇2Ω is taken into account. But before this hap-
pens, the vortex lines can be stretched, coiled and knotted into complex tangles
reminiscent of polymer networks. In general non-planar Euler flows, one still
has Ω(t) ≡ 0 if Ω(0) ≡ 0: initially irrotational flows stay irrotational forever—
without automatically being trivial, as it would be the case in the Stokes limit,
where vorticity is everything. This hints at a reason why the viscous term is
important for the qualitative nature even of high-Reynolds-number flows, that is
even if its direct consequences on the flow are minute. It can contaminate the
flow with vorticity that it creates e.g. near a no-slip boundary, where a narrow
shear layer resides in which the Stokes equation applies.

Incompressible and irrotational flows are called potential flows, because ir-
rotational fields may be represented as the gradient of a potential, which, for
incompressible flow, solves the Laplace equation,

∇× v = 0 ⇒ v = ∇ϕ (124)

∇ · v = 0 ⇒ ∇2ϕ = 0 . (125)

Stationary potential flows have electrostatic analogies, as they obey the equations
of electrostatics. They conserve the total energy density P +ρv2/2 +ρU globally
(not only along streamlines). Since they do not account for viscous friction and
other characteristic features of fluids, such as vorticity, turbulence, and sound
waves, von Neumann and Feynman introduced the name “dry water” for them.
A classical example is the Euler flow around a sphere or cylinder, which differs
markedly from the Stokes flow around the same obstacles and gives rise to the
d’Alembert paradox (no frictional resistance), but also to the more interesting
concept of a renormalized mass (see exercises).

Stokes’ “creeping” flow

Most soft-matter and all microbiological applications of hydrodynamics involve
shear flows at low Reynolds numbers. Since colloidal particles, proteins and
low-dimensional meso-structures like polymers and membranes all diffuse slowly
compared to the vorticity of the solvent, it is moreover usually sufficient to deal
with the solvent dynamics on the stationary level, i.e., one can idealize the reac-
tion of the fluid as an instantaneous action at any distance. This statement can
be anticipated by rewriting Eq. (123) in natural units, namely

∂tΩ = Re−1∇2Ω . (126)

To leading order, the term Re∂tΩ can be dropped. The interpretation is that
“frequencies are much larger than wave vectors”, so that vorticity relaxes quickly

43



Figure 3: The Stokeslet, Eq. (134), fundamental solution (or Green function) of
the Stokes equation, is the flow field excited by a point force at the origin, here
pointing into the upper right corner. In the lab frame (left), the flow velocity
everywhere has a component in the same direction. In a slowly co-moving frame
(middle) one gets a more direct visual impression of the generated vorticity and
“backflow”. The flow around a uniformly translating sphere differs from the
Stokeslet by the source-doublet, Eq. (135), which helps to realize the no-slip/no-
influx boundary condition on the solid surface, as a revealed by a plot of the full
flow field in a comoving frame (right).

over large distances and can be assumed to be stationary, i.e. a solution of the
Laplace equation ∇2Ω = 0. Equation (126) then amounts to the (incompressible)
stationary Stokes equation for the velocity. In an external force field f(r):

η∇2v −∇P = f(r) , ∇ · v = 0 . (127)

In Fourier space,
ηq2vq + iqPq = fq , iq · vq = 0 . (128)

Multiplying the Stokes equation by −iq allows the pressure to be eliminated, so
that the velocity as a function of the force density is obtained (writing q̂ ≡ q/|q|)

vq =
1− q̂q̂

ηq2
· fq ≡ Hq · fq . (129)

For the Fourier back-transformation of the mobility matrix Hq to real space, one
makes the ansatz H(r) = a1 + br̂r̂ (exploiting that r is the only available vector
to construct tensors other than the unit tensor.) To fix the coefficients, it is
enough to fix two independent scalars, namely the trace trH(r) = 3a + b and
r̂ ·H(r) · r̂ = a+ b. After doing the corresponding Fourier integrals,

3a+ b =

∫
dq

(2π)3

2

ηq2
eiq·r , a+ b =

∫
dq

(2π)3

1− (q · r̂)2

ηq2
eiq·r (130)
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one finds the fundamental solution or Green function of Eq. (127) to be given by
the so-called Oseen mobility matrix in real space

H(r) =
1 + r̂r̂

8πηr
. (131)

The velocity field generated by an arbitrary force field f(r′) is thus obtained via
the convolution

v(r) =

∫
dr′H(r− r′) · f(r′) =

∫
dr′

1 + r−r′
|r−r′|

r−r′
|r−r′|

8πη|r− r′|
· f(r′) . (132)

In particular, for the point force f = Fδ(r), the velocity field v(r) is given by
the fundamental solution H(r) · F itself, which is also called a “Stokeslet”. It
represents the far field solution v(r → ∞) for the flow around any finite object
in uniform motion, or, equivalently, the flow disturbance caused by an infinitely
small and fast particle. An illustration is provided by Fig. 3. In the lab frame
(left), the enhanced flow speed due to the projector accounting for the incom-
pressibility condition (“in front and behind the origin”) is apparent. The view
from a slowly co-moving frame (right) reveals the vorticity created and dispersed
by the flow.

Averaging the Stokeslet over a spherical shell of radius r = R around the force
center gives27

〈v(R)〉 = F/(6πηR) (133)

So fluid shells of increasing radius (and mass) move with decreasing average
speeds, as expected from momentum conservation. It is suggestive that the for-
mula should also hold for a solid sphere of radius R pushed by the force F. This
is indeed true, but not entirely self-evident, since the flow field on the surface
of a solid sphere cannot obey Eq. (131). For a solid sphere with no-slip and no-
influx boundary conditions, the fluid velocity at the surface must exactly (and not
only on average) be equal to the sphere’s velocity. To account for the difference
between the Stokeslet

3R

4r
(1 + r̂r̂) · 〈v(R)〉 (134)

and the actual flow around the sphere one thus needs an additive correction
term that has to obey a number of conditions. First and foremost, since perfect
force/momentum balance is already guaranteed by the fundamental solution, the
correction cannot give rise to any net momentum transfer through a concentric
spherical shell around the sphere: its trace and spherical average must therefore
vanish. This corroborates that Eq. (133) holds for the sphere. It thereby inci-
dentally establishes Stokes’ formula ζ = 6πηR for the friction coefficient without
requiring the complete flow field, which is however easily found. Namely, in order

27Using spherical coordinates, check that 〈r̂r̂〉 = (1/3)1, as expected for a projector.
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Figure 4: Emergence of a Stokes boundary layer flow with a linear shear profile (in
y−direction) above a plane solid boundary that started moving with a constant
velocity v = (v0, 0, 0)T in x−direction, at time t = 0. The flow is shown at
successive times, to reveal the developing boundary layer of width ∆ =

√
νt.

to undo the relative tangential and normal flux of the Stokeslet on the surface
of the sphere, the trace-less correction term must iron out the velocity variations
caused by the projector 3r̂r̂ · 〈v〉/4 in Eq. (134), at r = R; i.e. it must have the
form (R/r)m(1−3r̂r̂) · 〈v〉/4. Requiring the divergence (R/r)m(2m−6)r̂ · 〈v〉/4r
to vanish to satisfy the incompressibility condition then yields the so-called source
doublet,

R3

4r3
(1− 3r̂r̂) · 〈v(R)〉 . (135)

Summarizing, the flow velocity field v(r) around a sphere driven by a constant
force F = 6πηR〈v(R)〉 is given by the sum of Eqs. (134), (135). The result is
illustrated in Fig. 3 (right) in a reference frame co-moving with the uniformly
translating sphere, which clearly exposes the no-slip/no-influx boundary condi-
tion. Other superpositions of the two terms pertain if the no-slip condition is
relaxed or the particle surface is not spherical, e.g., for soft or viscous solutes.

Equations (118), (123), (126) can be used to compute time-dependent creeping
flows. As an example for a transient towards the stationary flow, consider the
planar shear flow generated in the infinite half-space above a plane solid boundary
in the x − y−coordinate plane, which starts to move with velocity v0 in the
x−direction at time t. This will excite a flow velocity field v = (vx, 0, 0)T ,
directed along the x−direction and varying along the perpendicular y−direction,
with vx(y, t) obeying vx(y, 0) = 0 and vx(y = 0, t > 0) = v0. Because of mass
conservation, ∂xvx = 0, the fluid velocity stays independent of the x−position
for all times (and no momentum is scattered into the y−direction). So does
the vorticity Ω = (0, 0,Ωz) with Ωz(y, t) = −∂yvx(y, t) equal to the negative
shear gradient. Since the velocity field at the onset of motion is given by a
step function vx(y, 0+) = v0θ(−y), the initial condition for the vorticity field is
Ωz(y, 0+) = −∂yvx = δ(y)v0. The equation of motion for the vorticity, Eq. (126),

46



thus boils down to the scalar diffusion equation ∂tΩz = ν∂2
yΩz with the initial

condition Ωz(y, 0) = v0δ(y). Its solution is

Ωz(y, t) =
v0√
π∆

e−y
2/(2∆2) , with ∆ =

√
2νt . (136)

The vorticity thus diffuses out from the boundary into a boundary layer of growing
thickness ∆ ∝ t1/2, while its value Ωz(y � ∆, t) ∝ t−1/2 inside the boundary layer
slowly decays in time. The velocity field is obtained by spatial integration over
y (cf. Fig. 4),

v(y, t)

v0

= 1− erf
[
y/(
√

2∆)
]
∼

{
1− (2/π)1/2y/∆ (y � ∆)

(2/π)1/2e−y
2/(2∆2)∆/y (y � ∆)

(137)

Within the boundary layer (y � ∆), the linear profile characteristic of steady
shear flow in the Stokes regime28 develops. Because of the spreading of the
layer, this profile flattens out over time and the shear gradient decays, due to
the dispersal of the vorticity. The decay could be stopped by inserting a parallel
boundary at a certain height (i.e. putting a lid on the box). Thereby one could
realize a strictly linear flow field, called plane Couette or simple shear flow, at
late times. A simple way to see how this comes about, is to realize that the lid
would affect the flow essentially by setting a cutoff length L for ∆(t), so that
near the lower boundary

v(y, t→∞)→ v0(1− y/L) . (138)

At late times, this should extend across the whole box, as there is nothing spe-
cial about the upper or lower boundary any more (up-down symmetry), as also
directly inferred from the stress tensor σxy = η∂yvx = const. Also note that
one could alternatively stop the boundary layer from growing by imposing an
oscillatory shear motion at frequency ω. Then the fixed boundary layer width
∆ =

√
2ν/ω would play the role of a “skin depth” across which the flow decays,

so that no vorticity or momentum would be transmitted to infinity.
The example showed that the slow diffusive transport of vorticity affords

creeping flows with long-lived memory. This memory shows up in the form of a
memory kernel in the equations of motion of Brownian particles. The paradig-
matic example is provided by the (non-stationary) equations of motion for a
sphere of mass m moving at a time-dependent velocity u(t) in a Newtonian liq-
uid, the so-called Boussinesq solution of the Stokes equation, which reads

F (t) =
(
m+ 2πρR3/3

)
u̇(t) + 6πηRu(t) + 6

√
πηρR2

∫ t

−∞
dt′

u̇(t′)√
t− t′

. (139)

28In contrast, highly turbulent shear flow develops a logarithmic velocity profile.
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The instantaneous force F(t) cannot be specified by the instantaneous velocity
u(t) alone, but depends on its whole history u(t ≤ t′). The flow has long-
lived memory. Also notice that the mass of the sphere is renormalized by the
accelerated fluid mass 2πρR3/3.

Viscoelastic fluids

As pointed out in the previous paragraph, memory appears in flows at low-
Reynolds numbers as a consequence of the slow vorticity diffusion. In practice, the
material behavior itself is another important source of memory, i.e., the viscosity
need not be a constant coefficient but may itself be time-dependent. One then
speaks of non-Newtonian (non-Markovian) or complex fluids. Two important
idealized types of non-Newtonian fluids shall be discussed, in the following: linear
viscoelastic fluids and nonlinear fluids. Real fluids usually exhibit both types of
behavior under appropriate conditions.

Specializing to incompressible fluids, the discussion can be simplified by fo-
cussing on one off-diagonal component σ of the stress tensor (the σxy component,
say) and the corresponding component29 γ̇ = ∂xvy + ∂yvx (called the shear rate)
of the velocity-gradient tensor. Viscoelastic fluids are non-Markovian fluids, in
which the stress at time t not only depends on the velocity gradients at the same
time in the form σ(γ̇), but also on those at earlier times, i.e. σ[γ̇(t)]. In other
words, viscoelastic fluids are fluids with memory. Over a certain frequency range,
they may appear to be solids and only reveal their fluidity at late times. Such
ambivalent behavior can already be apparent in a linear-response experiment,
where the strength of the perturbation is infinitely weak. In contrast, whether
a fluid has non-trivial nonlinear behavior is only revealed at large deformations.
Nonlinear fluids are conventionally characterized by their “flow curves”, namely
their rate-dependent viscosity η(γ̇) that typically decreases with increasing γ̇
upon stationary shearing at a fixed rate γ̇. This behavior is called shear-thinning
and is now microscopically understood as an indirect signature of the tendency of
the fluid to arrest at low temperatures30. The opposite trend of shear-thickening
is also observed, particularly at high shear rates. It is usually attributed to
flow-induced “jamming” of some meso-structures of the material. Figure 5 pro-
vides a somewhat selective overview over some common linear and nonlinear flow
properties.

In the linear-response regime, i.e. for perturbations applied at a finite rate γ̇
but with vanishing amplitude γ, the most general form of a viscoelastic consti-
tutive relation is of the form

σ(t) =

∫ ∞
−∞

dt′G(t− t′)θ(t− t′)γ̇(t′) , (140)

29One of the two contributions to γ̇ vanishes if the shear direction is aligned with an axis.
30M. Fuchs, M. E. Cates, Phys. Rev. Lett. 89 (2002) 248304
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Figure 5: Schematic examples for linear and nonlinear rheometry. In oscillatory
linear rheology (upper left panel), one varies the frequency of a periodic per-
turbation but takes the amplitude to zero. The obtained frequency-dependent
moduli (stress- over strain amplitude) are properties of the unperturbed medium.
Nonlinear rheology imposes perturbations with large or even infinite amplitude
(e.g. stationary shear at a constant rate) and can reveal shear-thinning or shear-
thickening behavior, as well as (transient) nonlinear elasticity and (irreversible)
plastic flow. Note that stress-controlled, strain-, and strain-rate-controlled pro-
tocols generally all give different moduli, in nonlinear rheology.

with a causal memory kernel (proportional to the step function) that completely
defines the linear viscoelastic behavior. The customary way of writing this rela-
tion in Fourier space is

σω ≡ G∗(ω)γω ≡ (G′ω + iG′′ω)γω (141)

with

G∗(ω) = iω

∫ ∞
0

dtG(t)e−iωt (142)

A direct measurement of this relation employs oscillatory shear at varying fre-
quency ω but vanishing amplitude γω → 0. The real (in phase) and imaginary
(out of phase) parts of the complex modulus G∗(ω), namely G′ω and G′′ω, are called
storage and loss modulus, respectively. The phase shift φω ≡ arctan(G′′ω/G

′
ω) be-

tween stress and strain can be interpreted as an indicator of the elastic (φω → 0)
versus viscous (φω → π/2) character of the response. Note that the functional
forms of the frequency-dependent moduli G′ω and G′′ω are not independent, since
they are both derived from the same real function G(t). This interdependence
holds for any frequency-dependent linear-response functions. It is formalized by
the so-called Kramers–Kronig relations that exploit the causality of the kernel to
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mutually express both functions in the form (exercises):

G′′ω = −2ω

π
P
∫

dω′
G′ω

ω′2 − ω2
, G′ω =

2

π
P
∫

dω′
ω′G′′ω

ω′2 − ω2
. (143)

As a special case, for power-law spectra G′ω ∝ G′′ω ∝ ωα, one quickly shows
from the Kramers–Kronig relations that the phase angle is φω = απ/2, so that
G′′ω ≷ G′ω for α ≷ 1/2.

A paradigmatic example of a phenomenological viscoelastic fluid model is the
Maxwell model. It interpolates between solid-like and fluid-like behavior. It can
neatly be defined via its exponential memory kernel,

G(t) = G0e
−t/τ . (144)

Accordingly, G(t) ≈ G0 at short times t � τ , and the Maxwell fluid behaves
elastic, σ ≈ G0γ. For slow straining (on long time scales t� τ), the memory has
decayed, and σ ≈ ηγ̇ with

η ≡
∫ ∞

0

dtG(t) = G0τ . (145)

Another way of looking at the Maxwell model is in terms of its constitutive
differential equation

γ̇ = σ̇/G0 + σ/η (146)

or the corresponding susceptibility χ∗(ω) = 1/G∗(ω) = G−1
0 + (iωη)−1 that gives

the Fourier amplitude of the strain upon multiplication with the Fourier ampli-
tude of the stress. It implies that the model can be interpreted as a spring (an
ideal linear elastic solid) and a dashpot (an ideal Newtonian fluid) in series. The
complementary behavior of a soft solid that is dominated by viscous friction at
high frequency, is in the simplest case represented by a spring and dashpot in
parallel (an over-damped phonon), and commonly known as the Kelvin–Voigt
model. The two models are the rheological analogues of the well-known electrical
RC-circuits used to model complex electrical impedances.

Yet another way of looking at the Maxwell model is in terms of its complex
spectrum G∗(ω),

G′ω = G0
ω2τ 2

1 + ω2τ 2
, G′′ω = G0

ωτ

1 + ω2τ 2
. (147)

Viscous (solid) behavior emerges in the low- (high-)frequency limit

lim
ω→0

G∗(ω) = lim
ω→0

iG′′ω = iωη , lim
ω→∞

G∗(ω) = lim
ω→∞

G′ω = G0 . (148)

Also note that G∗(ω)/iω can be interpreted as a generalized, frequency-dependent
viscosity η∗(ω). Certain real complex fluids that are indeed well described by the
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Maxwell model, most notably so-called wormlike micelles, which are largely re-
sponsible for the viscoelastic properties of hair shampoos. Wormlike micelles are
polymer-like micellar tubes. At sufficient (but actually very low) concentration,
they form an entangled network that behaves rubber-like on short times scales.
Beyond a certain characteristic time scale, the micelles can break and reform, so
that the topological entanglement can evolve in time, and beyond this time scale
they are found to behave like a Newtonian viscous liquid. In fact, all transient
polymeric networks behave in a qualitatively similar way.

The single exponential decay of the Maxwell memory kernel gives rise to a
so-called “Debye” or “Lorentz” peak in the spectrum G′′ω. It is best recognized
(as a symmetric peak) in the log-log representation of G′′ω. Many real systems ex-
hibit much broader spectra with a broad spectrum of relaxation modes, making
the log-log representation even more compulsory. Their spectra are indicative
of superpositions of Maxwell- or Kelvin–Voigt-elements (using more and more
of those, any linear viscoelastic response can ultimately be composed). A par-
ticularly simple model idealizing such broad spectra is the so-called power-law
fluid,

G∗(ω) ∝ (iω)α . (149)

Apart from an overall scale factor (that is often of minor interest), this model is
completely characterized by the single scalar parameter α. Paradoxically, living
cells (arguably the most complex material on Earth — if one wants to speak of a
material, at all, in this context), have been shown to exhibit power-law rheology,
at least after large numbers of the individual noisy spectra taken for identically
prepared single cells are superimposed31. The exponent α is found to be a small
non-universal number.

8 Flexible polymers and renormalization

The rheological complexity of complex fluids is usually caused by some suspended
mesostructures. The mesostructures might be globular, as in the case of col-
loidal spheres or emulsion droplets, which are reminiscent of up-scaled atoms
but already exhibit a highly complex rheology, including an incompletely under-
stood glass transition that has been studied for several decades. It might also be
membrane-like, as in the case of phase boundaries, micro-emulsions, or biologi-
cal cells. In many cases, e.g., for the mentioned wormlike micelles or for most
rubbers and plastics, or most living tissues, the mesostructure is predominantly
polymer-like. All low-dimensional mesostructures have in common that they are
governed by large thermal fluctuations.

This section considers single polymers and polymeric fluids as a pars pro toto
for all such mesostructures. Flexible polymers are widely employed as building

31B. Fabry et al. Phys. Rev. Lett. 87 (2001) 148102.
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blocks of synthetic materials, whereas semiflexible and stiff fibrous elements pre-
vail in living matter. In a material made of such polymers embedded in a solvent,
some of the polymers will usually be bent and stretched, and move relative to
the solvent background, when the material is deformed, and this will give rise
to a viscoelastic response of the material. While there are many materials that
exhibit a polymeric mesostructure, it is also interesting to note that even many
non-polymeric materials owe certain material properties to polymer-like line tan-
gles, namely, ordinary crystals (defect lines), high-Tc superconductors (flux lines),
turbulent (magneto-)hydrodynamic flows (vortex lines), etc.

A toy model

A simple toy model for flexible polymers is the freely-jointed chain, a chain of
freely hinged stiff rods. The little rods may be thought to represent the covalent
bonds between adjacent atoms or small molecules that form the unit cell or
monomer of the polymer. Great universality emerges from the large number of
monomers (which may, in practice, range up to a few millions). This makes the
concepts of statistical mechanics applicable on the level of a single macromolecule.
Indeed, the statistical mechanics of a chain of hinged freely rotating rods (vectors
un) of length ` oriented along the unit vectors ûn is equivalent to that of a
classical spin chain. Its partition sum and the ensuing constitutive equation for
the magnetization as a function of an external magnetic field are well know.
The results can easily be translated to the polymer, by identifying the external
magnetic field with a force F along the direction F̂ that pulls the ends of the
polymer apart and thereby stretches its end-to-end vector

R ≡ rN − r0 =
N∑
n=1

un = `
N∑
n=1

ûn (150)

(the equivalent of the magnetic moment), such that

〈R〉F = LL(|F|`/kBT )F̂ with L(x) = coth x− x−1 , (151)

the Langevin function. For weak forces, this reduces to the equivalent of the
Curie law,

〈R〉F =
`2N

3kBT
F =

〈R2〉
3kBT

F , for |F| � kBT/` . (152)

In the linear approximation, the polymer is an entropic spring, as apparent from
the proportionality of the spring stiffness to the thermal energy kBT . (Its elas-
tic response comes entirely from heat, which is the reason why a rubber band
heats/cools upon stretch/release.) Here 〈. . . 〉 denotes the unperturbed equilib-
rium average, which yields

R2 ≡ 〈R2〉 = `2
∑
nm

〈ûnûm〉 = `2
∑
nm

δnm = `2N = `L , (153)
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because the free polymer is a random walk of N steps. The short-hand notation
for the equilibrium coil size R = 〈R2〉1/2, introduced here, is practical for the
following. Note that R is much smaller than the stretched backbone length
L = N` of the polymer, their ratio being of order N−1/2. (This result for the
typical relative fluctuations of a macroscopic variable should be familiar from
statistical mechanics.) Also note that the information about the microscopic
structure of the model is lost in the linear-response relation, which only depends
on a mesoscopic phenomenological quantity, namely the average coil sizeR. Only
if the total mass of a polymer is known from an independent measurement, the
equivalent segment length `, called the Kuhn length, can be inferred from a
linear-response measurement.

For many applications, the freely-jointed chain model is too simplistic. It
fails to account for the self-interactions of a real polymer chain and is therefore
often called a “phantom chain model”. Depending on the solvent conditions,
there are exactly three cases. Attractive interactions between the monomers
collapse the polymer, R = `N1/3. The collapse can essentially be understood
as the analogue of a spinodal decomposition of unconnected monomers, i.e., it
is a phase transition, sometimes called the Flory or θ−transition. In practice,
the physics of crystallization often takes over after an initial collapse phase, so
that the polymer conformation then becomes highly sensitive to the details of the
interactions, as in a folded protein. In contrast, repulsive interactions swell the
polymer, so thatR = `Nν with ν ≈ 0.588, and its conformation becomes a highly
universal fractal known as a self-avoiding random walk. At the so-called θ−point
that separates the two cases, the steric self-avoidance is on average balanced by
some self-attractions or “screened” in the sense that the second virial coefficient of
the monomers vanishes. In this case, the conformation is to a first approximation
ideal, so that Eq. (153), or ν = 1/2 holds.

Self-similarity and renormalization

In some respect, the freely-jointed chain model can also be criticized for being
too detailed. The nonlinearity of the force-extension relation in Eq. (151) and
the microscopic structure only matters if the equilibrium coil is very strongly
deformed32. But the rod-like segment structure of the model, revealed by such
indiscrete treatments, is neither realistic nor technically very simple. So, one
could wonder why to represent it in the model, in the first place. Indeed, the
standard model of a flexible polymer, which is also a practical starting point
for dealing with the mentioned self-interactions and any other perturbative cal-
culations, is the so-called Gaussian chain that only has a single parameter and
does away with the whole microstructure. The basic idea can be phrased as a

32Note from Eq. (151) that the range of validity of the linear response for the phantom chain
exceeds by far (by a factor '

√
N) the expected range of validity, namely |F| . kBT/R.
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simple renormalization procedure that explains, in a nutshell, how phenomeno-
logical models are constructed and where their great universality, exactness and
robustness come from, in general. Starting from a model with microstructure
and exploiting its scale-invariant33 linear response, one constructs a model with-
out microstructure by replacing the microstructural elements (e.g. the rigid rod
segments) by rescaled images of the whole polymer. Repeating this procedure ad
infinitum, one ends up with a universal phenomenological polymer model devoid
of artificial model details. In practice, one starts with integrating the linear force-
extension relation, Eq. (152), to obtain the corresponding harmonic free energy
for the end-to-end vector R of the polymer,

A(R) =
3kBT

2

R2

`2N
. (154)

This free energy, which clearly is entirely of entropic origin, is now adapted for
the individual segments by setting R ≡ rN −r1 → rn+1−rn = un and N → 1, so
that one arrives at the following (discrete) Gaussian chain Hamiltonian for the
complete polymer

H({rn}) =
3kBT

2`2

∑
n

(rn+1 − rn)2 . (155)

This insertion leaves the phenomenology in terms of 〈R2〉 = `2N for the total
chain, and the corresponding free energy, Eq. (154), invariant, as you can explic-
itly check in the exercises by integrating out all rn except the end points from the
Boltzmann factor. For such a chain of entropic springs, the continuum limit is
therefore easily taken by simultaneously sending N →∞ and `→ 0 at constant
〈R2〉 = `2N . The resulting Gaussian chain Hamiltonian then reads

βH[rn] =
3

2`2

∫ N

0

dn (∂nrn)2 =
3

2`2N

∫ 1

0

dζ (∂ζrζ)
2 =

3

2R2

∫ 1

0

dζ (∂ζrζ)
2 . (156)

The first form, with formally divergent parameters, is found in many textbooks.
The second form makes the parametrization invariance hidden in the finite prod-
uct `2N of the infinite microscopic (or “bare”) parameters more explicit, which
the first form conceals. And only the third form fully reveals the fact that the
model features only a single phenomenological parameter R corresponding to
the average overall coil size, and no microscopic information, whatsoever. Also
note that rn and rζ are now understood to be continuous functions of their ar-
guments, so that the partition sum over the Boltzmann factor e−βH turns from a
multidimensional Gaussian integral into a functional integral or path integral34∫

D[rζ ] exp
[
− 3

2R2

∫
dζ (∂ζrζ)

2
]
. (157)

33This is the reason why the renormalization procedure is trivial, here, as are, in return, the
emerging macroscopic properties.

34In fact, this is the mother of all path integrals, the Wiener integral.
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Figure 6: Self-similarity of a long polymer chain.

If you ever need to calculate it, just turn the Hamiltonian back into its above
discretized form (or alternatively into a Fourier series), do the Gaussian integrals,
and then take the continuum limit of the result. The solution of the Wiener
integral for fixed ends r0 = 0, rN = R, is the (unnormalized) distribution

P (R, N) ∝ exp[−3R2/(2R2)] , R = `
√
N (158)

of the end-to-end-vector R, derived in the exercises. It is propotional to the
propagator or conditional probability for a Brownian particle with diffusivity
D = `2/6 starting at the origin at “time” n = 0 to arrive at R at n = N . In
other words, the Wiener integral is the solution, at time n = N , of the diffusion
equation

∂NP (R, N) = (`2/6)∇2P (R, N) (159)

with the initial condition δ(R) at time n = 0.
The parametrization invariance of the Gaussian chain under the simultaneous

scale transformation ` → λ` and N → λ−1/νN , with ν = 1/2, is plainly obvious
from the above expressions and analyzed further in the exercises. Physically,
it a consequence of the self-similar, fractal structure of the polymer coil with
fractal dimension 1/ν = 2, illustrated in Fig. 6. It is useful to express this
“dilation symmetry” in a slightly more cumbersome way, since this provides a
formal basis for practical renormalization group calculations for more difficult
models. In fact, the above procedure of taking the continuum limit amounts to a
trivial renormalization. As already pointed out above, it owes its simplicity to the
plain scale invariance of the Hamiltonian. The whole procedure becomes much
more involved for a more complex Hamiltonian, as illustrated by the Edwards
Hamiltonian, below, where the formal overhead eventually pays off.

The conventional notation for the parameter renormalization is

`→ ˜̀= λ` , N → Ñ = Z−1(λ)N with Z(λ) = λ1/ν (160)
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the so-called Z factor or Z function that takes a power-law form for a self-similar,
fractal structure. It leaves the macroscopic phenomenological observables (“the
phenomenology”) invariant:

R(`,N) = R(˜̀, Ñ) ≡ R(λ`, Z−1N) ⇒ ∂λR|λ=1 = 0 , (161)

hence [
`∂` − ∂λ lnZ|λ=1 N∂N

]
R =

[
`∂` − (N/ν)∂N

]
R = 0 . (162)

This is the renormalization group equation in the special form it takes at a critical
point35, namely that of a fixed-point equation for the rescaling transformation. It
provides a differential formulation of the scale invariance of the phenomenology,
namely that the observable R depends on the parameters ` and N only in a
special invariant combination. To solve the equation and thereby recover the
invariant scaling, one uses the method of characteristics. That is, one interprets
` and N as functions of a time-like parameter t, on whichR(t) implicitly depends.
Equation (162) is then understood as a conservation equation for R(t) along a
streamline of the renormalization flow, akin to Bernoulli’s law, Eq. (121), with
the velocity (or rate-of-change) vector (`,−N/ν),

(`,−N/ν) ·
(
∂`
∂N

)
R = dR/dt = ( ˙̀, Ṅ) ·

(
∂`
∂N

)
R = 0. (163)

From a comparison of these equations, one reads off

˙̀ = ` , Ṅ = −N/ν , (164)

or

ν
Ṅ

N
+

˙̀

`
= 0 ⇒ lnN ν` = const. (165)

So the parametrization invariantRmust be a function of ` andN in the particular
combination Nν`, and since, as a length, it must moreover be linear in `, it follows
that (up to a numerical factor)

R(`,N) = R(Nν`) ' `Nν . (166)

Edwards’ Hamiltonian and Flory argument

As already announced above, the whole procedure appears less inflated if the
Hamiltonian contains monomer-monomer interactions, i.e. an additional term∑

n<m

ν(rn − rm) . (167)

35Indeed, a 1:1 relation between a self-avoiding polymer and a ferromagnet (with a strange
0-dimensional magnetic vector) can be established. It relates the exponent ν to the critical
exponents of magnets if N−1 is identified with T − Tc and the end-to-end distance with the
correlation length. P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell 1979.
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Since the monomers are supposed to fluctuate quickly compared to the relevant
(long-wavelength) polymer degrees of freedom, it is, in the spirit of a DFT, ap-
propriate to coarse-grain the bare monomeric interaction to a “dressed” one, i.e.,
to the direct correlation function of the monomer solution. Moreover, since the
polymer in its swollen state corresponds to a very dilute monomer solution, the
situation is similar to that in Onsager’s DFT for the nematic transition, and
the direct correlation function is represented by the (negative) Mayer function.
Finally, to account for the overall effect of the self-interactions, it is sufficient
to replace them by a contact interaction, with the effective, dressed interaction
strength given by kBT times the integral over the negative Mayer function, i.e.,
twice the negative second virial coefficient B. Altogether, the interaction term
can thus be written in the form

kBT
∑
n,m

B(T )δ(rn − rm) . (168)

These interactions clearly do not prevent self-crossings, but they assign an en-
tropic penalty to them. In the continuum formulation, the above leads to the
Edwards Hamiltonian (which is actually a free energy, per construction),

βHE =
3

2`2

∫ N

0

dn
(
∂nrn

)2
+B(T )

∫ N

0

dn

∫ N

0

dn′ δ(rn − rn′) . (169)

While it neither faithfully represents the microstructure of the polymer, nor the
impossibility of self-crossings and the ensuing complicated topology, it turns out
to be a very effective way of mimicking the physics responsible for the phe-
nomenology on the scale of the overall polymer conformation. As it stands, the
Edwards Hamiltonian is not yet mathematically very meaningful, though, as it
contains divergent parameters. The same problem was encountered above, for
the continuous Gaussian chain. But it is now more severe, as becomes more ap-
parent when the second virial coefficient B is explicitly expressed in terms of the
monomer diameter ` for monomers that are modeled as hard spheres,

B =
1

2

2πd/2

dΓ(d/2)
`d for hard spheres in d dimensions. (170)

(Recall that this is the pairwise excluded volume “distributed” among a pair of
particles by the leading factor 1/2.) The Edwards Hamiltonian in a d−dimensional
embedding space then takes the form

βHE =
d

2R2

∫ 1

0

dζ
(
∂ζrζ

)2
+ g
R4

`4−d

∫ 1

0

dζ

∫ 1

0

dξ δ(rζ − rξ) , (171)

with a dimensionless coupling parameter g that takes the value

g ≡ πd/2

dΓ(d/2)

(d=3)
=

2π

3
for hard spheres in d dimensions. (172)
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It could in principle turn negative if the monomers were endowed with suffi-
ciently strong mutual attractions, but, in any case, it will be some finite number.
Note that N has been eliminated in favor of the ideal coil size R, which clearly
demonstrates that the Edwards Hamiltonian has actually only two parameters,
R and `. Obviously, the good old trick form above did not help to get rid of di-
verging bare parameters in the Hamiltonian, this time, though. The interaction
term is seen to be manifestly36 divergent in d < 4 dimensions and to vanish in
d > 4 dimensions, in the continuum limit ` → 0. Thereby, du = 4 is identified
as the upper critical dimension. In dimensions higher than du = 4, a random
walk practically never intersects itself and can for N → ∞ be described by the
Gaussian chain, no matter what the (finite) self-interactions are. In lower di-
mensions it crosses itself frequently, and the polymer will therefore be swollen
compared to the ideal random-walk case for N → ∞, no matter how weak the
(finite) self-repulsions are. This implies that, in presence of monomer-monomer
interactions, the ideal coil size R can no longer be considered a good phenomeno-
logical parameter, below the upper critical dimension. It now takes the role of a
bare parameter itself, since it vanishes compared to the actual phenomenological
coil size, i.e. R/〈R2〉1/2 → 0, in the appropriate version of the continuum limit
` → 0 and N → ∞ that leaves the phenomenological coil size invariant. This
implies that actually both terms of the Hamiltonian are divergent. Far from be-
ing a peculiarity of the Edwards model, this dilemma is actually characteristic
of any strongly interacting microscopic theory, and at the root of any non-trivial
emergent phenomenology.

Interestingly, one can still make use of the divergent Hamiltonian, for example
by expanding the Boltzmann factor e−βHE into an asymptotic perturbation series
in the interaction term, arguing that ` is actually not infinitely small for real
polymers. Applying resummation tricks to this series, which has a large (for `→ 0
diverging) expansion parameter that comes with prefactors of oscillating sign
that grow exponentially with the order of the expansion, has provided accurate
estimates of the value of ν for a self-avoiding polymer. Another common strategy
exploits that the divergence is tamed at the upper critical dimension du = 4. This
suggests to extrapolate down from the upper critical dimension, where ν = 1/2.
The idea is formalized in the so-called ε−expansion in the “small” parameter
ε = 4 − d. It is easy to see that the double perturbation expansion in ε and in
the interaction term helps to calm down the divergencies that occur in a naive
perturbation expansion of e−βHE . Simply rewrite the singular factor `−ε in HE

in the form

`−ε = e−ε ln ` =
∞∑
n=0

(− ln `)n

n!
εn . (173)

Now, to each order in ε only logarithmic divergencies remain, which do not affect

36Note that the double integral over the δ−function counts the O(N2/Rd) intersections per
coil volume in Eq. (169), so that it is O(R−d) and independent of ` and N , in Eq. (171).
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power-law exponents. In practice, since one is interested in ε = 1 (at least), one
has to push the expansion to higher orders in ε and afterwards again apply resum-
mation tricks to get useful quantitative results via this otherwise very appealing
strategy.

Luckily, a good estimate of ν can be obtained from a much simpler calculation
that merely retains the basic idea of extrapolating down from the upper critical
dimension. In departing from d = du to d < du for small but finite `, the
interaction term blows up. The excluded volume obliges the polymer to swell so
that its typical end-to-end distance 〈R2〉1/2 increases beyond the ideal value R.
In other words, the (now “bare”) parameter R shrinks relative to the relevant
(and therefore imagined to be fixed) phenomenological scale 〈R2〉1/2. To find
out how much, one makes a simple dimensional estimate, which should not be
too bad for guessing a dimension, after all. It relies on the anticipation of no
more than a single characteristic length scale 〈R2〉1/2, namely the cutoff scale for
the otherwise fractal structure with a yet unknown fractal dimension 1/ν 6= 2.
Indeed, for the ideal Gaussian chain, the dimensional estimate kBT (R/R)2 of the
Hamiltonian exactly amounts to the identification of the Hamiltonian H({ri}) for
all monomeric degrees of freedom with the free energy A(R) for the overall coil
size, or, equivalently, of the Boltzmann factor e−βH{(ri}) with the distribution
P (R) ∝ e−βA(R) of the end-to-end vector, given in Eq. (158). The peak in the
corresponding radial distribution P̃ (R) defined by

P̃ (R)dR = P (R)dR ∝ e−βA(R)R2dR (174)

is located around R. Similarly, for the more complicated Edwards Hamiltonian,
one expects a free energy with a single minimum and a corresponding radial dis-
tribution with a single peak, which both have merely been shifted to a much larger
value R∗ ' 〈R2〉1/2 � R. Dropping constant numerical factors, as appropriate
for a rough dimensional estimate, one thus writes

βHE ' βA(R) ' R2

R2
+
R4

Rd`ε
. (175)

For the optimum coil size R∗ that minimizes this free energy, both terms in the
Hamiltonian turn out to have similar magnitude, corresponding to a balanced
blow-up of both terms in Eq. (171), so that

∂RA(R)|R∗ = 0 ⇔ R2
∗
R2
' R4

Rd
∗`
ε
⇒ R∗ '

R6/(2+d)

`ε/(2+d)
. (176)

The position R∗ of the free-energy minimum and the peak in the radial distribu-
tion function P̃ (R) gives the dominant contributions in calculations of moments
of R. One hence expects 〈R2〉 ' R2

∗. The jargon is that the phenomenological
observable

√
〈R2〉, which has physical units of length and must thus be propor-

tional to the elementary physical length scale ` of the model, on dimensional
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grounds, has thereupon acquired an anomalous dimension −ε/(2 + d). The ap-
parent contradiction is of course immediately resolved by inserting the definition
of R = `

√
N , which yields

〈R2〉1/2 ' R∗ ' `NνF , with νF ≡ 3/(2 + d) (177)

the so-called Flory-exponent. So, R∗ solves the renormalization-group equation
(162) for the Edwards Hamiltonian with the value ν = νF . The obtained simple
estimate for ν turns out to be exact in 1, 2 and 4 dimensions and to provide
an excellent approximation to the numerical value ν ≈ 0.588 in 3 dimensions37.
Assuming the Flory approximation ν = νF to provide the proper phenomeno-
logical coil size, the bare Edwards Hamiltonian is in retrospect seen to diverge
as βHE ∝ `−ε/(2+d), somewhat less than naively expected from a first glance at
Eq. (169), and apparently too weakly to deserve a mention in some polymer-
physics textbooks.

Crossover-scaling (“blob arguments”)

The knowledge of the scale invariance of the individual polymer chain is the basis
for a treatment of many complicated problems, even involving semidilute poly-
mer solutions and nonlinear deformations, by strikingly simple scaling arguments
also known as crossover-scaling or “blob arguments”38. The basic idea is that
the natural scaling is preserved up to a certain length scale, the crossover scale
or blob scale, and perturbed by external forces or influences from other inter-
penetrating polymer chains etc., beyond that scale. Formally, one represents a
certain observable by a natural phenomenological parameter combination that
fixes its physical dimension and possibly already properly represents its value in
the unperturbed limit, multiplied by a dimensionless crossover scaling function
of the dimensionless perturbation. The power-law form of scaling function in the
unknown limit is then constrained by some additional generic physical argument,
such as extensivity. A good example is provided by the force-extension relation.
Using the blob argument, the somewhat counter-intuitive prediction in Eq. (151),
that the linear response extends up to forces F ' kBT/`, is found to be modified
by the self-interactions. Namely, to recover the linear-response result, Eq. (152),
known from the fluctuation-response theorem for weak forces, the general scaling
ansatz

〈R〉F = R∗ϕ(F/Fc) , with ϕ(x� 1) ∼ x (178)

requires the crossover force Fc ≡ dkBT/R∗ rather than kBT/`. “Weak forces”
are thus indeed smaller than kBT/R∗, as also intuitively expected, while the
intermediate force regime kBT/R∗ � F � kBT/` turns out to be nonlinear

37To go beyond the Flory estimate, one might wish to improve the perturbative calculation
of 〈R2〉 by resorting to the differential formulation of the dilation symmetry in Eq. (162).

38P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell 1979
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because of the non-trivial self-interactions. The physical intuition provided by
the blob picture suggests that large forces deform the polymer coil into a linear
chain of blobs, because the parts of the polymer pulled apart about a distance
R∗ can no longer collide with each other to contribute to the interaction term in
HE. Therefore, the end-to-end distance of the chain must ultimately, for F � Fc,
scale extensively in the total polymer length L or N . (By connecting two non-
interacting chains pulled apart by the same force, in series, the length doubles.)
Accordingly, one needs ϕ(x� 1) ∼ x1/ν−1, so that39

〈R〉F = R∗(F/Fc)
1/ν−1 ∝ R1/ν

∗ F 1/ν−1 ∝ N (kBT/R∗ � F � kBT/`) (179)

Rewriting 〈R〉F = ξMb, as appropriate for a necklace of Mb blobs of length ξ,
one can deduce the size and scaling of the blobs. Namely, since the blob size
ξ must be independent of N , while the number Mb of blobs must be extensive
(proportional to N),

ξ = R∗Fc/F = kBT/F and Mb = (F/Fc)
1/ν (180)

must hold. The scaling inside the blobs is thus undisturbed by the external force,
ξ ∝ (R∗/N

ν)(N/Mb)
ν . Here, the first factor is recognized as the monomer size

and the second as the number Nb of monomers per blob. One can summarize
the essence of the crossover scaling behavior by saying that the external force
pulls the polymer apart into a freely jointed chain of blobs, each of which can be
thought of as an essentially undisturbed self-avoiding walk.

Contrary to the natural expectation that nonlinear deformations should re-
veal information about the specific microstructure, this result is (like the linear-
response result) completely universal and phenomenological. Neither of them
gives a clue about the microstructure, unless combined with complementary mea-
surements. Only at forces F � kBT/` that pull the polymer almost completely
straight, so that the role of self-intersections diminishes, the force-extension rela-
tion of the freely-jointed-chain, Eq. (151), ultimately obtains, and the microstruc-
ture is revealed. Of course, Eq. (151) is not really needed to learn about ` if the
polymer has already been pulled straight. Then L and R∗ are known, and so is
` = (R∗/L

ν)1/(1−ν). But Eq. (151) can be used to decide whether the polymer is
microscopically well approximated by the freely-jointed chain model, which does
not matter for the rest of the above discussion that equally applies for a long
wormlike chain (introduced further below), say.

Another important result that is easily obtained by crossover-scaling argu-
ments, is the pressure equation of state of polymers in a semidilute solution,
where the individual coils overlap. Note that this is a horrible many-body prob-
lem with very many simultaneously interacting polymers, each made of very many
interacting monomers — a strongly interacting many-body problem squared, so

39The counter-intuitive giant linear-response regime survives for d > du = 4, where ν = 1/2.
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to say. At infinite dilution, the osmotic pressure p = npkBT (the pressure ex-
erted by the polymer coils on a semipermeable membrane) scales linearly in the
polymer concentration np = n/N � n, which is of course much smaller than
the monomer concentration n. This is van’t Hoff’s law, simply saying that, like
any molecule, each polymer behaves as a little ball that bumps into the walls
with a speed corresponding (on average) to the thermal energy kBT . Nonethe-
less, the small pressure npkBT after polymerization compared to the monomers’
osmotic pressure nkBT before polymerization was historically called the osmotic
pressure anomaly of polymers. Interestingly, the concentration dependence of the
osmotic pressure remains somewhat anomalous also at higher concentrations, at
least compared to the expectation of a naive liquid state theory or virial expan-
sion. Yet, it is easily deduced from a scaling argument that exploits the scale-free
self-similar structure of the individual polymer coils to conclude that the equa-
tion of state has to exhibit a crossover from van’t Hoff’s law to an asymptotically
scale-free relation (a power-law) that does not any more depend on the length
of the individual polymers, which are then strongly intermingled, but only on
the monomer concentration. One anticipates the crossover concentration to be
given by concentration n∗p = 1/R3

∗ where the individual polymer coils start to
overlap and to merge into a spaghetti soup. The corresponding mass density is
conventionally denoted by

c∗ ∝ N/R3
∗ ∝ N1−3/ν . (181)

A crossover scaling argument constructed along the same lines as above for poly-
mer stretching represents the pressure p by its natural dimensional estimate
kBT/R

3
∗ times a dimensionless crossover scaling function Π(x).

p =
kBT

R3
∗

Π(c/c∗) , Π(x� 1) = x , Π(x� 1) = xδ . (182)

Notice that the anticipated expression for the crossover scale c∗ follows from this
scaling ansatz if van’t Hoff’s law is required to hold for small concentrations.
The exponent δ is fixed by the requirement that the pressure at strong polymer
overlap, where the polymers interpenetrate and thus “loose their identity”, cannot
depend on the number of polymers or on their length N but only on the monomer
concentration n (or mass density c). This requires Π(c/c∗ � 1) ∝ R3

∗ ∝ N3ν to
cancel out the N -dependence hidden in the prefactor, i.e.

Π(c/c∗ � 1) ∝ (c/c∗)
δ ∝ N3ν ⇒ δ = 3ν/(3ν − 1) ≈ 9/(7− d) . (183)

Therefore, one concludes that the osmotic pressure in a semidilute solution scales
as

p(c� c∗) ∝ cδ ∝ c3ν/(3ν−1) ν=νF≈ c9/(7−d) d=3
= c9/4 (184)

with the mass concentration c. This non-trivial result can also be rephrased in
terms of blobs. The idea is that the correlation length or blob scale ξ, to which
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the fractal correlations with dimension 1/ν extend, is given by ξ = R∗ξ̂(c/c∗) with
ξ̂(1) ' 1 and ξ̂(x� 1) ∼ xν/(1−3ν) so that ξ becomes asymptotically independent
of the polymer length. The osmotic pressure can now be written as kBT/ξ

3

(thermal energy divided by the available volume per blob), which looks like an
extension of van’t Hoff’s law to blobs of diameter

ξ ∝ cν/(1−3ν) d=3∝ c−3/4 . (185)

The discussion for the osmotic pressure reveals that blobs are a powerful
practical concept to break up a strongly interacting many-body problem into
an essentially free (or weakly interacting) theory of some composite effective
particles. In this sense, blobs are recognized as a classical counterpart of the
quantized quasi-particles used to describe the low-energy excitations of a Bose–
Einstein condensate or a degenerate Fermi gas, or of electrons and holes in a
semiconductor. In a dense system they take over the role played by individual
particles in a dilute system.

9 Semiflexible polymers and elastic singularities

Important biological chain molecules, such as F-actin, microtubules, double-
stranded DNA, and some others, are not well represented by the freely-jointed
chain or even the Gaussian chain. They look more like slingering snakes, with
a substantial scale separation between the microscopic backbone thickness (or
monomer size) ` and the correlation length `p of the tangents, the so-called per-
sistence length. Instead of the δ−correlations of the FJC in Eq. (153) one has

〈ûsûs′〉 = exp(−|s− s′|/`p) , (186)

as familiar from ferromagnetic (as opposed to paramagnetic) spin chains. As a
consequence, there is interesting physics to be found below the overall coil size,
given by the mean-square end-to-end distance (exercises)

〈R2〉 = 2`2
p

(
e−L/`p − 1 + L/`p

)
∼

{
L2(1− L/3`p) (L� `p)

2`pL(1− `p/L) (L� `p)
. (187)

The notation ∼ stands for “asymptotically equal to”. Equation (187) captures
the crossover from a flexible phantom chain of “Kuhn40” length 2`p on large scales
to a stiff rod on short scales. This is why one speaks of semiflexible polymers if
the double scale separation ` � `p � L holds. But there is a more interesting
structure, besides this crossover, hidden at length scales smaller than `p, where
the typical equilibrium conformation of the polymer is only weakly bent. In this
so-called stiff-polymer or weakly-bending-rod (WBR) intermediate asymptotic

40The equivalent FJC segment length
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regime, ` � |s − s′| � `p, the polymer contour is not entirely smooth but still
displays many tiny thermally induced wrinkles. Closer inspection shows that
they exhibit an asymptotic “affine” (i.e. anisotropic) self-similarity that plays an
analogous role as the fractal structure for flexible polymers (i.e. it is the source of
a zoo of scaling exponents governing all kinds of static and dynamic observables).

To see this, it is useful to introduce the small transverse and longitudinal
components û⊥ and û‖ of the tangent vector û = ∂srs = (û⊥, 1− û‖), for which
one has

û2 ≡ 1 ⇒ û‖ = 1−
√

1− û2
⊥ = û2

⊥/2 +O(û4
⊥) . (188)

and corresponding notation for the longitudinal and transverse components of
the end-to-end vector R = (R⊥, R‖) of a stiff polymer with `� L� `p. Here

R‖ ≡ L− r‖ with r‖ ≡
∫ L

0

ds û‖ . (189)

At the clamped end û0 = (0, 1) of a stiff grafted polymer, 〈ûsû0〉 = 1 − 〈û‖s〉 =
1− s/`p, according to Eq. (186). Therefore, for a grafted stiff polymer,

〈r‖〉 = L2/(2`p) , 〈R2
⊥〉 = 2L3/3`p ≡ 2R2

⊥/3 , (190)

where the second result follows from Eq. (187) via R2 = R2
⊥+L2−2r‖L+O(r2

‖).

The relation R⊥ ∝ Lζ with the roughness exponent ζ = 3/2 plays a similar role
for stiff polymers as the relation R ∝ Lν plays for flexible polymers. It implies
that the contour fluctuations are self-similar under a spatial rescaling, which, in
contrast to the case of the Gaussian chain, has to be anisotropic, though. Due to
the intrinsic stiffness, self-interactions are of minor importance for stiff polymers
and certainly do not renormalize ζ.

To get a more thorough grip onto the statistical mechanics of semiflexible
polymers, it is useful to turn to a Hamiltonian description. The minimal model
from which the above results are easily deduced is the wormlike chain (WLC)
model. It can be understood as the continuum limit of a ferromagnetic Heisenberg
spin chain or, alternatively, of a “not so freely jointed” chain, in which neighboring
segments are subject to a nearest neighbor interaction that tries to keep them
aligned:

H = −K
N∑
i

ûiûi+1 = K
N∑
i

(ûi − ûi+1)2 − const.→ K`

2

∫ L

0

ds (∂sûs)
2 . (191)

The segment length ` ≡ L/N , which plays the role of a discretization scale, has
to vanish in the continuum limit N →∞, `→ 0, meaning that the bare coupling
K has to diverge such as to keep both the so-called bending rigidity κ ≡ K`
and the backbone length L finite. Note that, in contrast to the continuum limit
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taken for the Gaussian chain, L is now not a diverging “microscopic” or “bare”
parameter but a phenomenological observable.

In the continuum limit, the ferromagnetic spin energy becomes the integral
over the squared first derivative of the unit tangent ûs (or second derivative
of the contour rs) with respect to the arc length s, i.e., the integral over the
squared curvature of the contour. It thus represents the elastic energy cost of
the bending undulations of an elastic rod. The ground states of the Hamiltonian
are therefore the equilibrium conformations of elastic rods, so-called Kirchhoff
elastica (a straight line for free ends, a circle of smoothly connected ends, etc.).
A comparison with the Gaussian-chain-Hamiltonian moreover reveals Eq. (191)
as the Hamiltonian for diffusion on the unit sphere. The conformations of the
Kirchoff elastica as a function of the arclength s can therefore also be identified
with the (deterministic) dynamic trajectories of a spinning top as a function of
time.

The Boltzmann factor of the WLC Hamiltonian then gives the statistical
weight for the thermal excitations over such ground states, corresponding to the
conformations of semiflexible polymers. And the computation of the path integral
representing the canonical partition sum for the WLC Hamiltonian amounts to
solving the angular part of the three-dimensional diffusion (or Schrödinger) equa-
tion. While this is a feasible task for the explicit calculation of static correlation
functions such as the tangent correlations in Eq. (186) and even of some more
ambitious (partial) free energies, a formulation in terms of the tangent vectors
becomes cumbersome, as soon as one wants to formulate a dynamical problem.
At least at this point, one would prefer to switch to a formulation in terms of the
spatial contour coordinates rs, i.e., to the following standard form of the WLC
Hamiltoanian

HWLC =
κ

2

∫ L

0

ds (∂2
srs)

2 , |∂srs| = 1 . (192)

This seemingly innocent rewriting entails the unpleasant task of taking care of the
(infinite dimensional) rigid constraint maintaining the unit tangent length, since
otherwise s is not guaranteed to be the arc-length, so that ∂2

srs is not guaranteed
to be the curvature, and the Hamiltonian is not guaranteed to be the bending
energy of the space curve rs, as it should be. A possible way to do this is via
the Lagrange multiplier function fs, which has the physical interpretation of a
backbone tension that builds up in order to the make the contour rs satisfy the
inextensibility constraint:

HWLC =
κ

2

∫ L

0

ds (∂2
srs)

2 +
1

2

∫ L

0

ds fs(∂srs)
2 (193)

The implicit dependence of the tension fs on the contour rs via the arc-length
constraint makes this seemingly quadratic Hamiltonian actually highly nonlinear
and difficult to use. It is of similar complexity as the Edwards Hamiltonian, with
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one important difference. Namely, in contrast to the Edwards Hamiltonian, which
describes a non-trivial fractal with a irrational fractal dimension 1/ν, the worm-
like chain Hamiltonian describes not a fractal but a crossover structure from the
(simple) self-affine structure identified in Eq. (189) to the (simple) fractal struc-
ture of the Gaussian chain, Eq. (153). As a consequence, the WLC Hamiltonian
is not divergent in the continuum limit, indicating that it can, in contrast to the
Gaussian chain or the Edwards Hamiltonian, be interpreted as a viable — albeit
simplistic — microscopic model of a polymer.

A formidable simplification occurs in the intermediate asymptotic limit of a
stiff polymer (` � L � `p), where Eq. (192) reduces to the weakly-bending-rod
(WBR) or stiff-polymer Hamiltonian for the small transverse coordinates, alone,

βHWBR =
κ

2kBT

∫ L

0

ds (∂2
sr⊥s)

2 =
1

2R2
⊥

∫ 1

0

dζ (∂2
ζ r⊥ζ)

2 (194)

In the second formulation κ = `pkBT was used, as appropriate for a free polymer
in d = 3 dimensions41. Now, the rigid constraint is gone, as it can always a
posteriori be fulfilled to leading order by choosing û‖ and r‖ appropriately (if
needed), as apparent from Eq. (188). As a consequence, the WBR-Hamiltonian is
indeed harmonic and only depends on a single relevant parameter R⊥, as familiar
from the Gaussian chain. The corresponding Boltzmann factor is Gaussian, so
that everything can be calculated explicitly in a straightforward way. One can
thus say that taking the stiff limit L/`p → 0 restores the ultimate simplicity
enjoyed by the Gaussian chain, on a level of higher spatial resolution, so to
say (and encoding a self-affine rather than fractal scaling). Whenever it does
not suffice for a given practical purpose, one has to deal with the much more
complicated, effectively nonlinear wormlike-chain Hamiltonian, Eq. (192).

As a concrete application of the above, consider the polymer exposed to a
static force of magnitude F that pulls its ends apart. The backbone tension fs
in Eq. (193) is then constant and equal to the external force, i.e. fs = F =
constant. Therefore, the Lagrange term in the Hamiltonian becomes — in the
weak-bending limit, using Eq. (188) — identical to the negative of the mechanical
work

F ·R = FR‖ = F (L− r‖L) = FL− F
∫ L

0

ds û‖ = −F
2

∫ L

0

ds û2
⊥ + const. (195)

done by the external force. In other words, the WBR-Hamiltonian for a polymer

41By calculating the tangent correlations in Eq. (186) from Eq. (194), one finds (d−1)kBT`p =
2κ, which shows that, for finite κ, the persistence length `p diverges in a one-dimensional
embedding space and diminishes in high dimensional spaces, as it must be.
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that has its ends pulled apart by a force of magnitude F is

βHF =
κ

2kBT

∫ L

0

ds
(
∂2
sr⊥s

)2
+

F

2kBT

∫ L

0

ds
(
∂sr⊥s

)2

=
1

2R2
⊥

∫ 1

0

dζ
(
∂2
ζ r⊥ζ

)2
+

1

2R2
⊥F

∫ 1

0

dζ
(
∂ζr⊥ζ

)2

=
1

2R2
⊥

∫ 1

0

dζ
[(
∂2
ζ r⊥ζ

)2
+M2

b

(
∂ζr⊥ζ

)2
] (196)

The simplified description in terms of the weak-bending parametrization is now
also applicable for not so stiff polymers with L� `p, as long as the force guaran-
tees a (more or less) stretched conformation, i.e., R2

⊥F ≡ kBTL/F � L2. Power
counting in the first line of Eq. (196) suggests that the second term dominates
over the first for F > Fc ≡ κ/L2. This is, from the second line, seen to be the
case when R⊥F < R⊥, i.e., when the force limits the transverse excursions of
the contour more strongly than the bending rigidity alone would do. Due to the
different orders of the derivatives in both terms in the Hamiltonian, one can also
say that the first term will dominate over short distances whereas the second
term will dominate over long distances. In Fourier space, the first term will be
proportional to q4 and thus dominate, for large wave vectors q, over the second
term, which is proportional to q2. This observation can be illustrated in a real-
space representation by the blob picture, which emerges in a natural way from
any Hamiltonian with a crossover structure. The dimensionless quantity Mb in
Eq. (196) is extensive in L and can therefore be identified as the number L/`F
of blobs, namely,

Mb ≡ L/`F = R⊥/R⊥F =
√
F/Fc with Fc ≡ κ/L2 , `F = L

√
Fc/F (197)

being the Euler buckling force and the blob length, respectively. (The Euler
buckling force is the compressive end-to-end force needed to buckle a rod with
bending rigidity κ.) These notions help to make the competition of the two terms
in the Hamiltonian more explicit: for forces smaller than the Euler force, the
conformation is hardly perturbed by the external force and governed by the first
term in the Hamiltonian, whereas, for larger forces, the bending term has little
to say and tension (the second term in the Hamiltonian) rules. Or, formulated
in terms of length scales: on length scales L � `F , corresponding to the case
Mb � 1, the first term rules; for L� `F , corresponding to Mb � 1, the second.
Inside the blob, the conformation is then that of a free, unperturbed stiff polymer,
while beyond `F it is that of a taut linear chain of blobs.

Per construction, the length of the linear chain of blobs is extensive in Mb

and L (for large Mb). Since, in this limit, the transverse excursions of the blob
chain are governed by the second term in the Hamiltonian, which is a diffusion
Hamiltonian, they scale diffusively in Mb and L. Therefore, not only the average
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contraction 〈r‖〉 of the end-to-end vector R of the polymer along the force di-
rection but also its mean-square excursions 〈R2

⊥〉 transverse to it scales linearly
in Mb. In other words, they both follow from the corresponding quantities of an
individual blob via multiplication with Mb. Up to numerical factors that depend
on the precise boundary conditions, the equilibrium longitudinal contraction of
an individual blob is `2

F/`p and its mean-square transverse excursion is `3
F/`p,

according to Eq. (190), i.e. the semiflexible blobs are, just as the weakly bend-
ing polymer itself, anisotropic objects. Altogether, this suggests for the total
longitudinal and transverse extension of the polymer:

〈R‖〉F ' L− (`2
F/`p)Mb ' L− kBT/(FcF )1/2 ,

〈R2
⊥〉F ' (`3

F/`p)Mb ' kBTL/F ' R2
⊥F .

(198)

Alternatively, one could have followed the formal route, starting from Eq. (190),
and multiplying it by a scaling function of the force, namely

〈δR‖〉F ' (L2/`p)φ(F/Fc) with φ(x→ 0) ∼ x and φ(x→∞) ∼ x−1/2 . (199)

As usual, the first limit fixes the crossover scale Fc = κ/L2 by comparison with the
longitudinal linear response, as obtained from the fluctuation-response relation

〈δR‖〉F '
〈δR2

‖〉
kBT

F ∝
〈δR‖〉2

kBT
F ∝ L4

`pκ
F , (200)

and the second limit is imposed by the extensivity requirement.
Note from Eq. (198) that the longitudinal contraction is manifestly affected

by the semiflexible structure, since it depends on κ (e.g. via Fc), whereas the
transverse excursion is independent of it. The former is apparently sensitive to
the physics inside the blobs, while the latter is completely dominated by the
thermal fluctuations of the end-to-end vector of a taut string (no matter what its
constituents are). It would therefore have the same form for a stiff rod or a FJC of
length L (composed of different blobs). Indeed, up to a factor, even the first line
in Eq. (198) can be obtained by inserting the blob scales from Eq. (197) into the
FJC force-extension relation, Eq. (151). This corroborates that a polymer that
is pulled taut may always be thought of as a FJC of blobs, no matter whether it
is a FJC, SAW, or WLC.

The limiting results for strongly stretched semiflexible polymers given in
Eq. (198) (including the non-universal numerical prefactors) can also be repro-
duced by a direct calculation from the Hamiltonian given in Eq. (196) (exercises),
which additionally yields the full crossover scaling function from the linear to the
limiting nonlinear response. An interesting aspect revealed by the explicit calcu-
lation is the instability of the stiff polymer against buckling upon force reversal
(F → −F ). This so-called Euler instability is well known from the mechanics
of stiff rods and affects each eigenmode of the polymer at its own characteristic
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force. The blob result for 〈R‖〉F still catches an accumulated echo of this insta-
bility in the non-analytical behavior of the square-root upon reversal of the force
and in the apparence of the characteristic force scale Fc = κ/L2 (the Euler force
of the lowest bending mode).

While a linear beam exhibits a nonlinear force-extension relation for longi-
tudinal forces (directed along its axis), it is interesting to note that, conversely,
an ordinary spring or rubber band, which deforms linearly in response to lon-
gitudinal forces, exhibits a nonlinear response to transverse forces. Namely, as
elementary geometric arguments reveal, the restoring force is cubic in the trans-
verse extension, unless the spring is set under tension, which then acts as a linear
modulus to transverse deformations, as known to anybody who plays a string
instrument. For a semiflexible polymer, the transverse and longitudinal elastic
singularities conspire with longitudinal and transverse friction to create a rich
dynamic response to transverse point forces42 or even for its free relaxation43

that would probably not have been anticipated by everybody who plays a string
instrument.

Polymer dynamics

To go from the statistical characterization of stationary properties of polymers
to their dynamics, one has to explicitly model their friction with the solvent and
their thermal fluctuations. This is most intuitively accomplished by Langevin
equations that express the force balance between the systematic forces −δH/δrs
derived from the Hamiltonian (or a free energy) to the Stokes friction and a
thermal random force. For dilute and semidilute polymer solutions, a major sim-
plification is due to the very low volume fraction occupied by the polymer. The
solvent hydrodynamics can therefore usually be represented on the level of hy-
drodynamic interactions mediated between the monomers by the Oseen tensor,
or sometimes be neglected altogether. In the latter case, one simply assumes
that the solvent exerts Stokes friction on all moving parts (“free-draining” ap-
proximation). At short times, the Hamiltonian forces are balanced by both the
viscous friction and the thermal agitation, at late times t→∞ only by the latter,
which has to lead back to the results calculated from equilibrium statistical me-
chanics. Accordingly, the strength of the random forces acting on the monomers
that represent the thermal agitation by the fluctuating solvent is dictated by
the fluctuation-dissipation theorem and can (in thermal equilibrium) be written
down without resorting to an explicit calculation from the fluctuating solvent
hydrodynamics.

42B. Obermayer, O. Hallatschek, Coupling of Transverse and Longitudinal Response in Stiff
Polymers, Phys. Rev. Lett. 99 (2007) 098302
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If one turns the above words into mathematical equations, one obtains the
dynamic standard models of polymer physics. The model for flexible polymers
is the so-called Rouse model, which is essentially an entropic spring with the dy-
namic conformation rν(t) and some effective (not to say fictitious) Stokes friction
coefficient ζ,

ζ∂trν = k r′′ν + ξν (201)

where r′′ν is a shorthand notation for ∂2
νrν , the spring constant is k = 3kBT/R2

and ν is a parameter running from 0 to 1. The thermal noise is modeled as a
Gaussian stochastic variable with vanishing mean and a covariance given by the
fluctuation-dissipation relation:

〈ξν(t)〉 = 0 , 〈ξiν(t)ξ
j
ν′(t
′)〉 = 2ζkBTδi,jδ(ν − ν ′)δ(t− t′) (202)

On the level of a dimensional analysis, it is immediately clear that the fractal
structure of the model gives rise to “fractal dynamics” i.e. dynamic correlation
functions that are self-similar in time. For example, the mean-square displace-
ment is given by

〈R(t)2〉 ' kBT

R2

t

ζ
. (203)

This result can clearly only hold for intermediate times and has to cross over to
the constant R2 for times t & τR longer than the longest relaxation time or Rouse
time, τR ' ζR2/kBT . It is difficult to modify the somewhat schematic Rouse
model in a systematic way to account for the self-avoidance of the polymer,
its internal hydrodynamic interactions, or its locally semiflexible structure. A
common strategy to include self-avoidance is to do analytical calculations with
the Rouse model and then fudge in the corresponding corrections by scaling
arguments, a posteriori (e.g. by replacing R by R∗). Further, the inverse friction
coefficient ζ−1 can formally be replaced by the Oseen mobility matrix H(rν −
rν′) or, for practical calculations, rather by its “pre-averaged” version hν,ν′1 =
〈H(rν − rν′)〉 in what is called the Zimm model :

∂trν =

∫
dν ′H(rν − rν′) · (k r′′ν′ + ξν′) ≈

∫
dν ′ hν,ν′(k r′′ν′ + ξν′) (204)

On a similar level, one can write down the dynamic wormlike chain model for
semiflexible polymers. In view of their relatively stretched conformations and rare
self-encounters, one can usually safely employ the free-draining approximation

[ζ⊥(1− rsrs) + ζ‖rsrs] · ∂trs = −κ r′′′′s + (r′sfs)
′ + ξs . (205)

Here fs(t) is the backbone tension that builds up in order to maintain the rigid
constraint of unit tangent length, and the friction matrix elements for transverse
and parallel motion are (exercises)

ζ⊥ = 2ζ‖ ≈ 4πη/ ln(L/a) . (206)
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Here, the backbone diameter a of the polymer enters, as a reminder of the sin-
gularity of the Oseen matrix at short distances (which actually ought to be cut
off by neglected near-field contributions). For explicit calculations one usually
has to resort to the weakly-bending approximation. To leading order in the small
parameter L/`p, one obtains the simple (Rouse-type) linear Langevin equation

ζ⊥∂tr⊥ = −κr′′′′s + ξ⊥ . (207)

A dimensional analysis completely analogous as performed above for the Rouse
model suggests a characteristic subdiffusively growing dynamic correlation length
`t ∝ L(ζt/κ)1/4, which plays the role of an “elasto-hydrodynamic penetration
depth”, measured along the backbone. Pushing the expansion of Eq. (205) to
higher order is somewhat subtle, since the limits t → 0 and L/`p → 0 do not
interchange, and a multiple-scale perturbation method is required. Together with
the mentioned elastic singularities of thin elastic rods, this explains the zoo of
dynamic intermediate asymptotic scaling regimes that show up in the dynamics
of semiflexible polymers.
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