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The ability to coarse-grain has
been our most important tool to
bring an infinitely complicated
world within reach of analysis and
comprehension

Eric Smith

What it is all about

The main subject of the lecture are systems with too many microscopic degrees
of freedom to treat them all in detail. The systems of interest typically display
a scale separation (in space and/or in time) between those many uninteresting
degrees of freedom and a few interesting macroscopic variables, though. This
property is not limited to physical systems, which explains the extraordinary in-
terdisciplinary interest in the concepts of Statistical Mechanics. Essentially three
reduced (“coarse grained”) levels of description are commonly used and will be
introduced here: Thermostatics, which tries to establish a deterministic theory,
much like classical continuum mechanics, on the basis of the static equilibrium of
a few macroscopic variables alone; Thermo-/Hydrodynamics, which considers that
these variables may slowly vary in space and time, thereby causing irreversible
fluxes that increase the total entropy and restore the global static equilibrium;
finally Stochastic Thermodynamics, which deals explicitly not only with deter-
ministic variables, but also with some of the fluctuations arising through their
coupling to the many uninteresting microscopic degrees of freedom. Broadly
speaking, Statistical Mechanics comprises all attempts to address the question
how simple deterministic (and stochastic) equations for a few variables and their
fluctuations emerge from the underlying microscopic mess of a high dimensional
phase space. In fact, it includes also those quite ambitious studies trying to es-
tablish how a system becomes messy (apparently stochastic) in the first place,
starting from the deterministic Liouville equation for the microscopic motion or
its quantum version, the von-Neumann equation. This interesting question will
be given little attention, here. The question pursued instead is: what can be
gained by postulating that the motion of the microscopic degrees of freedom of a
system in thermodynamic equilibrium can be considered as structureless noise as
far as the construction of coarse-grained descriptions is concerned? Boltzmann,
Maxwell and Gibbs were among the first to realize the power of this postulate in
deriving the highly universal laws governing the macroscopic order that emerges
by virtue of the high dimensionality (the law of large numbers): simple laws that
become exact statements about strongly interacting many particle systems in the
thermodynamic (hydrodynamic) limit.
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Part I

Thermodynamics

Thermodynamics is a funny
subject: The first time you go
through it, you don’t understand
it at all. The second time you go
through it, you think you now
understand it, except for one or
two little details. The third time
you go through it, you realize you
understand close to nothing, but
by that time you are so used to it
that it doesn’t bother you any
more.

attributed to Arnold Sommerfeld

1 The Birth of Thermostatics: Out of the Spirit

of Mechanics

The program is to develop Thermostatics following the paradigm of continuum
mechanics, but extending the concepts used there by allowing for the reversible1

conversion of mechanical energy into heat and vice versa. Beyond its historical
relevance for the mathematical description of heat engines, this development
gives a glimpse of some basic concepts of great generality, from which a basic
understanding of the conditions under which viable coarse-grained theories (which
comprise all known physical theories) can be constructed, in, near, and far from
equilibrium, is emerging.

1.1 Basic notions

The notions of equilibrium, work, energy, potentials, extensive and intensive (pro-
portional/independent of system size) state variables, state space and equation
of state are familiar from mechanics. The thermodynamic state space contains
apart from a relevant set of a few mechanical (electrical, magnetic, whatever)
state variables also a variable called entropy S. This will be sort of established

1Irreversible processes that increase the entropy beyond what is provided by heat influx
are the subject of irreversible thermodynamics or generalized hydrodynamics, which explicitly
deals with spatio-temporal gradients in the thermostatic variables.
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after taking the reader’s everyday working knowledge about heat transfer, heat
isolation, and temperature for granted (i.e., there is no attempt to achieve ax-
iomatic rigor2).

Fundamental relations, equations of state, integrability

As for any mechanostatic, hydrostatic, electrostatic, magnetostatic, etc. system,
the equilibrium state can be specified by a so-called fundamental relation that
describes a hypersurface Y ({Xi}) in a state space spanned by m+ 1 macroscopic
state variables {Y,Xi}. This fundamental relation is not itself provided by the
macroscopic theory, but is a material or constitutive relation characterizing a
particular system, usually in the form of an energy function. It is a major task
of statistical mechanics and condensed matter physics to provide and classify
such relations. The special new thing in thermostatics is that the notion of heat
is added to the other forms of energy mentioned above. The differential of the
fundamental relation3

dY =
∑
i

ξidXi , ξi({Xi}) ≡ (∂XiY )Xj 6=i (1)

is itself fully specified by the m equations of state ξi({Xi}). Taking another
derivative leads to m2 (specific) susceptibilities χij or response coefficients

χ−1
ij = Xi∂Xiξj = Xi∂Xi∂XjY . (2)

In practice, it is the susceptibilities that are measured and from which one infers
the equations of state, while integrating the latter up to obtain a full fundamental
relation is rarely achieved outside the realm of theoretical toy models. Note that
neither the equations of state nor the susceptibilities are independent of each
other. For dY to be a total differential, one needs its mixed second derivatives
to be equal, namely

∂Xjξi = ∂Xiξj Maxwell integrability relations (3)

To give a standard example, consider the fundamental relation dU = TdS−pdV ,

(∂V T )S = ∂V ∂SU = −(∂Sp)V . (4)

Equivalently, you could start from dS or other potentials obtained from S or U
by Legendre transforms (see below), which considerably constrains the possible
forms of response coefficients and equations of state.

2See recent work by Lieb and Yngvason, if that is what you are after.
3The Xj 6=i are constant when taking the partial derivative w.r.t. Xi.
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Examples

An ideal elastic spring of rest length L, spring stiffness k has two state
variables x (extension, extensive in L), f (tension, intensive), and the equa-
tion of state f = kx. In contrast to k and its inverse, the extensive suscepti-
bility k−1 ∝ L, the specific spring stiffness K = kL is an intensive response
coefficient, independent of L, which characterizes the material and basic
design of the spring. If the spring is extended gently, so that the internal
tension f is always spatially constant throughout the spring and equal to
the external force fext, the work δW = fextdx can be integrated to give a
fundamental relation, namely the (extensive) state function known as in-
ternal elastic energy Ee = kx2/2 as a function of x. In this case the work
increment is the total differential of the elastic energy dW = dEe = kxdx.
Otherwise one has a nonequilibrium situation and this is not the case.

A real spring dissipates some (positive) part δWdiss of the work δW it receives
as irretrievable heat into its environment,

δW = fextdx = dEe + δWdiss = kxdx+ δWdiss (5)

and the total work δW > dEe is, in contrast to the elastic energy, not
a total differential. The same happens for the reverse operation (spring
contraction): some of the elastic energy is dissipated as heat and an even
smaller part is provided as work back to the external world.

A rubber band seems superficially very similar, but it heats and cools consid-
erably upon (fast) extension and release. Hence a very substantial amount
of the external work δW (if not all of it) is converted into heat δQ and vice
versa,

δW = fextdx = dEe − δQ . (6)

We still know what the external work is but are a priori uncertain how it is
distributed between heat and elastic energy inside the rubber, and whether
or not it is a total differential. The observed cooling suggests that, in
contrast to the spring, heat once released can later help in the contraction,
so that despite of the substantial heat flows we might reversibly gain all
of our mechanical work back, which would then again be expressed as a
total differential. (In this case it would not be appropriate to call the heat
“dissipated”.)

An ideal rubber band is a such a perfect rubber, in which the total response is
attributed to the conformational change of some idealized flexible polymers.
The filler, in which these polymers are embedded, is assumed to be mechan-
ically inactive but to act as an ideal heat reservoir. The external work is
completely transformed into an entropy reduction in the mechanically active

4



polymers (microscopically: stretching restricts the available microstates for
their internal degrees of freedom), not into an elastic energy increase. The
internal energy U of the polymers does not change, dU = dEe = 0, and
all work is transformed into heat that flows from the polymer degrees of
freedom into the filler material. For reversible isothermal (dT = 0) state
changes the complete heat δQ = TdS can be recovered as work

fextdx = δW = dU − δQ = dF (7)

which is in this case given by the total differential of a potential called
the free energy F = U − TS. This is the part of the energy that can be
recovered as work under isothermal equilibrium conditions and takes over
the role played by the potential energy in mechanics. Note that (in contrast
to the dissipation in the real spring) the heat in Eq. (7) is not lost. It flows
back into the polymers when the rubber band contracts again. There is
“free” energy available to perform work, although there is no potential
energy stored.

Solids, Fluids, Magnets can be discussed along similar lines. For a solid,
δW =

∫
dV Sijδeij with Sij and eij the elements of the second Piola-

Kirchhoff stress tensor and the Green-Lagrange strain tensor, respectively.
Both are related linearly in a popular approximation of the equation of
state known as Hooke’s law, valid for small deformations, via a fourth rank
elasticity tensor Eijkl with (depending on the degree of symmetry) 2 to 21
independent material constants. That helps you understand why you should
love fluids, gases and liquids, for which the work is simply δW = −pdV (p
pressure, V volume) and magnets with δW = H dM . For the latter, H
is the somewhat misleading but common notation for the external mag-
netic field Bext (see Brenig’s book for a careful discussion), M the magnetic
moment (often called magnetization), and M ≡ M/V the magnetization
(referred to as the magnetization density by those otherwise running into
notational trouble).

Particle exchange is not limited to but common in chemical and nuclear reac-
tions. The chemical work is δW = µidNi for Ni particles of species i and
chemical potential µi. So particles do not come and go for free. Moreover,
they usually carry heat (“convection”).

A little dictionary

Equilibrium is a state not changing in (any reasonable) time. Following the
mechanical paradigm, the notion of thermostatic equilibrium implies that
the intensive parameters (like the spring tension) are constant throughout.
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Temperature T is the intensive parameter regulating the exchange of heat much
as tension regulates the exchange of extension in a spring.

Isolated systems do not exchange anything (no particles, work or heat) with their
surroundings, so that their internal energy U stays constant, dU = 0.

Closed systems allow energy to be exchanged (heat and work) but not particles.

Thermostats or heat reservoirs take up or give away finite amounts of heat with-
out changing their temperature.

Quasi-static processes are required to be locally in equilibrium, i.e. to be locally
reversible processes.

Reversible processes are quasi-static processes that proceed so gently that the
system remains globally in equilibrium with itself and exchange partners
(intensive variables are well-defined and constant throughout the system
and its partners at any time). Reverting the protocol takes you back to
start in the thermodynamic state space.

Isothermal processes live on manifolds called isotherms in state space, where the
system stays in contact with a heat reservoir that keeps the temperature
constant and equal to the reservoir temperature, i.e. dT = 0.

Adiabatic processes live on adiabatic manifolds where they do not exchange heat,
δQ = 0 if no particle exchange occurs (while the name convention in me-
chanics rather refers to slow processes conserving the energy, the action,
the phase space volume, or the like).

The Carnot process is a reversible cycle with two adiabatic and two isothermal
sub-processes that can be used to convert some heat into work or vice versa.

The efficiency of a thermodynamic machine that turns heat into (mechanical)
work is defined as

η ≡ |∆W |/|∆Q+| , (8)

the fraction of the net work −∆W provided to the outside world to the
heat ∆Q+ supplied to the process through the hot reservoir.

Response coefficients (or “functions”, once you realize they are actually not con-
stant if measured over a sufficiently wide parameter range) control how a
system’s state variables respond to external perturbations. These are ob-
viously nice observables to characterize a system. Some examples are the
isothermal/adiabatic compressibility κX ≡ −(∂pV )X/V (X = T , S), the
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thermal expansion coefficient α ≡ (∂TV )p/V , or the magnetic susceptibil-
ity χ ≡ ∂HM. If normalized to be intensive, they are called “specific”. A
purely thermal response coefficient is the heat capacity

CX ≡ (δQ/δT )X (9)

or, after division with mass, volume or particle number, the specific heat
cX . It measures how much the temperature changes upon heat exchange
— a large specific heat meaning that much heat must be added to achieve
a small temperature increment, or much heat can be taken out before the
temperature falls considerably, respectively (as it should be for a good heat
storage device). The specific heat clearly depends on what the system is
doing (e.g. working or resting etc.) during the heat exchange, as notified
by an index X for each variable held constant.

Sign convention: things added to a system are counted as positive; some people
insist that it is positive if the system performs some work, instead.

The fundamental laws of thermodynamics are energy conservation (first law) and
entropy para-conservation (second law), but people with a strong passion
for complete collections make you feel ashamed if you do not know at least
four laws (including a zeroth law saying that temperature exists and a third
law saying that things tend to behave increasingly orderly if frozen).

1.2 The laws of thermostatics

The zeroth law (“thermal equilibrium exists”)

postulates that thermal equilibrium is transitive4 and mediated by an intensive
state variable, the empirical temperature. If equilibrium exists and is transitive,
one can bring three systems into mutual equilibrium, one of which acts as a
thermometer for the other two. The mechanical paradigm for temperature is the
tension in a spring. This intensive quantity has to be constant throughout and
at mechanical contacts with other bodies, in mechanical equilibrium.

The first law (“heat is energy”)

says that for any system a state function U called internal energy can be defined,
with its change dU in an infinitesimal state change being a total differential equal
to the net energy influx (counting all forms of energy including heat).

For a closed system (no matter exchanged) the energy influx is divided into
the absorbed heat δQ and work δW ,

dU = δQ+ δW . (10)

4If A is in equilibrium with B, and B with C, then A and C are in equilibrium, too.
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For δQ = 0, the process is said to be adiabatic and the work can be expressed as
a total differential dU . Note that the first law holds generally but that only for
reversible processes something like δW = −pdV holds, where p is “the” pressure
in the fluid. (Generally, we only might know that δW = −pextdV .) Also note
that the separation into heat and work is not an entirely objective concept. One
person’s heat might be another (more sophisticated) person’s work (similarly as
one person’s noise might be another person’s music). Speaking from the molecular
perspective of statistical mechanics, it matters which degrees of freedom of the
system can actually be accessed to systematically extract “useful work”.

Historically, heat was long thought to be a substance (“chaleur”, “calorie”),
which is maybe not entirely incomprehensible if you think of convection and of
how heat is provided to our bodies. Count Rumford, who is also remembered
for the Rumford soup and the English garden in Munich, demonstrated at the
end of the 18th century that work can be transformed into heat. Canon drilling
horses could make the cooling water cook as much as one liked without having
any direct access to the water. Rumford concluded that heat must be a form of
motion of materials but could not provide a consistent formalism to replace the
conventional theory.

The first law may be used to express the Carnot efficiency Eq. (8) in terms of
the exchanged heat alone. Integrating Eq. (10) over the full cycle gives∮

dU = 0 ⇒ −
∮
δW ≡ −∆W = ∆Q ≡ Q++Q− = |Q+|−|Q−| (11)

withQ± the heat absorbed with the hot/cold thermostat, hence η = 1−|Q−|/|Q+|.

The second law (“heat is inferior energy”)

can be formulated similarly as the first by saying that for any system a state
function S, called entropy, can be defined, with its change dS in an infinitesimal
state change being a total differential equal to the net entropy influx (equal to
the net heat influx divided by the reservoir temperature) plus some non-negative
amount δSirr > 0 spontaneously created if the process is not reversible.

The historical formulations of the second law, developed by Carnot, Mayer,
Joule, and Clausius in the early 19th century are: no periodically working process
can have the sole effect of transferring heat from the cold to the warm (Clausius)
or of turning heat completely into work (Kelvin).

Universal absolute temperature

Exploiting the Carnot cycle, a universal (up to a scale factor) temperature scale
can be established on this basis, which then implies that the Carnot efficiency
can be expressed by the two reservoir temperatures T+ and T− alone. To prove
this, suppose the opposite, namely that the exchanged heat was not tied uniquely
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and universally to temperature. Then one could have two ideal reversible Carnot
cycles operating in opposite sense between the same heat reservoirs, the heat
pump providing the heat Q+ consumed by the heat engine, the heat engine
providing the work W consumed by the heat pump. Now, the second law in
Kelvin’s formulation could be violated if the heat engine could be chosen such as
to provide less heat to the lower reservoir and more work than consumed by the
heat pump. Hence, at least the fraction Q−/Q+ entering the optimum5 efficiency
must be a universal function of the corresponding temperatures6, say f(T−, T+).
But then, replace one of the Carnot engines by two, one working between T+ and
Ti and the other between Ti and T−, so that

|Q+|/|Qi| = f(T+, Ti), |Qi|/|Q−| = f(Ti, T−), |Q+|/|Q−| = f(T+, T−) , (12)

and, after multiplying the first two equations,

f(T+, T−) = f(T+, Ti)f(Ti, T−) . (13)

One concludes that f(T1, T2) = ϕ(T1)/ϕ(T2), so that there is up to an overall
constant (setting the temperature unit) a unique universal temperature scale
ϕ(T ) with a unique absolute zero point. For simplicity, it shall still be called T .
From this, we conclude:

The universal Carnot efficiency

The Carnot efficiency is a unique and universal function of its working temper-
atures,

η = 1− |Q−|/|Q+| = 1− T−/T+ . (14)

This statement can be understood as a condensed form of the first and second
law for reversible processes. In fact, we can rewrite it as Q+/T+ + Q−/T− = 0.
Now, exploiting that every arbitrary thermodynamic cycle can be approximated
by little Carnot cycles (sketch), we have for all ideal reversible cycles

Carnot’s theorem∮
δQ/T = 0 , hence dS ≡ δQ/T (15)

defines a total differential of a state function S called entropy. The inverse
temperature 1/T acts as a so-called integrating factor that turns an incomplete
differential δQ into a total differential dS.

5It is of course always allowed to operate a device at lower efficiency, the second law only
limits the optimum efficiency reached in a completely reversibly operating ideal process.

6The zeroth law provides a sufficient empirical basis for speaking of temperatures.
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The entropy is the new potential that extends the mechanical (etc.) state
space for thermodynamic purposes and allows for a self-contained reduced de-
scription that accounts for work being transformed into heat (that flows into un-
resolved degrees of freedom). Reversible state changes live on hyper-surfaces de-
fined by the fundamental relation S({Xi}) in the state space spanned by {S,Xi}.
In particular, for reversible state changes of a simple p − V system X1 = U ,
X2 = V , and the combined first and second law can be written as

dS(U, V ) = T−1dU + pT−1dV . (16)

or, in engineering style (emphasizing energy),

dU(S, V ) = TdS − pdV . (17)

It is essential to understand that the whole discussion of thermodynamic
processes so far is completely independent of the specific technical realization
(e.g. the materials used, etc) of the hypothetical heat engines. It requires perfectly
reversible behavior, however, i.e., in a sense it describes an upper bound of what
is possible in real life. It is certainly of great interest to additionally know how
the imperfections of the real world will change the picture. According to the
everyday experience echoed by the second law, all that can happen is that some
work is wasted into heat, such that the efficiency decreases, as stated by

Clausius’ theorem ∮
δQ/T ≤ 0 . (18)

Note that for irreversible processes the reservoir temperature T appearing in
this formula can no longer be identified with the system temperature, which is
in general not well-defined. Only the temperature of the bath is well-defined
(though not generally constant) throughout the process. To prove Eq. (18), it is
enough to realize that the Carnot cycle may always be operated at a less than
optimum efficiency, so that

η = 1− |Q−|/|Q+| ≤ 1− T−/T+ , (19)

which says that less heat is turned into work than would be allowed by the second
law. Accordingly, one has |Q−|/T− ≥ |Q+|/T+ or

Q+/T+ +Q−/T− ≤ 0 � (20)

For a more general formulation consider any two states (T1, V1) and (T2, V2), say,
connected by paths Γ in the T − V plane

S(T2, V2)− S(T1, V1) ≥
∫

Γ

δQ

T
hence dS ≥ δQ/T . (21)
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Some remarks

• Isolated systems: Thermodynamic state changes of an isolated system
are necessarily irreversible (which thermodynamic function should change
in a reversible state change?), increasing the entropy until equilibrium is
reached. From Eq. (21), dS ≥ 0 for δQ = 0. The entropy of an isolated
system attains a maximum in equilibrium. (The 2nd law for an isolated
system.)

• η 6= 1, since reversible heating at T = 0 is impossible due to TdS = 0.

• The mismatch between the entropy δSext = δQ/TR released from the ther-
mostat at temperature TR and the system’s total entropy change dS can of
course always be given a name, δSirr (“entropy production”), so that the
second law takes the form

dS = δSext + δSirr = δQ/TR + δSirr , δSirr ≥ 0 . (22)

For weakly irreversible quasi-static state changes with local equilibrium,
δSirr can be quantified by including additional internal variables into the
thermodynamic state space, thereby turning the Clausius inequality back
into an equality and giving the symbol T , at least locally, a meaning for the
system itself. Generally, an inequality indicates that some of the sucking
internal degrees of freedom are not explicitly resolved.

• The so called fluctuation theorems quantify how violations of the second
law vanish with system size, making it a strict law in the thermodynamic
limit (special care is needed for phase separating and non-extensive, e.g.
gravity-dominated, systems).

• Our everyday experience with entropy is only partially related to the sec-
ond law of thermostatics as formulated above. The rich structures and
processes on earth including all forms of life are due to an entropy gradient
established by a persistent enormous net negative entropy influx from the
sun (less hot photons in than cold photons out — as dictated by energy
conservation and surface temperature), which keeps the surface of the earth
far from equilibrium. The second law as a statement about the stability
of equilibrium can only partially or locally be brought to bear onto this
experience.

The third law (“quantum nature of absolute zero”)

(postulated on empirical grounds by Nernst 1905) says that the entropy at abso-
lute zero vanishes7, S(T = 0) = 0.

7It suffices that it is a non-extensive universal constant that may be set to zero.
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This is a macroscopic manifestation of quantum statistics, which is best un-
derstood by studying the specific heat of quantum mechanical model systems.
The third law requires that it (as well as some other thermal response coeffi-

cients) has to vanish sufficiently quickly that S(T,X) = limT0→0

∫ T
T0
dT ′CX/T

′

vanishes for T → 0 — independently of X. The latter condition implies that
absolute zero cannot be reached by a finite number of state changes, since one
would have to cycle the system between S(T,X = X1) and S(T,X = X2) for
some given variable X (see sketch!). Or, as noticed above, there is no reversible
heating from (and thus no reversible cooling to) T = 0, where TdS = 0.

Many practically (sometimes even at very low temperature) very useful clas-
sical models for fluids, solids, magnets etc. violate the third law, but in principle
any system should always be expected to settle at very low temperature into
some coherent wave function that has no (or at least non-extensive) entropy or
ground-state degeneracy.

Summary of the laws

0) You have to play the game

1) You can’t win

2) You can’t break even, except on a very cold day

3) It doesn’t get that cold

1.3 Stability, Homogeneity

Thermodynamic stability

The second law expresses the stability of thermal equilibrium. This can be made
explicit in a differential form and related to the sign of the response coeffi-
cients. The essential trick, known as d’Alembert’s principle, can be borrowed
from mechanostatics. It consists in artificially dividing a homogeneous system
into two subsystems 1 and 2 and considering a repartition of the extensive quan-
tities, i.e. taking some small amount δXi ≡ δX

(1)
i = −δX(2)

i from one to the
other subsystem. In equilibrium this should leave the relevant effective energy
function Y (which for an isolated system happens to be the negative entropy −S,
for an isothermal system the free energy F , and so on) unchanged to leading
order, which is indeed the case for homogeneous intensive parameters. In general
notation, with ξ

(k)
i = ∂XiY

(k)({X(k)
i }),

0 = dY = dY (1) + dY (2) =
∑
i

(ξ
(1)
i − ξ

(2)
i )δXi ⇔ ξ

(1)
i = ξ

(2)
i . (23)

To second order in the perturbation, the repartition must cause a penalty for the
equilibrium to be stable, which corresponds to the convexity or positive-definite
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matrix of second derivatives of the relevant energy function, so that the response
acts back against its cause. This is of course nothing but the formalization of the
intuitive picture of a system living for all possible boundary conditions (isolated,
closed, open,. . . ) near the bottom of an appropriately defined potential valley.
Think of the ideal spring, where Y = E, X = x, ξ = −f , χ−1 = −∂xf = k, or
an isentropic gas with Y = U , X = V , ξ = −p, χ = V κT = −(∂pV )T as purely
mechanical examples. Generally, in one dimension,

dY = dY (1) + dY (2)

= (∂XY
(1))δX + (∂XY

(2))(−δX) + (∂2
XY

(1) + ∂2
XY

(2))(δX)2/2 =

= (ξ(1) − ξ(2))︸ ︷︷ ︸
= 0 in equil.

δX + (∂Xξ
(1) + ∂Xξ

(2))︸ ︷︷ ︸
∂Xξ(1)=χ−1 =∂Xξ(2)

(δX)2/2 = (∂2
XY )︸ ︷︷ ︸

=χ−1

(δX)2 > 0
(24)

In the final step the irrelevant reference to the arbitrary subdivision of the system
was omitted. Spontaneous repartitioning of the extensive variables is thus sup-
pressed in equilibrium if the response coefficients have the right sign. If imposed
externally, a repartitioning relaxes spontaneously by decreasing an appropriate
free energy (or the negative entropy). The case of a relaxing isothermal system
lowering its free energy corresponds to our most common everyday experience,
and the related increase in entropy links it to the above formulation of the second
law.

To discuss a higher-dimensional example that includes a mechanical and a
thermal sector, take an isolated p − V system ruled by Eq. (16) and divide it
artificially into two subsystems i = 1, 2. The relevant potential valley is now
the negative entropy, Y = −S. To leading order, it is insensitive to an internal
reshuffling of the extensive variables U and V . To provide stability, it has to
increase to second order,

−(dS)U,V =
1

2
(δU, δV )

(
−(∂2

US)V −∂U∂V S
−∂V ∂US −(∂2

V S)U

)(
δU

δV

)
> 0 . (25)

So the Hesse matrix (of −S) must be positive definite, which requires all sub-
determinants to be positive definite, i.e.

0 < −(∂2
US)V =

1

T 2CV
⇔ CV > 0 (26)

and8

0 < (∂2
US)V (∂2

V S)U − (∂U∂V S)2 =
1

T 3V κTCV
⇔ κT > 0 (27)

Note that the identification of stability with positive response coefficients requires
the parameter T−1 that controls the repartition of the internal energy U to be

8Apply the Jacobi-determinant chain rule to ∂(1/T, p/T )/∂(U, V ) to get the second equality.
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positive. While this is usually the case, it may sometimes (though not for ther-
modynamic efficiency considerations) make sense to characterize a system under
extreme nonequilibrium conditions by a negative temperature T < 0. A simple
example is provided by a paramagnet, a collection of (independent) magnetic
moments which are strongly oriented by an external field that is suddenly re-
versed. The state space explored by the microstate of the system, and hence its
entropy, clearly increases9 when the moments start to de-correlate to lower their
energy. So for a certain time before the moments all settle into the new direction
of the field, the derivative ∂SU of energy with respect to entropy is negative,
hence T < 0. The system is thus temporarily (magnetically) unstable although
the response coefficients are positive.

Homogeneity, extensivity

As familiar from continuum mechanics, hydrodynamics, etc., it turns out that
there is a large class of interesting systems that are homogeneous or extensive,
with their energy and entropy scaling linearly in N , which is usually10 equivalent
to saying that they are trivially decomposable into additive subsystems. For
example, half of the content of a bottle of water contains not only half of the
atoms but also half of the energy, entropy, etc. The same cannot be said about
a neutron star, an atomic nucleus, or a protein that you cut into halves, though,
because in these system the interactions are not short ranged. Many of the
standard tricks you are commonly supposed to learn in this lecture either need
special care or do not work at all for these systems, as they rely crucially on
dividing a system into weakly coupled subsystems. This is why so-called “Small”
systems are treated as exceptional cases in the common folklore, including this
text11.

Now, given the restriction that all of the systems to be discussed in the fol-
lowing are extensive/homogeneous, it is interesting to analyze the general ther-
modynamic consequences. Mathematically, the homogeneity of the system is
formulated by requiring for a fundamental relation Y ({Xi}) written in terms of
extensive quantities {Y,Xi} that

λY ({Xi}) = Y ({λXi}) . (28)

Taking the derivative with respect to λ at λ = 1 gives the Euler relation

Y =
∑
i

(∂XiY )Xi ≡
∑
i

ξiXi , (29)

9This explanation appeals to a microscopic interpretation that anticipates major insights
from statistical mechanics. For the time being, just swallow it.

10See H. Touchette, Physica A, 2002 vol. 305 pp. 84-88 for a more careful discussion.
11But see the book by Dieter Gross on Microcanonical Thermodynamics.
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which tells us that the equations of state ξ({Xi}) are equations for the intensive
variables. From the last equation we have

dY =
∑
i

ξi dXi +
∑
i

Xi dξi . (30)

Comparison with the total differential

dY ({Xi}) =
∑
i

ξidXi (31)

of the fundamental relation reveals that the second sum in Eq. (30) has to vanish,∑
i

Xi dξi = 0 . (32)

This is known as the Gibbs–Duhem relation. For illustration, consider the case
of a simple fluid. Starting from the differential form of the fundamental relation

dU = TdS − pdV + µdN (33)

the Gibbs-Duhem and Euler relations take the forms

SdT − V dp+Ndµ = 0 or dµ = −sdT + vdp , (34)

U = TS − pV + µN or µ = u− Ts+ pv (35)

with
s ≡ S/N v ≡ 1/n ≡ V/N u ≡ U/N . (36)

As a consequence, of the m equations of state in a m + 1 dimensional thermo-
dynamical state space only m− 1 can be independent, even before invoking the
Maxwell integrability conditions, which provide further, more general constraints.
Moreover, the response coefficients are seen to be interrelated. For example, if
p is interpreted as a function of T and n, so that dp = (∂Tp)ndT + (∂np)Tdn,
Eq. (34) is readily seen to imply,

κT ≡ n−1(∂pn)T = n−2(∂µn)T (37)

for the isothermal compressibility.

1.4 Thermodynamic potentials

It was mentioned during the foregoing discussion that there are a number of
equivalent formulations of the fundamental relation, their usefulness depending
on the boundary conditions applied to the system. To each of the possible ex-
ternal conditions (fixed energy, fixed temperature, fixed volume, fixed pressure,
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fixed magnetization, fixed external field, etc.) [sketch] suitable generalized en-
ergy functions can be defined that all reflect, for their extensive variables, our
intuition of an energy valley, in which the system slides down to the minimum.

In classical mechanics, say, a system that is not at the energy minimum would
have to oscillate indefinitely. Only by introducing dissipation, the minimum be-
comes attractive. But then one automatically deals with a (generalized) free
energy, which is actually the more accurate representation of our everyday expe-
rience of energy valleys. All these generalized free energies inherit their stability
properties from the fact that the entropy of an isolated system attains its max-
imum in equilibrium, i.e. from the second law. The common notion of stability
of energy valleys, even if familiar from classical mechanics, can thus not simply
be taken over from there, because its use relies on a genuinely thermodynamic
justification. One may say that the fox is put in charge of the henhouse, since,
somewhat paradoxically, dissipation (or “energy loss”) is the ordering principle
to which the energy picture owes its stabilizing power.

Mathematically, the conversion between the different potentials is performed
with the help of a Legendre transformation, which exchanges the roles of “slope”
ξ and “variable” X in the differential dY = ξdX of a convex function Y (X).
Namely,

Y (X)→ Z(ξ) ≡ Y − ξX with ξ ≡ ∂XY so that dZ = −Xdξ (38)

where all other variables of Y are kept fixed in taking the derivative with respect
X. The Legendre transform thus represents a one-to-one recoding of thermo-
dynamic potentials, which are convex12 functions, in terms of their tangents. It
thereby exchanges extensive and intensive variables. Each transformation re-
places one convex extensive sector by a concave intensive one, indicating, so to
say, that the responsibility for the stability with respect to this variable has been
delegated to a larger system.

As a simple mechanical example, consider the case of the ideal spring with
a mass m attached under gravity, which exerts a force −mg. The equilibrium
position x0 is now not any more given by the minimum of the internal elastic
energy U(x) = kx2/2 (namely x0 = 0), but by that of the enthalpy H(mg) ≡
U − mgx (namely x0 = mg/k), which is the sum of the elastic energy and
the gravitational potential energy. Also observe that the equilibrium enthalpy
−mg2/(2k) happens to be concave with respect to the intensive variable mg. As
emphasized above, this is not a reason to panic, since it is the convexity with
respect to extensive quantities that matters for thermodynamic stability.

Following the engineers’ preference for energies, one usually starts the dis-
cussion of thermodynamic potentials—somewhat inappropriately—by expressing
energy and enthalpy for gases and liquids in the canonical form, as follows

12Consider −S instead of S.
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Internal energy

U(S, V,N) = TS − pV + µN dU = TdS − pdV + µdN . (39)

In contrast to the entropy S, U does not per se obey an extremum principle, as it
is conserved for an isolated system. Alternatively, people who are used to cooking
with open pots exposed to ambient pressure (e.g. chemists) prefer to start from

Enthalpy

H(S, p,N) ≡ U + pV = TS + µN ⇒ dH = TdS + V dp+ µdN (40)

Now, the really interesting physics (the second law) comes in with

Entropy

S(U, V,N) =
1

T
U +

p

T
V − µ

T
N dS =

1

T
dU +

p

T
dV − µ

T
dN , (41)

and in principle one should of course start the whole discussion from here. It
is the entropy, which for an isolated system (dU = dV = dN = 0) takes its
maximum in equilibrium and embodies thermodynamic stability by −S being
convex in its extensive variables (which is the pertinent formulation of the 2nd

law for isolated systems). By discussing Legendre transforms of S, one would
then obtain a series of potentials known as Massieu potentials, which clearly
reveal the underlying structure of thermodynamics. However, the conventional
practice reflects the Energetikers’ preference for energies, which most people find
more intuitive, and starts from U and H, instead.

From U , the first Legendre transformation then takes one to the

Helmholtz free energy

F (T, V,N) ≡ U − TS = µN − pV ⇒ dF = −SdT − pdV + µdN (42)

It is minimal for an isothermal system of fixed volume and particle number and
convex in its extensive variables — precisely what our intuition requires from
an energy valley — which provides the formulation of the 2nd law pertinent to
isothermal systems. So the free energy is the legitimate heir13 of entropy for
an isothermal system (dT = 0) and at the same time satisfies the engineers’
preference for energies, which makes it the most popular kid in town.

Analogously, starting from H one arrives at the

13While starting from U did conceal the underlying logic, F did nicely inherit its convexity
from −S, just as it should be.
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Gibbs free energy (free enthalpy)

G(T, p,N) ≡ U − TS + pV = µN ⇒ dG = −SdT + V dp+ µdN (43)

which takes the role of F at constant pressure instead of constant volume. So G
is minimal for a chemically closed isothermal isobaric system in equilibrium14.

Finally, if the volume is kept fixed for an isothermal system but matter can
be exchanged at a constant chemical potential, the

Grand canonical potential

J(T, V, µ) ≡ U − TS − µN = −pV ⇒ dJ = −SdT − pdV −Ndµ (44)

attains a minimum in equilibrium. While particle exchange at fixed volume may
sound a bit odd, at first, it is just the perfect starting point for formulating
hydrodynamics. Space is virtually divided up into fixed little volume elements,
and matter can flow freely between them. The volume elements serve to normalize
all thermodynamic quantities to densities, which results in a very natural and
commonplace formalism.

What, if the isothermal pot is open at constant pressure and matter can be
exchanged at a fixed chemical potential? In other words, can we iterate the trick
once more? Well, yes we can. But subtracting the last extensive sector takes
us to end of the road. It renders the remaining potential useless as a means to
express thermodynamic stability. Yet, the potential obtained from the internal
energy in an m + 1 dimensional state space after m Legendre transformations,
which only has intensive variables, is sometimes referred to as the generalized
grand canonical potential K = 0, dK = 0. It comes in handy for those who
have already forgotten the Gibbs–Duhem and Euler relations from the preceding
section, since that is exactly what these equations mean. How nice and friendly
thermodynamics is to us!

The above list of potentials (together with their possible reparametrizations)
certainly gives you enough Maxwell relations between their mixed second deriva-
tives to keep you happy for quite a while — or the characteristic thermodynamic
headache, as some call it, if you happen to need to transform some odd thermo-
dynamic expression into an equivalent but different form. The implicit function
calculus revisited in the exercises is always good for some additional entertain-
ment in such situations.

The second law for isothermal systems

To illustrate the somewhat more intuitive and practical formulation of the sec-
ond law as a minimum condition for the free energy of an isothermal system
(instead of a maximum principle for the entropy of an isolated system) consider

14Note that G/N is simply the chemical potential µ; so it is not really a big surprise that
chemists (including those calling themselves semiconductor- or particle physicists) love it.
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an isothermal system on which some work is performed by external means. If the
system transfers the amount of heat |δQ| = −δQ into a surrounding isothermal
medium that acts as a heat reservoir R at temperature TR, one has

δW = dU − δQ = dU + TRdSR . (45)

This is the first law, where, as usual, the internal energy change dU is meant to
comprise all forms of energy (elastic, electric, etc., and heat) stored internally
in the system. In equilibrium, i.e., for reversible transformations with T = TR,
one could write the heat −δQ given by the system to the reservoir in the form
−δQrev = −TRdS, and only then the work δW could be written as a total dif-
ferential δWrev = dF = dU − TRdS of the equilibrium free energy. But the
above expression is more general. The reservoir is per definition always in equi-
librium, so its temperature TR is always defined, even if the embedded system,
and thus also the “universe” Σ comprising the system and its reservoir R, are out
of equilibrium. The heat flowing from the system to the reservoir can therefore
be written in the form −δQ = δQR = TRdSR. The entropy change dSΣ for the
isolated “universe” is non-negative, according to Clausius’ theorem. Using its
additivity,

dSΣ ≡ dS + dSR ≥ 0 , (46)

one finds that the so-called dissipated work (or “dissipation”), defined as the dif-
ference between the actual work performed and the equilibrium work dF needed
to achieve the same state change under reversible isothermal conditions, is always
non-negative:

δWdiss ≡ δW − dF = dU + TRdSR − (dU − TRdS) = TRdSΣ ≥ 0 . (47)

This is yet another formulation of the 2nd law for isothermal systems, which is
equivalent to saying that the free energy happens to be the minimum work required
to realize a certain state change. Since the reservoir is in equilibrium, the system
alone must be blamed for the irreversibility quantified by the dissipated work.
So the total entropy production dSΣ in the universe equals the extra entropy
production of the system, as introduced in Eq. (22), i.e., dSΣ = δSirr ≥ 0, and
the dissipated work can also be written as δWdiss = TRδSirr. From

−δQ = TRdSR = TR(δSirr − dS) = δWdiss − δQrev (48)

it follows that δWdiss is the extra (non-reversible bit of) heat flowing from the
system to the reservoir under non-equilibrium conditions, which is therefore often
also called the dissipated heat −δQdiss = TRδSirr ≥ 0 “lost” in the process.

1.5 Example: the classical ideal gas

As a paradigmatic example for a fundamental relation consider the classical ideal
gas. A common situation is that someone has measured, say, the pressure equa-
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tion of state15,
pV = NkBT , (49)

and16 wants to know the full fundamental relation. Surely, Eq. (49) alone, which
simply says that each particle independently contributes kBT/V to the pres-
sure, is not enough to fully define the model. Such an equation p(T, V,N) can
only determine the mechanical sector of the fundamental relation for the free
energy F (T, V,N). However, as pointed out above, the missing information is
constrained by the requirements of extensivity and thermal equilibrium. Be-
cause of the former, a formulation with densities of extensive quantities suffices,
so that a single additional equation of state will uniquely specify the model.
One can, for example, restrict the discussion to the work and heat sectors by
considering a constant particle number N (dN = 0) throughout, to rewrite ev-
erything “per particle” (u ≡ U/N , s ≡ S/N , f ≡ F/N , v ≡ V/N ≡ n−1). The
N−dependence of U , F , or S can always be recovered by multiplying N back in
(e.g. f → F = Nf). The equations of state and the fundamental relation are
therefore more economically expressed in a manifestly intensive form, e.g.

df = −s(T, v)dT − p(T, v)dv . (50)

But even the choice of the second equation of state s(T, v) is not arbitrary once
p(T, v) = kBT/v is given. The integrability of f requires T∂vs)T = T∂Tp)v = p.
Expanding the fundamental relation Tds(u, v) for the entropy in T and v

Tds(T, v) = du(T, v) + pdv = (∂Tu)vdT + [p+ (∂vu)T ]︸ ︷︷ ︸
∂vs)T

dv , (51)

then immediately reveals (∂vu)T = 0. Hence u(T, v) has to be independent of
v, which leaves little freedom, given the physical units, namely u(T ) ∝ kBT and
cV = ∂Tu)V ∝ kB. All that remains to be specified about the second equation of
state, which is sometimes called caloric or energy equation, is the proportionality
constant that can be measured by calorimetry. It depends on the dispersion
relation of the gas particles (e.g. relativistic or non-relativistic) and is material
specific (e.g. dependent on whether the particles can store energy in rotational
or vibrational modes, etc). Hence, thermodynamics allows for more than one
ideal gas. Deviations from a strict proportionality are possible in temperature
ranges where new energy scales (e.g. the particles’ rest mass or internal excitation
energies), or quantum effects (~) enter the stage. Classically, the prefactor in
Eq. (52) is fixed by equipartition, saying that each equilibrated degree of freedom
stores kBT/2 of thermal energy, so that

cV = 3kB/2 and u = 3kBT/2 (52)

15using atomistic in place of the proper macroscopic notation with gas constant and moles.
16like Faust’s famulus saying “zwar weiß ich viel, doch möcht’ ich alles wissen”
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for a non-relativistic mono-atomic classical gas17.
With this information, the differential fundamental relation for s is straightfor-

wardly integrated, up to an unknown additive constant that is tacitly suppressed:

s = kB ln
(
vu3/2

)
= kB ln

(
vT 3/2

)
. (53)

Importantly, only the first form, expressing the entropy in its natural variables,
is the desired fundamental relation S(U, V,N) = Ns(U/N, V/N), which contains
the full thermodynamic information. In contrast, the second one merely is an
equation of state for the fundamental relation of the free energy per particle in
Eq. (50). In terms of its natural variables T , v = 1/n,

f = u− Ts ∼= −Ts = −kBT ln
(
vT 3/2

)
= kBT ln

(
nT−3/2

)
(54)

also contains the complete thermodynamic information about the classical ideal
gas in a slightly different form, more appropriate for isothermal systems. Again,
irrelevant terms were omitted, which, because of s = −(∂Tf)v, are now propor-
tional to kBT . Since µ = f + pv = f + kBT , the free energy per particle and the
chemical potential µ can, up to irrelevant terms, both be identified with −Ts so
that all potentials are nicely convex in their extensive variables, as it should be.

Incidentally, Ts = −µ implies that µ must be negative, if the entropy of a
dilute gas increases upon adding more particles, as one would expect. And also
that the entropy of the classical ideal gas is (up to a thermodynamically irrel-
evant gauge constant) “all chemical”. In return, the chemistry of the ideal gas
is “all entropic”, of course. You may notice something mildly odd about the
notion of “chemistry” in the context of an ideal gas that we imagine to be made
of non-interacting identical particles. Take m different ideal (i.e. non-interacting)
gases at ambient temperature in m identical bottles. Together they have m times
the entropy of each single one. Putting them all into the same bottle should not
change this, since the gases have no way of distinguishing in which bottle they
are, and with whom, as there are no mutual (chemical) potentials. They also will
not notice that the pressure in the bottle grows by a factor of m upon mixing
them all together, since they share the burden democratically. But if the bot-
tles initially all contained the same sort of gas, mixing their contents together
into one bottle amounts to an m−fold compression of the gas. The bottle then
contains mN identical particles at the m-fold density. The entropy decreases
accordingly, as the chemical potential becomes less negative. Conversely, pulling
a separating wall out of a bottle containing the same gas at the same conditions
on both sides of the wall, changes nothing (this is the definition of homogene-
ity). Instead, if the compartments initially held two different (ideal) gases, the
entropy will of course increase, because these gases expand. Assuming that the

17If you believe in atoms, it is easy to show that, for purely kinematic reasons, p = τu/d,
with d being the space dimension and τ characterizing the dispersion relation (e.g. quadratic
or linear), which also allows Eq. (52) entirely to be inferred from Eq. (49) (or vice versa).
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initial thermodynamic conditions were again homogeneous except for the type
of atoms in the compartments, this changes nothing in the thermodynamic re-
lation with the outside world. Yet, the internal expansion could be harnessed,
e.g. using semipermeable membranes, to do some useful work, which is witnessed
by the entropy. In summary, ideal gases have a (purely entropic) chemical self-
interaction but no mutual interaction. A better understanding of the origin of
this somewhat counter-intuitive self-interaction of gases (sometimes referred to
as the Gibbs paradox of mixing) emerges in statistical mechanics.

Clearly, all of the above expressions lack a proper normalization to render the
arguments of the logarithms dimensionless. Thermodynamics is insensitive to this
normalization, which may be assumed to be hidden in the omitted terms. But
the physical origin and nature of such a (mathematically necessary) normalization
remains a mystery in thermodynamics, as does the strange behavior for T → 0.

Finally, as an illustration of the basic elements introduced so far, and be-
fore entering more elevated terrain, you are encouraged to consider the following
example: an ideal gas in a closed container is heated/cooled from T1 to T2 by
bringing it into contact with a heat reservoir either reversibly — the reservoir
temperature is raised/lowered slowly from T1 to T2 — or irreversibly — the
reservoir temperature is already T2 when the contact is established. Calculate in
each case the heat and entropy exchanged and the entropy of the gas before and
after heating/cooling. Verify the second law.

2 Phase Equilibria and Phase Transitions

2.1 Natura salta

The fundamental laws of thermodynamics introduced above might seem nice to
know from a historical perspective, but somewhat redundant in practice. All the
practitioner really needs should be a list of fundamental relations for all possible
materials, after all. However, the multitude of potentially interesting many-body
problems is virtually infinite, and even for quite mundane substances like H2O,
say, the fundamental relations turn out to be very complicated functions that are
only incompletely known18. Most interestingly, they usually display non-analytic
behavior indicating phase changes. A thorough first-principles understanding of
the mathematical origin of kinks and other anomalies in the fundamental rela-
tions only emerged in the late 20th century. As familiar from mountain skylines,
non-analytic points such as kinks naturally arise from smooth functions upon
projection from a higher dimensional space (the many-particle phase space) onto
a lower dimensional space (the thermodynamic state space). The concept of a
phase transition has become very popular beyond the realm of physics, since it
describes quite generally how a qualitatively new collective behavior emerges in

18The above example of the ideal gas is a completely atypical and rare exception to this rule.
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a complex system in response to a gradual parameter change. Phase transitions
are intimately related to so-called castastrophees, bifurcations, emergence, and
spontaneous symmetry breaking. One does not easily find a scientific notion that
comes closer to being synonymous with “interesting”.

Continuous and discontinuous phase changes

Familiar examples of phase transitions are cooking water and melting ice. Both
processes are reversible and occur at well defined temperatures and pressures,
i.e. they are equilibrium phenomena. The constant transition temperature is of
great help in cooking, its sensitivity to pressure in pressure cookers, ice skating,
etc. Phase changes are usually accompanied by the vanishing or the emergence
of collective qualities such as surface tension or elasticity, and often by abrupt
density changes or jumps upon gradual parameter changes. For example, the
densities of fluid and solid phase at freezing and melting, or of the vapor and
liquid phase at condensation and evaporation, can be pretty different, although
both phases coexist. Accordingly, the isothermal compressibility of the whole
system has to diverge at coexistence (compression and expansion can be achieved
without a force by simply transforming vapor into liquid or vice versa).

Phase changes involving jumps in (densities of) the extensive variables are
classified as discontinuous (or first order) transitions, “first order” referring to
discontinuities and singularities in the first derivatives of the thermodynamic
potentials with respect to the gradually changing intensive control parameters.
The generic example is the (specific) volume (the reciprocal density), which is the
first derivative of the chemical potential with respect to the ambient pressure, at a
phase coexistence line. Further, there are distinguished points in a phase diagram,
called critical points, where a phase coexistence line terminates. (Following the
coexistence line to its end is also the only realistic way to find such a needle in
the haystack.) This corresponds to a kink in the mountain skyline turning into a
smooth pass after shifting the point of view, so to speak. There are no jumps in
the extensive thermodynamic variables and their densities at critical points. This
is why such critical phase transitions are classified as continuous (or second order)
transitions, “second order” referring to the appearance of discontinuities in the
higher derivatives of the thermodynamic potentials, viz. the response coefficients,
such as the compressibility or the specific heat.

Phase boundaries, Gibbs phase rule, Clausius-Clapeyron

A very natural representation of phase equilibria employs p − T diagrams (or
their equivalents for, say, magnets, etc.). Pressure and temperature are usually
the ambient control parameters. Moreover, mechanical and thermal equilibrium
requires them to be the same in the coexisting phases, which means that these are
neighbors that share coexistence lines in the p−T plane. In contrast, in diagrams
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with at least one extensive degree of freedom, they are generally separated by
finite gaps. With p and T controlled, the appropriate potential is the Gibbs
free energy (per particle) or the chemical potential µ = G/N , with the total
differential

dµ = −sdT + vdp . (55)

The function µ(T, p) generally has a different functional form in each of the
phases; but both must coincide at coexistence to ensure chemical stability. As
with mechanical and thermal equilibrium, two phases are said to be in chemical
equilibrium with respect to particle exchange, or to coexist, if their responsi-
ble intensive parameters, namely their chemical potentials, are equal. Coexis-
tence does not restrain the (densities of the) extensive variables, though. In
the examples of melting and evaporation, the densities n1,2 = v−1

1,2 and the com-

pressibilities κ1,2
T are quite different. Ice floats on water, vapor is much easier

compressed than water. Therefore, for a fixed given T , the monotonous concave
curves corresponding to the two “branches” µ1(p) and µ2(p) of the chemical po-
tential for the two phases differ in their slopes (∂pµ)T = v > 0 and curvatures
(∂2
pµ)T = (∂pv)T = −vκT < 0 such that they can only intersect in one point, the

coexistence point (sketch). Allowing T to vary, this point expands into a coexis-
tence line, then. Outside coexistence, only the lower of the two branches µ1,2(p) is
thermodynamically stable, since the relevant thermodynamic potential µ = G/N
must be at its minimum in equilibrium. Consequently, at coexistence, µ(p) has
a kink and the compressibility κT diverges. This is analogous to the above men-
tioned mountain hiker experience: we only can see the (visually) more elevated of
two smooth contours of mountains at different distances, which gives rise to the
optical illusion of kinked valleys in the skyline, where a virtual mountain biker
would crash (experience a diverging acceleration).

So, while two phases are separated by a coexistence line in the p − T plane,
three phases (e.g. vapor, liquid, solid) can only coexist in a single point, the
triple point. Just as you exploit the evaporation transition as a simple thermostat
whenever you cook food, three phase coexistence of a (very) pure substance can
be used as a pressure and temperature gauge, as in some early space missions.
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The general situation is neatly summarized in the Gibbs phase rule: in a mixture
of N substances P phases can be in equilibrium on a manifold of

2 +N −P ≥ 0 (56)

dimensions spanned by intensive thermodynamic degrees of freedom. Whenever
two phases are required to be in equilibrium, this constrains one intensive variable,
thereby reducing the degrees of freedom of the system by one. In a pure substance
three-phase coexistence is constrained to a point, the triple point, since 2+1−3 =
0. Note that the Gibbs phase rule refers to a phase space characterized by
intensive control parameters. The triple point, quite in contrast to the critical
point, expands to a line or an area, respectively, if you exchange one or two of
the intensive parameters by extensive ones (or their densities).

The matching condition for the chemical potentials of coexisting phases can
be exploited to derive the shape of the coexistence line p(T ) in the p−T diagram.
On the coexistence line,

0 = dµ1 − dµ2 = −(s1 − s2)dT + (v1 − v2)dp ⇒ dp

dT
=

∆s

∆v
. (57)

This is known as the Clausius-Clapeyron equation. The slope of the coexistence
line is controlled by the ratio of the specific volume change ∆v ≡ v1− v2 and the
latent heat per particle T∆s ≡ T (s1 − s2). At the critical point both ∆v and
T∆s, which are both density differences of extensive quantities, have to vanish,
so they can both serve as so-called order parameters that help to quantify the
newly emerging quality (related to the emerging “kinkiness”). Typically, one
expects the hotter phase to be more disordered and less dense, which suggests
that the coexistence lines should have positive slopes. A notable exception is the
liquid-solid coexistence line of water, where the density increases upon freezing
due to H-bond network formation; another one is the Pomerantschuk effect in
He3, where the localization of atoms in the solid phase effectively disentangles
the wave functions of adjacent electrons. This liberates the otherwise Pauli-
correlated spins, and the entropy increases accordingly upon cooling.

2.2 Van der Waals’ model for phase transitions

The middle school teacher Johannes Diderik van der Waals managed to delegate
a substantial part of his professional duties to his wife, so that he could reserve
some time for taking math and physics classes at the university. At the age of 44
he handed in his PhD thesis “Over de Continuiteit van den Gas- en Vloeistoftoes-
tand”, which contained an equation of state with a first order liquid-gas transition
that vanishes in a critical point. For this and some other achievements he was
honored with the Nobel prize in 1910. Till today, the van der Waals gas has re-
mained a favorite tutorial example to gain some intuition about phase transitions
and a starting point for improved theories, although this turns into a somewhat
tortuous bricolage.
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Statistical Mechanics Kindergarden

Motivated by his believe in atoms, van der Waals extended the ideal gas model,
which he understood as a model of N non-interacting tiny balls, in two directions,
namely by introducing excluded volume and mutual attractions between the gas
molecules in a schematic manner. Subtracting some excluded volume b from the
total available specific volume v = V/N makes the pressure p = kBT/(v − b)
at v = b rather than at v = 0. So b could be interpreted as a rough estimate
of the volume per molecule in a densely packed solid or liquid. Alternatively,
arguing that the way a dilute gas realizes the presence of excluded volume is via
rare pair collisions, one can also consider the volume 4πσ3/3 around the center
of mass of a sphere of diameter σ, from which the center of mass of a second
sphere is excluded. Since there are N/2 pairs, the specific volume v should thus
be reduced by b = 2πσ3/3. As you can quickly convince yourself by considering
three spheres in close proximity (sketch), the excluded volume is non-additive,
which in fact poses a major problem to any liquid state theory trying to seriously
address condensation phenomena. So the trick with the parameter b cannot really
work, not even for hard spheres, for which the phase diagram is sketched in Fig. 1.

As suggested by the title of van der Waals’ thesis, the emphasis of his work was
not so much on the excluded volume but rather on the liquid-gas transition, which
is solely due to the attractive part of the molecular interactions. It is not difficult
to imagine that any attempt to realistically model the attractions encounters
comparable problems as for the repulsions. The problem can however in this case
be circumvented by choosing infinitely long ranged attractions, which essentially
“smears out” the nasty packing problem. If all pairs of molecules attract each
other with the same strength, independent of their distance, the packing structure
does not matter for the attraction. As a simple realization think of a square well
potential of range ∝ V 1/3 and infinitesimal strength ∝ V −1 such that the overall
reduction of the energy density u = U/N = N(N − 1)/(2V N) remains finite
in the thermodynamic limit (V, N → ∞ at fixed n = 1/v) and can simply be
written as a term −a n = −a/v, proportional to the number density n of particles.
This prescription is clearly an attempt to dress a manifestly non-extensive model
in an extensive garment. The apparent extensivity is purchased at the cost of
a strange system-size dependent microscopic interaction, which is not literally
what is usually meant with extensivity, of course, and the reckless ruse will be
seen to entail some unphysical artifacts in the predictions of the model.

Before analyzing predictions, the model should first be completely formulated,
though. The repulsive and attractive corrections in the form p = kBT/(v − b)
and u = 3kBT/2 − a/v, as motivated above, are not yet thermodynamically
consistent. This is betrayed by the argument used above, around Eq. (51), to
demonstrate that u is independent of v for the ideal gas. It still goes through
with the new expression for the pressure, in contradiction to the new expression
for the internal energy per particle, for which ∂vu)T 6= 0. The obvious cure is to
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correct the pressure equation such that

T∂vs)T = T∂Tp)v = p+ ∂vu)T = p+ a/v2 (58)

is consistent with the integrability condition for the entropy s(T, v) in Eq. (51):

p(T, v) = kBT/(v − b)− a/v2 , u(T, v) = 3kBT/2− a/v , (59)

That the pressure feels the attractions between the gas particles is physically
reasonable and could have been anticipated. Using Eqs. (58), (59) to integrate
ds(T, v) and to rewrite the result in the appropriate form s(u, v) of a fundamental
relation then yields (up to an irrelevant constant)

s = kB ln[(u+ a/v)3/2(v − b)] . (60)

The free energy per particle follows as

f(T, v) = u− Ts = −kBT ln[T 3/2(v − b)]− a/v . (61)

Since the entropy per particle s = −∂Tf is only known up to a numerical constant,
f and µ = f + pv are only determined up to irrelevant terms O(kBT ), as already
pointed out for the ideal gas. For the most commonly studied volume density
f(T, n) ≡ F/V = nf of the free energy, the gauge freedom even corresponds to a
“tilting” of the free energy landscape by a term O(nkBT ).

Academic first aid: equal area & common tangent constructions

Maxwell realized that van der Waals’ model did not respect the rules following
from homogeneity and thermodynamic stability. At low temperature it displays
regions of negative compressibility corresponding to sign changes in the curvature
of the free energy, and even negative pressures. The origin of the problems lies
of course in the artificial infinite range interactions, which make the van der
Waals fluid similar to a system dominated by gravity. They prevent the gas from
becoming heterogeneous, since interfaces between coexisting phases are extensive
and therefore energetically too costly. The “unphysical” loops in the van der
Waals isotherms thus indicate where phase coexistence should occur in a gas with
short-ranged interactions (not dominated by gravity). Rather than suggesting to
dump the model into the dust bin, Maxwell proposed to cure the flaw by applying
some plastic surgery to the symptoms. His quick fix consists in correcting the
model predictions, wherever they violate thermodynamic stability, by hand. It
can be condensed into two practical rules known as equal area rule and common
tangent construction, respectively. For the phases to be in thermal, mechanical,
and chemical equilibrium, they need to have identical intensive parameters T , p,
µ. Integrating the differential dµ|T = vdp of the chemical potential along a van
der Waals isotherm from p1 to p2 = p1 (sketch),

0 = µ2 − µ1 =

∫ µ2

µ1

dµ =

∫ p2=p1

p1

v dp (62)
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Figure 1: Left: Phase diagram of hard spheres as a function of volume fraction
φ ≡ πnσ3/6. The equilibrium phase behavior comprises fluid, fluid-crystal co-
existence and crystal. The transition is driven by the free volume v per particle
(and the corresponding configurational entropy), which is higher in an ordered
crystal compared to a disordered fluid. The glass is a disordered nonequilibrium
solid that interferes with crystallization between φ ≈ 0.58 and rcp = random
close packing. The closest possible packing is ccp = crystalline close packing
(corresponding to hcp/fcc) as conjectured by Johannes Kepler in the early 17th
century and proved by Thomas Hales in the late 20th century. Right: Adding
attractions to hard spheres makes temperature an additional interesting control
parameter of the phase diagram. If the attractions are sufficiently long ranged
compared to the hard core diameter, a liquid-vapor phase coexistence appears
at low temperatures and intermediate volume fractions. In the high temperature
limit, the phase behavior of hard spheres is recovered. (Plot from Wikipedia)
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one finds the following geometric interpretation in a p − v−diagram: the true
isobaric connections between the points on the isotherm that represent the onset
of evaporation and condensation at densities n1,2 = v−1

1,2, respectively, divide
the “unphysical” loops in the isotherm into regions of equal area. Physically, the
straight connections indicate two-phase coexistence, the relative amount of either
phase being controlled by the position along the isobaric tie-line. For the graph
of the free energy density

F/V ≡ f(n) = −p+ µn , (63)

this construction amounts to the convex hull of the non-convex coexistence region,
a straight line (of constant slope ∂nf|T,V = µ1 = µ2) tangential to the graph of
f(n) (sketch).

After these corrections, the phase behavior implied by the van der Waals
model is qualitatively similar to that observed for real molecular gases, as exem-
plified by the landscape in Fig. 1. Note the steep cliffs of crystallization and the
more shallow flank of liquid-gas coexistence (light blue) enclosed by the binodal
line, which delimits the region where a single phase is thermodynamically unsta-
ble and separates into the two phases delineated by the binodal. It contains the
similarly shaped but narrower spinodal region, where the van der Waals isotherms
predict negative compressibility κT = −n∂pv ≤ 0, indicating an even more severe,
namely mechanical, instability. Inside the spinodal, phase separation is not only
driven thermodynamically, but also by a spontaneous mechanical collapse.

Are all gases the same? (“law of corresponding states”)

Each substance that obeys the predictions of the van der Waals model qualita-
tively has a unique liquid-gas critical point at the end of the coexistence region,
which is given by ∂vp = ∂2

vp = 0. One can therefore get rid of the material
parameters with a normalization that renders the van der Waals equations di-
mensionless by normalizing density, volume, temperature, and pressure by their
respective values at the critical point, notified by an index c,

ṽ ≡ v/vc , ñ ≡ n/nc , T̃ ≡ T/Tc , p̃ ≡ p/pc (64)

with
vc = 1/nc = 3b , pc = a/27b2 , kBTc = 8a/27b . (65)

The corresponding reduced thermal equation of state reads

p̃ = 8T̃ /(3ṽ − 1)− 3/ṽ2 = 8ñT̃ /(3− ñ)− 3ñ2 , (66)

Similarly, on has the reduced free energy density

f̃ ≡ f/nckBTc = ñT̃ ln
[
T̃−3/2ñ/(3− ñ)

]
− 9ñ2/8 +O(nT ) (67)
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and the reduced chemical potential

µ̃ ≡ µ/kBTc = 3T̃ /(3− ñ) + T̃ ln
[
T̃−3/2ñ/(3− ñ)

]
− 9ñ/4 +O(T ) . (68)

These reduced gas equations and in particular the combination p̃ṽ/T̃ (which is
predicted to converge to the constant nckBTc/pc = 8/3 in the ideal gas limit)
should according to the model be independent of the two material parameters.
Experimental data for a number of molecular gases provides reasonable evidence
for the existence of such a universal “law of corresponding states”, although it
exhibits some deviations from the specific van-der-Waals form. (Exercise: What
can be deduced from this observation about the microscopic interactions?)

2.3 Critical phenomena

Critical exponents

An even greater universality is observed for so-called equilibrium critical behav-
ior, which refers to various divergencies encountered upon approaching a critical
point. Critical points can be understood as organizers of the surrounding ther-
modynamic state space, and thermodynamic behavior may be classified into uni-
versality classes, accordingly. It turns out that systems that are microscopically
and even phenomenologically as different as magnets and fluids may fall into the
same universality class with respect to their critical behavior. Quite generally one
summarizes critical behavior by a number of critical exponents characterizing the
singular dependencies of various thermodynamic quantities of interest at small
t ≡ T/Tc − 1 (or t ≡ 1− Tc/T ),

cV ∝ |t|−α specific heat (69)

ψ ∝ |t|β (t < 0) order parameter (70)

χT ∝ |t|−γ (ψ> = 0;ψ< = ψ1,2) susceptibility (71)

h ∝ |ψ|δ (t = 0) critical isotherm (72)

In the exercises, you can convince yourself that these exponents are mutually
related as a consequence of general thermodynamic constraints, a point that will
come up again further below. Broadly speaking, α characterizes the thermal ef-
fects such as those associated with the appearance of a latent heat, and δ the
mechanical, magnetic, etc. instability at the transition, as encoded in the shape
of the critical isotherm. For the liquid-gas critical point χT = κT , so that γ
describes the divergence of the compressibility. The notation |t| indicates that
both positive and negative t are to be considered and impies that the singular be-
havior above and below the transition is quite symmetric (except for prefactors).
For the van der Waals gas and similar models, one has to remember to use the
Maxwell construction to correct for model failures at t < 0 as discussed above.
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Most interestingly, a quantity called the order parameter can usually be defined,
here denoted by ψ, which vanishes above Tc and takes on non-zero values below
Tc. It serves to characterize the emergence of qualitatively new thermodynamic
behavior, e.g. the density difference between the two new phases emerging at the
liquid-gas critical point, the spontaneous magnetization of a ferromagnet cooled
below its Curie temperature, the condensate fraction in Bose–Einstein condensa-
tion, the Higgs field, etc. Its growth is quantified by β, defined only for t < 0.
As the mentioned examples suggest, a spontaneous symmetry breaking19 is often
associated with the transition, as e.g. the spontaneously emerging magnetization
clearly has to point in some definite but a priori arbitrary direction.

To illustrate the abstract concepts, the van der Waals gas or the very sim-
ilar Weiss model for a ferromagnet may serve as simple tutorial examples (see
exercises).

Landau theory and universality

To rationalize the amazing universality of critical phenomena, Lev Landau sug-
gested that a Taylor expansion of the relevant free energy density as a function
of small deviations from the critical point should be expected to look very similar
for a large variety of phenomenologically very different systems. The common
form of the Landau free energy density L is that of a standard hydrodynamic
description, namely a free energy per volume controlled by intensive parameters.
For the example of the van der Waals model, the Landau free energy is given by
a volume integral over the density of the grand canonical potential, which, for
prescribed T and µ, takes its minimum in equilibrium:

L ≡ J(T, µ)/(nckBTcV ) = −3p̃/8 = f̃(T̃ , ñ)− µ̃ñ . (73)

With the short-hand notation c1 ≡ 9/4, c2 ≡ 9/16,

ψ ≡ ñ− 1 , t ≡ T̃ − 1 , h ≡ µ̃− µ̃c , (74)

and expanding f̃ to leading orders in t and in the order parameter ψ, one finds

L(t, h) =
c1t

2
ψ2 +

c2

4
ψ4 − hψ (75)

A proper thermodynamic free energy ought to be convex in ψ to reflect thermo-
dynamic stability. Instead, L is easily seen to develop a double-well structure for
t < 0. This problem, which is inherited from the canonical free energy f(t, ψ),
must again be corrected by the Maxwell construction. For vanishing “external
field” h, the latter boils down to simply joining the two local minima, the po-
sitions of which give the possible values of the order parameter, by a horizontal
straight line. The critical exponents are straightforwardly calculated as β = 1/2,
γ = 1, δ = 3; the specific heat has a jump but no divergence, i.e. α = 0 (exercise!).

19. . . plus the associated Goldstone modes, such as phonons, photons, magnons, etc., hydro-
dynamic excitations that aim to restore the broken symmetry.
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Scaling hypothesis and exponent relations

Landau’s approach makes it plausible that the above predictions for the criti-
cal exponents are almost inevitable in any simple model and quite insensitive to
the underlying microscopic interactions. Some variation may be expected due
to different order parameter dimensions (scalar, vector, tensor) or special sym-
metries that require certain orders in the expansion to be absent. But apart
from that there seems little scope for surprises. While the implication concerning
the universality of the critical exponents is essentially borne out by experiments,
Landau’s (or van der Waals’) numerical values turn out to be almost always in-
appropriate. This is not merely a quantitative failure, which could be overcome
by a slightly improved model to be worked out by some diligent chemists, but a
failure in principle. It is the assumption that the free energy can be expanded in
a Taylor series, which is at stakes, since the measured exponents are not simple
rational numbers, indicating a severe non-analyticity. A full understanding of the
origin of this odd but common behavior on the basis of Statistical Mechanics only
emerged in the 1970’s and was rewarded with the Nobel prize for K. G. Wilson
(see the link on the homepage).

Phenomenologically, it can be rationalized by the postulate of a generalized
homogeneity relation for the Landau free energy L, or rather its singular part Ls,
in its natural intensive variables (the control parameters T and h). This postulate
is known as the scaling hypothesis:

λLs(t, h) = Ls(λatt, λahh) , (76)

where λ is a positive scale factor and at and ah are real numbers. In particular,
choosing λ = |t|−1/at , Eq. (76) reduces to

Ls(t, h) = |t|1/atLs(±1, h/|t|ah/at) ≡ |t|1/atL±(h/|t|ah/at) . (77)

Landau’s analyticity assumption for L is replaced by regularity requirements
for the scaling function L± and its first and second derivatives at the origin,
complemented by the condition L′± ≡ ∂xL±

x→∞∼ −x1/δ to meet Eq. (72). Then
Eq. (77) immediately produces the desired power-law behavior for small t and h:

CV ∝ −T∂2
tLs(t, h = 0) ∝ |t|1/at−2L±(0) (78)

ψ ∝ − ∂hLs|h=0 ∝ |t|
(1−ah)/atL′±(0) (79)

χT ∝ − ∂2
hLs
∣∣
h=0
∝ |t|(1−2ah)/atL′′±(0) (80)

ψ(h) ∝ −∂hLs ∼ −|t|(1−ah)/atL′±(h/|t|ah/at) (81)

∝ |t|1/at−ah/at(1+1/δ)h1/δ (t→ 0) .
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Comparison with the definitions in Eqs. (69)-(72) altogether yields

α = 2− 1/at (82)

β = (1− ah)/at (83)

γ = (2ah − 1)/at (84)

δ = ah/(1− ah) . (85)

The fact that two independent numbers generate (at least) four critical exponents
immediately explains the existence of exponent relations. To familiarize yourself
with these relations, try to re-derive the relation 2 − α = 2β + γ obtained from
thermodynamic considerations in the exercises. The odd numerical values of the
exponents have thus been traced back to two singular limits of the scaling function
for the free energy, which, of course, cannot itself be derived or computed without
the help of Statistical Mechanics.

Summary and outlook

It may seem strange that one introduces a model that is criticized as somewhat
unphysical, and then tries to repair its predictions a posteriori, instead of intro-
ducing an improved model. The reason is that the unphysical behavior of the
model is due to the neglect of fluctuations and will therefore never be entirely
repaired within thermodynamics. In other words, its failure is paradigmatic for a
principle flaw of the whole thermodynamic approach, i.e. the attempt of finding
a simple self-contained coarse-grained description.

The long-ranged atomic interactions implicitly assumed in the van der Waals
model helped circumvent the complicated problem of packing atoms and molecules
in space. But it achieved this by preventing fluctuations and heterogeneities by
imposing extensive energy penalties on heterogeneities. Since the model is pri-
marily not meant to describe an ensemble of gravitating particles but an ordinary
bottle of gas at room temperature, this must be considered an artifact. For the
purpose of describing phase equilibria, Maxwell’s common-tangent construction
“solved” the problem. While this is clearly a case of locking the stable door after
the horse has bolted, it can be justified by taking the thermodynamic limit in
van-der-Waals type models more carefully20. In any case, the “solution” can be
criticized for being too radical, as it throws the baby out with the bathwater.
By ironing out the van-der-Waals loops, one effectively neglects surface tension
effects, altogether. These play a crucial role in phase separation phenomena,
however. They dominate the initial nucleation of new phases, which relies on the
spontaneous formation of finite supercritical droplets that subsequently grow al-
gebraically slowly until a complete separation into the phases is achieved. Surface

20For a pedagogic summary of work by Kac, Uhlenbeck, Hemmer, van Kampen, Lebowitz and
O. Penrose in the 1960’s see Colin Thompson’s book Classical Equilibrium Thermodynamics.
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energy is also essential for taming critical fluctuations. Its vanishing at the criti-
cal point gives rise to the long-range correlations and collective fluctuations that
are behind the mysterious odd values for the critical exponents and the super-
universality of critical phenomena that the thermodynamic scaling hypothesis can
only describe but not explain. The unphysical van-der-Waals loops are therefore
not entirely unphysical, after all, only much too pronounced for systems with
short-ranged interactions.

In summary, the shortcomings of the van-der-Waals model and similar mod-
els cannot be cured entirely within thermodynamics but hint at the rich and
interesting physics of fluctuations. It is the suppression of fluctuations in simple
coarse-grained theories that is responsible for their failure to properly describe
the odd behavior at critical points. The quantitative characterization of fluctua-
tions is, next to the recovery of the laws of thermodynamics and the calculation
of (approximate) fundamental relations and the position and form of their non-
analyticities, a main task in statistical mechanics.
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Part II

Statistical Mechanics

〈Â〉 =

∑
ν〈ν|Â|ν〉e−Eν/kBT∑

ν e
−Eν/kBT

(86)

This fundamental law is the
summit of statistical mechanics,
and the entire subject is either
the slide-down from this summit,
as the principle is applied gto
various cases, or the climb-up to
where the fundamental law is
derived and the concepts of
thermal equilibrium and
temperature T are clarified.

R. Feynman

3 The tedious climb-up

Statistical Mechanics has become the common name for attempts to approach
the general principles that help to predict the salient characteristics of macro-
scopic (physical) systems on a microscopic basis. These attempts usually either
try to explain or rely on the following two observations. First, microscopically, in-
teracting many-particle systems exhibit complex dynamical behavior that is best
characterized in terms of trajectory densities, borrowing notions from probability
theory. Secondly, amazingly simple deterministic laws emerge from this mess on a
macroscopic scale. In particular, Equilibrium Statistical Mechanics as developed
by Boltzmann, Maxwell, Gibbs, Einstein, and others, takes for granted that accu-
rate predictions of macroscopic deterministic behavior can be obtained based on
the postulate of microscopic chaos in one or another form. Predictions are made
without actually deriving specific solutions to the complicated dynamic equations,
by merely estimating their weights in the space of all possible solutions. Accord-
ingly, statistical mechanics naturally puts some emphasis on universal aspects,
and many physicists think that this is a good thing to do, anyway. The study
of simple but paradigmatic model systems provides an understanding of how, in
principle, simplicity, universality and higher-level collective qualities emerge from
the complicated micro-scale physics. In proportion to the degree of specialization,
the subjects of statistical mechanics are delegated to condensed matter physics,
chemical engineering, econo-physics, or some other specialized disciplines that
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strongly rely on the overarching framework of statistical mechanics and therefore
share major fundamental principles and methods.

3.1 Stairway to heaven

Phase space density, density matrix, ensembles

The most convenient formal starting point for a microscopic description of many-
body systems is the phase space density or density operator formalism, respec-
tively. To describe a specific N -particle system corresponding to a pure quantum
state |µ(t)〉 in a Hilbert space, or, alternatively, the phase space density corre-
sponding to a single phase space trajectory, one writes

ρ̂µ(t) ≡ |µ(t)〉〈µ(t)| , ρ̂µ({qi,pi}, t) ≡
N∏
i

δ[qi − q
(µ)
i (t)]δ[pi − p

(µ)
i (t)] . (87)

Observables are represented as self-adjoined operators Â or phase space functions
A({qi,pi}), respectively, which are evaluated as

Aµ(t) ≡ tr
(
ρ̂µ(t)Â

)
, Aµ(t) =

∫ ∏
i

dqidpi ρ̂µ({qi,pi}, t)A({qi,pi}) . (88)

In the classical case, this merely amounts to a cumbersome formalism for say-
ing that one evaluates a phase space function on a trajectory. The quantum
mechanical formulation looks less artificial, as one is accustomed to probabilistic
elements involved in calculating the expectation value for the outcome of a future
measurement from the knowledge of the state |µ(t)〉 in the past. In both cases
there are good reasons to generalize the formalism to ensembles of pure states,
sometimes called “mixed states”.

In fact, in quantum mechanics, partial traces of density matrices generally
result in reduced density operators corresponding to a statistical ensemble of
states even if the total system including the environment (sometimes called the
“universe”) is in a pure state. So, whenever one considers a subsystem entangled
with an environment, one automatically has to deal with a mixed state of the
subsystem, alone. In classical physics, a comparable situation is encountered
when the environment acts as a weakly coupled “bath” that communicates with
the system of interest and constantly changes its precise microstate while leaving
the so-called macrostate, which is defined by some appropriate reduced set of
macroscopic observables, invariant.

So in quantum and classical mechanics it makes sense to take a step back from
the specific current microstate of the system at hand and consider an ensemble
of microscopic states or trajectories that belong to an equivalence class in some
reduced description. A gas characterized by its particle number, temperature and
pressure is a canonical example. In practice, the precise microstate (comprising
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the positions and momenta of all individual gas particles or the precise spectrum
and occupation numbers) is usually neither accessible nor of particular interest;
much more so the question, whether a sensible self-contained reduced description
in terms of equivalence classes corresponding to (essentially) the same values of
a few thermodynamic variables can be established on microscopic grounds.

To address this question, it is practical to generalize the definitions in Eq. (87):

ρ̂(t) =
∑
ν

ρν |ν(t)〉〈ν(t)| , ρ̂({qi,pi}, t) =

∫
dν ρν

N∏
i

δ[qi−q
(ν)
i (t)]δ[pi−p

(ν)
i (t)]

(89)
The normalized weights ρν quantify how much the pure states or trajectories
(are thought to) contribute to the macrostate of the system characterized by
ρ̂. Normalization for both the weights ρν and for the individual microstates or
trajectories reads

trρ̂ =
∑
µ,ν

ρν〈µ|ν〉〈ν|µ〉 =
∑
µ,ν

ρν〈ν|µ〉〈µ|ν〉 =
∑
ν

ρν = 1 , (90)

∫ ∏
i

dqidpidνρν δ[qi − q
(ν)
i (t)]δ[pi − p

(ν)
i (t)] =

∫
dν ρν = 1 . (91)

The predictions for measurements are now formulated in terms of averages over
the ensemble, in the simplest case in the form of expectation values,

〈Â(t)〉 ≡ tr
(
ρ̂(t)Â

)
, 〈A(t)〉 ≡

∫ ∏
i

dqidpi ρ̂(t)A({qi,pi}) , (92)

but variances and correlation functions (averages over multivariate expressions)
will also be of interest. Examples: 〈1̂〉 = 1 (normalization); 〈ρ̂〉 = trρ̂2 ≤ 1 (“=”
for a pure state).

Note the dramatic difference between Eqs. (87) and Eqs. (89). The first two
describe a lone single trajectory (or pure state) in an otherwise completely empty,
high dimensional state space. In contrast, the second set of equations describes an
ensemble comprising an overwhelmingly large number of possible microstates, i.e.
a collection of an extremely dense tangle of trajectories or states compatible with
some coarse macroscopic criteria (e.g., a given energy of temperature, etc.). In
fact, there are more than astronomically many microstates (typically on the order
of eN), against which the “rather few” (N ' 1023) dimensions of phase space pale
to nothing. Since for almost anything any atom does at any moment, the opposite
action is also part of the ensemble, it is plausible (though practically almost
always impossible to prove) that this tangle of states or trajectories basically
fills the available state space densely and more or less uniformly, hence cannot
evolve anywhere else in time, and the system is, broadly construed, said to be in
equilibrium. Usually, much weaker requirements suffice, e.g. that the projection
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of the phase space tangle into a low-dimensional state space of very few (local)
thermodynamic variables is well enough represented by a uniform density for the
purpose of calculating some thermodynamic averages. To understand how, and
under precisely which circumstances, this intuition fails (spontaneously or due to
external constraints), which it may do in a most perplexing and intricate way, is
the grand unsolved puzzle investigated in non-equilibrium statistical mechanics.

No matter whether the system is in or out of equilibrium, the dynamics of the
(bare and ensemble averaged) densities is always ruled by the equations of von
Neumann

~
i
∂tρ̂ = [ρ̂, Ĥ] ≡ ρ̂Ĥ − Ĥρ̂, (93)

and Liouville,

∂tρ̂ = {ρ̂, H} ≡ −Lρ̂ , L ≡
∑
i

(∂piH)∂qi − (∂qiH)∂pi (94)

with commutator [, ], Poisson-bracket {, } and Liouville-operator L. They are
related by the correspondence principle i[, ]/~ ↔ {, }. In a (macroscopically)
stationary21 state, and in particular in equilibrium, Ĥ and ρ̂ commute,

∂tρ̂ = 0 ⇔ [Ĥ, ρ̂] = 0 , {H, ρ̂} = 0 . (95)

An ensemble density ρ̂ that describes equilibrium and therefore does not change
in time can thus be treated as a function that depends on the microscopic de-
grees of freedom only indirectly via the Hamiltonian. Other conserved quantities
are rarely directly accessible, in practice. Below, this is used to motivate the
basic postulate of statistical mechanics, namely to approximate the ensemble
density of an isolated system by the particularly simple solution ρ̂({qi,pi}) =
ρ̂
(
H({qi,pi})

)
of this equation, which happens to be constant on “energy shells”

(H = E =const.) in phase space for a given set of thermodynamic parameters.
The next two subsections introduce two important general ideas that play a

crucial role for the construction of statistical mechanics as a general theory of
many identical particles with short-ranged interactions. (With some care, basic
elements of the discussion will be generalizable to not so many particles or long-
ranged interactions.)

Indistinguishable particles and µ-space

In practice, for a given many-particle system, one is often interested in the particle
density n(r, t) at a certain position r in 3-dimensional position space or rather
in a 6-dimensional one-particle phase space consisting of positions (then usually
denoted by q) and momenta p. One thus asks for the chance to find any particles

21Stationarity of the ensemble averaged density does not imply that nothing moves—the
microstates may still fluctuate wildly within the constraints defined by the ensemble.
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Figure 2: Trajectories and ensembles in phase space and µ−space.

(not a certain particle) at some point in a 2d-dimensional projection of the 2dN -
dimensional phase space, called 1-particle phase space or µ-space (to avoid the
misunderstanding that it only contains one particle). Accordingly, it is useful to
define the 1-body density

f1(q,p, t) ≡
∑
i

〈δ[q− qi(t)]δ[p− pi(t)]〉 = N

∫ ∏
i>1

dqidpi ρ̂ (96)

to find any particle in the state {q,p} in µ− space. More ambitiously, one may
want to know the weight to find any M particles in a certain correlated state
(e.g., for M = 2, to find any two particles with certain velocities at a certain
distance, etc.), no matter which particles. This information is then encoded in
the M-body densities

fM(q1,p1, . . .qM ,pM , t) ≡
N !

(N −M)!

∫ ∏
i>M

dqidpi ρ̂ , (97)

which have the form of joint probabilities (or correlation functions) to find any
(no matter which) M particles with the given positions and momenta.

In particular, the N -body density fN is formally identical to the phase space
density ρ̂ of Eq. (89) up to the factor N ! indicating that it does not care about
which particle is where. Like all the M -body densities, it however has a dif-
ferent interpretation with respect to the space on which it is defined. The N !
different phase space trajectories corresponding to all of the (otherwise identical)
N particle-systems obtained by all possible permutations of the particles map
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to a single trajectory in a projective space, in which the permutations are not
distinguished. Going one step further, namely to a description in µ-space, they
are represented by N trajectories (reflecting the presence of N particles) in this
2d-dimensional space. The one-body density f1 is simply the trajectory density
in µ-space and is normalized to the particle number N . Similarly, by virtue of
their normalization, the M -body densities fM are or joint densities for finding M
correlated trajectories in µ-space, i.e. M−point correlation functions.

In fact, the admittedly somewhat perverse mapping from Liouville’s phase
space to µ-space is argued to better represent the proper phase space structure of
a system of N practically indistinguishable particles occupying the same configu-
ration space, for which permutations should rather not be counted as new states
if the notion of indistinguishability is taken seriously. The difference between
Liouville- and µ-space may seem of minor relevance at first sight but matters
as soon as a full thermodynamic fundamental relation has to be computed from
statistical mechanics, which amounts to counting the total number of available
states or to measuring the accessible phase space volume, respectively. Below,
this aspect will be illustrated by a calculation of the entropy of an ideal gas of N
(indistinguishable) particles, which fails to be extensive if the reduction of phase
space volume implied by the mapping to µ-space is overlooked.

Law of large numbers for homogeneous systems

The last remark alludes to a general crucial issue in equilibrium statistical me-
chanics, namely the recovery of extensive thermodynamics in the limit of large
system size for many-body systems with short-ranged interactions. In particular,
one expects large equilibrium systems to behave deterministically with vanish-
ing fluctuations of the thermodynamic quantities, “typical” and “average” being
the same, which then implies a most crucial property of such systems: that a
measurement performed on one particular real-world realization of the members
of the ensemble at one instance practically always corresponds to a measurement
over the complete ensemble.

All this can indeed be demonstrated for large homogenous systems. Due to the
short range of the microscopic interactions, they can be subdivided at essentially
no cost (neglecting only sub-leading surface terms in the energy) into many small,
yet macroscopic (compared to the molecular scale) volume elements. The volume
elements may then be used to define local densities a of extensive quantities
A. Fluctuations ∆A ≡ A − 〈A〉 of an extensive quantity A around its average
A ≡ 〈A〉 = V 〈a〉may then be expressed in terms of these densities a, i.e. ∆a = a−
〈a〉. Since the volume elements are only weakly coupled in the complete system,
local averages 〈a(r)〉 decorrelate (“quickly loose their mutual dependence”) for
distances |r−r′| longer than the range ` of interactions. Accordingly, the average
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mean-square fluctuations of an observable can be rewritten in the integral form

∆A2 ≡ 〈∆A2〉 =

∫
drdr′ 〈∆a(r)∆a(r′)〉 ' 〈∆a2〉V `3 . (98)

The final estimate follows from the form of the (spatial) 2-point density

〈∆a(r)∆a(r′)〉 ∼

{
〈∆a2(r)〉 = 〈∆a2(r′)〉 = 〈∆a2〉 (|r− r′| � `)

〈∆a(r)〉〈∆a(r′)〉 = 0 (|r− r′| � `)
.

Take for example a chain of people who have a (weak) tendency to align their
vote s = ±1 with that of their neighbors in a range `, but no systematic pref-
erence for either vote. The spatial average over s(r) vanishes because of the
randomly changing sign of s(r) along the chain. Similarly, s(r)s(r+∆r) can take
either of two values ±1. But positive correlation (+) is more likely than negative
correlation or anticorrelation (−) for |∆r| � `, independent of r.

The estimate in Eq. (98) suggests that large additive extensive systems will ef-
fectively behave deterministically, since ∆A/A ∝ V −1/2. Moreover, typical values
and average values coincide to increasing relative precision for V → ∞, which
allows to regard a particular macroscopic system at a particular time as a rep-
resentative sample of the ensemble. A macroscopic amount of gas or liquid are
the standard examples for this general expectation. Extensive variables in such
systems are spatially self-averaging. The measurement of an extensive quantity
of a single system amounts to the measurement of a density, summed up over
many practically independent identical sub-systems to yield a virtually determin-
istic outcome. In other words, for additive systems “one is many”, effectively,
and average is typical, so that “any is average”. (The probabilistic version of the
central limit theorem, which is discussed in the exercises, indeed asserts that the
probability distribution for extensive variables that can be represented as sums
of effectively independent and identically distributed stochastic variables of finite
variance quickly approaches an incredibly sharp Gaussian with this property, if
the number of terms in the sum is not very small.) For such systems, there
is therefore no need to worry about ensembles in everyday life, as a single sys-
tem behaves like an ensemble-averaged system, already. Introducing ensembles
is therefore sometimes an unnecessary, merely theoretically motivated exercise,
and it can indeed be useful to consider one concrete system, instead. Special
care is generally needed near critical points, though, where the correlation length
diverges, correlations decay like power-laws, and certain limits, such as t → ∞,
T → Tc, and V →∞, may fail to interchange.

It should be said that it even often makes sense to apply the usual statistical
mechanics formalism to systems that fail to meet the prerequisites for applying
the law of large numbers, since they are small in the sense that they only have
few degrees of freedom. The above discussion does not apply, and they are not
self-averaging by themselves, but this can be remedied if the small system is
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coupled to a bath. One can then measure the time average of an observable for
the small system, which will usually provide an excellent match to an ensemble
average. A system for which time and ensemble averages coincide, i.e., which
explores the allowed phase space of the ensemble on a reasonable time scale, is
called ergodic. Tossing a single coin is an ergodic process. If repeated N times,
it leads to the same statistics as tossing N coins simultaneously (whence the
saying “time is money”). Systems that are self-averaging in the above sense, are
ergodic. However, you clearly would not like your portfolio to be ergodic in this
sense, although you would like it to be self-averaging to minimize volatility.

As the last remarks suggests, there are serious counterexamples to and excep-
tions from the law of large numbers. These are naturally suspected among the
systems that are “small” in the sense that they are non-extensive and not triv-
ially decomposable into additive compartments, such as proteins, neutron stars,
or atomic nuclei. Their number of available microstates per macrostate is highly
constrained due to strong internal correlations. But also “large” systems, for
which the number of possible microstates grows exponentially with system size,
can pose problems, since one might well need an exponentially large number of
weakly coupled compartments (hence an exponentially large volume) to exhaust
the ensemble by a spatial average. Think of the little volume elements being
exposed to so-called quenched disorder, e.g. an external field that takes different
but fixed values for each of them, with extreme values being very rare but rele-
vant for the mean. Even worse, a window glass may seem to be an equilibrium
solid for all practical purposes, if one adopts Feynman’s definition of equilibrium
as the state when all the fast things have happened but the slow things have
not. Yet, philosophically, it is possibly better characterized as a highly viscous
undercooled liquid evolving (and aging) extremely slowly in time. Finally, if you
ask people how much money they have, or how many friends or sex partners, you
will discover that these numbers are power-law distributed, so that the average
value can be very different from the most probable value, if it exists at all22. The
“Petersburg paradox”, a drastic example for such unruly behavior is discussed in
the exercises. It gives a hint why tax payers always end up paying the free lunch
of smart bankers that have everything under control except for some rare events
(and, sure enough, they do not eat at the university canteen). The unintuitive
behavior of all such strange systems indicates that they are far from equilibrium.
However, it is not generally possible to tell whether or when a system is ergodic
or will fall out of equilibrium by looking at either the system itself or its Hamil-
tonian (think of the glass transition in hard sphere suspensions). But it is quite
easy to write down innocent-looking toy models that can keep larger parts of the
statistical-physics community busy for decades.

22A true power-law distribution over the (positive) real numbers is of course an idealization,
which will usually need to be cut off somewhere in practical applications (e.g., the probability
to find someone with 1023 sex partners is exactly zero and not a very small positive number).
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The infinite staircase

With these general considerations in mind, one may try and see what can be
learned directly from the microscopic formulation. Consider N identical inter-
acting classical particles with the pair-Hamiltonian

H =
∑
i

p2

2m
+
∑
i

U(qi) +
∑
i<j

V(|qi − qj|) . (99)

With the abbreviations

Fi ≡ −∂qiU(qi) and Kij ≡ −∂qiV(|qi − qj|) = −Kji (100)

for the external and internal forces, respectively, the Liouville equation takes the
form

[∂t + L] ρ̂ = 0 , L ≡
∑
i

(pi
m
· ∂qi + Fi · ∂pi

)
+

1

2

∑
i,j

Kij ·
(
∂pi − ∂pj

)
. (101)

Here ρ̂ is the statistical phase space density from Eq. (89) for which there is
no explicit expression so far. In a straightforward (but ambitious) approach to
Statistical Mechanics you might want to solve Eq. (101) and then take the long-
time limit t → ∞, where the dynamics hopefully comes to rest, to find the ρ̂
corresponding to the equilibrium distribution.

As a more modest starting point, one may investigate the consequences of
Eq. (101) for the one-body density in µ−space,

∂tf1 = −N
∫ ∏

i>1

dqidpi Lρ̂ . (102)

The terms resulting from operators with indices i, j > 1 in L are total derivatives
(their prefactors are independent of the variables in the derivatives) that vanish
upon integration and evaluation at the borders, where ρ is assumed to vanish:

∂tf1 = −N
∫ ∏

i>1

dqidpi

[p1

m
· ∂q1 + F1 · ∂p1 +

∑
j>1

K1j · ∂p1

]
ρ̂ . (103)

The first two operator terms on the right can be taken out of the integral, so
that with Eq. (96) the corresponding contributions can be transferred to the left.
Altogether, one thus has[

∂t +
p1

m
· ∂q1 + F1 · ∂p1

]
f1 =−N

∫ ∏
i>1

dqidpi
∑
j>1

K1j · ∂p1 ρ̂

=−N(N − 1)

∫
dq2dp2 K12 · ∂p1

∫ ∏
i>2

dqidpi ρ̂

=−
∫

dq2dp2 K12 · ∂p1f2(q1,p1,q2,p2, t) . (104)
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While the left hand side characterizes the free streaming of the density f1 in
µ−space, the right hand side is identified as its change due to two-body interac-
tions that depend on the two-body density f2. The equation is thus not closed.
An additional equation specifying the time evolution of f2 is of course readily
derived along the same lines, but it turns out to depend on f3 and so on. Such an
infinite hierarchy of equations clearly needs to be truncated to make it practically
useful. Boltzmann’s famous kinetic equation results if one estimates the contri-
butions from f2 by the factorization approximation f2 ∝ f1f1, which inflicts only
small errors for dilute gases. Hence, one can get useful results if one takes the
interacting pairs to be uncorrelated prior to their encounter, which corresponds
to the famous assumption of “molecular chaos”. (The chaos should be chaotic
enough that there is no need to worry about situations where the two particles
have recently already met or where the first particle collided with a third particle
that hit a fourth particle that had an encounter with the second, etc.). Boltz-
mann’s strategy to derive statistical averages and correlation functions using the
assumption of an underlying molecular chaos has turned out to be a key idea
of Statistical Mechanics. In contrast, Boltzmann’s equation and the whole ap-
proach based on this BBGKY23 hierarchy relies on truncating the hierarchy, and
is therefore limited to dilute gases. And no matter how well you treat a dilute
gas, it will not become a dense fluid at the end of the day. This is a good excuse
to abandon the discussion of Boltzmann’s approach via the infinite staircase and
look for the elevator to the summit. After all the exhausting climbing it is worth-
while, though, to pause for a little intermezzo and consider at least the trivial
case of an ideal (non-interacting) gas, explicitly, if only to anticipate the whole
discussion of the remainder of this section in a nutshell.

3.2 First little slide-down with the ideal gas

A special solution

For non-interacting particles the infinite staircase collapses and the stationary
one-body density f1 can be obtained from the much simpler equation[ p

m
· ∂q + F · ∂p

]
f1 = 0 . (105)

It is obviously solved by any differentiable function f1(H). With a separation
ansatz in q and p follows the (special) solution

f1(q,p) = Ne−βH1(q,p)/C , H1(q,p) ≡ p2

2m
+ U(q) , (106)

C ≡
∫

dqdp e−βH1 = (2πm/β)3/2

∫
dq e−βU . (107)

with an arbitrary separation constant β.

23Named after Bogoliubov, Born, Green, Kirkwood, Yvon.
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Connection to thermodynamics

To get an idea of the physical meaning of β, consider the average energy of the
gas without external field (U ≡ 0)

U ≡ 〈H1〉f1 =
〈p2〉f1

2m
=

1

2m

∫
dqdp p2 f1 =

3N

2β
. (108)

The average is taken with the one-body phase-space density f1 that is normalized
to N . Comparison with the caloric equation of state of an ideal gas as introduced
in thermodynamics suggests

β−1 = kBT . (109)

Incidentally, this also proofs the so-called equipartition theorem: Eq. (108)
shows that the thermal energy stored on average in a velocity-degree of freedom
(which is penalized with a quadratic term in the Boltzmann factor) is kBT/2. It
is clear that this result still holds in presence of potential interactions that do
not depend on the momenta, and that the practical rule generalizes to any term
in the Hamiltonian that is quadratic in whatever degree of freedom. So, each
equilibrated quadratic degree of freedom will carry the thermal energy kBT/2.

An elementary argument (due to Bernoulli) allows to connect the atomistic
picture also to macroscopic gas mechanics. The pressure onto the container walls
is calculated as the force per unit area. The momentum transfer in a single
collision with the x-wall is 2px. There are npx/m collisions per unit area and
time, with n the particle density, exerting a pressure (only particles moving in
the right direction contribute)

P =
2n

m

∫ ∞
0

dpx
p2
xe
−βp2

x/2m

(2πm/β)1/2
=
〈p2
x〉f1

V m
=
〈p2〉f1

3mV
=

2

3

U

V
=
n

β
(110)

on the walls. This can indeed again be reconciled with the thermodynamic equa-
tion of state using Eq. (109). Equations (108), (109), and (110) link the micro-
scopic description to macroscopic thermostatics for the ideal gas.

In the exercises you moreover verify that Boltzmann’s interpretation of

H = 〈ln f1〉 =

∫
dqdp f1 ln f1 (111)

as the negative entropy (in units of kB) does yield the proper thermodynamic
expression. Notice that the normalization of f1 to N (rather than to one) both
in front of and inside the logarithm, renders Boltzmann’s H−function extensive.

The foregoing discussion may seem slightly odd, as it appears to be formu-
lated for only one single particle rather than an ensemble of N particles. The
particle number only enters via the normalization of the one-particle distribu-
tion function. This perspective may resonate well with the dictum by Wheeler
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and Feynman that there actually is “only one electron in the universe” (i.e. one
electron-positron field with N excitations that are totally antisymmetrized in
space and can move forward and backward in time). Yet, a more comprehensive
description of an ensemble with the functions fM that can encode correlations
induced by interactions is often highly desirable. For the interaction-free ideal
gas, all M -body densities, which have the form of joint probabilities, factorize
into products of single-particle densities. In particular, the N -body density fN
reads

fN({qi,pi}) = N !
N∏
i=1

e−βH1(qi,pi)/C = N !e−β
∑
iH1(qi,pi)/CN . (112)

The factor N ! is a reminder that all permutations of the particles are considered
as equivalent and not counted as independent states. While the original density
ρ̂ was normalized to a phase space integration, its appropriate replacement in the
case of N indistinguishable particles, namely fN , is normalized with respect to an
integration over the projective phase space, in which all N ! different trajectories
obtained upon particle permutations are identified. Because of the complicated
topology of such a space, it is of course much more convenient to integrate over
the original phase space and then divide by the number of permutations, i.e.
to use

∏
i dqidpi/N ! as the phase space measure24 for fN , which is then indeed

normalized to one rather than to N !. In the exercises you show that, with this
convention,

S/kB = −〈ln fN〉 =

∫ ∏
i dqidpi
N !

fN ln fN (113)

is another way of writing the entropy of an ideal gas of N particles. Notice again
how extensivity is realized, this time by the factor N ! ≈ NN inside the logarithm.

To summarize, N indistinguishable non-interacting particles occupying the
same configuration space are described by the phase space density,

ρ ≡ h3NfN =
e−βH

Z
, H({qi,pi}) =

∑
i

p2
i

2m
+ U(qi) , (114)

with normalization, phase space integral, and averages, respectively, defined by

Z ≡
∫

dΓ e−βH dΓ ≡
∏

i dqidpi
N !hdN

, 〈A〉 ≡
∫

dΓAρ . (115)

Below, this form is generalized to allow for interactions of the particles, simply by
extending the free Hamiltonian to an interacting Hamiltonian. The supposition

24This may seem strange. After a lengthy discussion of why one should use fN = N !ρ as
appropriate replacement for the original phase space weight ρ, the factor N ! is divided out again,
in the measure. It is only the latter, though, that remains visible in practical calculations, while
its opponent remains hidden inside the new definition of ρ.
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that this simple rule works is a formulation of the fundamental postulate of
Equilibrium Statistical Mechanics, namely the one appropriate for isothermal
systems. Note that Planck’s constant h has been smuggled into Eqs. (114) & (115)
as an elementary phase space volume to render ρ and the integral measure both
dimensionless. Thanks to this slight amendment the interpretation of the phase
space volume Γ (and the normalization Z) is no longer that of an abstract measure
of the (relevant) continuous phase space volume but something more mundane: a
ridiculously large but in principle—not in practice—countable number of discrete
states. An explicit demonstration how the classical phase space measure emerges
from a quantum statistical description can be found below in Sec. 4.3, where the
classical limit is more closely examined.

For the ideal gas, explicit expressions can be computed for the so-called canon-
ical partition sum

Z(β, V,N) =

∫
dΓ e−βH =

∫ ∞
dε g(ε)e−βε =

V N(2πm/β)3N/2

N !h3N
, (116)

the phase space volume

Γ(E, V,N) ≡
∫

dΓ θ(E −H) =

∫ E

dε g(ε) =
V N(2πmE)3N/2

N !(3N/2)!h3N
, (117)

and its derivative at energy E, the density of states

g(E) ≡ dΓ

dE
=
V N2πm(2πmE)3N/2−1

N !(3N/2− 1)!h3N
=

3NΓ

2E
. (118)

Approximating the factorials by x! ≈ xx helps to establish the close relations
between g(E), Γ(E) and Z(β). If integrated over a small energy interval (or
multiplied by the energy E/N per particle), the density of states g(E) basically
gives the volume of the energy shell at energy E, which essentially contains the
total phase space volume Γ(E), in a high dimensional space (i.e. for large particle
numbers N), as further discussed in the exercises. Also, the partition sum Z
is seen to boil down to the phase space volume Γ if one identifies the energy
per particle with the thermal energy 3kBT/2 and uses N ! ≈ NN . So, up to
minor technical details, the phase space measures Γ, g, and Z can all basically
be identified for large N .

Fluctuations

Beyond the calculation of thermodynamic quantities, the framework of statistical
mechanics enables us to analyze fluctuations around the average behavior. For
instance, the mean-square fluctuations

∆U2 ≡ 〈(H − 〈H〉)2〉 = 〈H2〉 − 〈H〉2 , (119)
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of the total internal energy U of the ideal gas are explicitly given by

∆U2 =
1

4m2
〈
(∑

i

p2
i

)2〉 − 〈H〉2 =
N

4m2

(
〈p4〉 − 〈p2〉2

)
=

3N

2β2
. (120)

For the squared sums (
∑

i p
2
i )

2 =
∑

i(p
2
i )

2 +
∑

i 6=j p
2
i p

2
j was used, and that the

terms in each sum are all equal upon averaging, the sum over the mixed terms
giving N(N − 1)〈p2〉2. In particular, one observes that the ideal gas supports the
general expectation for all many-body systems with short-range interactions that
the absolute strength of fluctuations scales like the square-root in the system size,
hence

∆U/U ' N−1/2 . (121)

A more comprehensive characterization of the energy fluctuations is provided by
the energy distribution

w(E) ≡〈δ(E −H)〉

=

∫
dΓ

e−βH

Z
δ(E −H) =

∫
dε g(ε)

e−βε

Z
δ(E − ε) =

g(E)

Z
e−βE .

(122)

Note that the essential specific information is again contained in the density of
states g(E). In the exercises, you show that the resulting energy distribution for
the ideal gas takes a Gaussian form in the thermodynamic limit,

w(E) =
β(βE)3N/2−1e−βE

(3N/2− 1)!

N→∞∼ 1√
2π∆U

exp

[
−(E − U)2

2(∆U)2

]
. (123)

So in this particularly simple case, the information gained by calculating the
distribution rather than its mean and variance, which was already achieved in
Eqs. (108)) and (120), respectively, does not seem too precious. A Gaussian is
fully determined by its mean and variance, after all. But in more complicated
situations, the shape of the distribution could be much more interesting (and,
unfortunately, much harder to calculate). In the following, the strategy is to pos-
tulate that the basic properties (not the detailed numerical form) of the functions
calculated above for the ideal gas are generic beyond the realm of gases, for all
many-body systems with short-range interactions — if they are in equilibrium.

3.3 The elevator to the summit

The general strategy is to argue or to hope that the structure discovered for
the isothermal ideal gas carries over to interacting many-particle systems with
short-range interactions. The notions motivated by the example of the ideal
gas in the previous section are then often understood as a derived version of
a “simpler” postulate; namely, that the equilibrium statistical mechanics of an
isolated interacting many-body system may be obtained from a (fake) phase
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space weight ρ({qi,pi}) = ρ
(
H({qi,pi})

)
that is uniform on the energy shell

H({qi,pi}) = E. This is called the micro-canonical ensemble. In the following,
the classical so-called “Gibbs ensembles” are all introduced as independent pos-
tulates, though further below some remarks concerning their mutual dependence
and the limitations of their applicability shall be made.

Micro-canonical Ensemble

The equilibrium weight (that reproduces the macrostates) of an isolated conser-
vative system is the uniform distribution on the energy shell.

ρ(H;E, V,N) =
δ(H − E)

g(E, V,N)
, g(E, V,N) =

∫
dΓ δ(H − E) =

dΓ

dE
. (124)

This is the (unproven) fundamental postulate of Equilibrium Statistical Mechan-
ics. The uniform distribution corresponds to a maximally chaotic or “featureless”
distribution of trajectories in phase space. The true microscopic dynamics will
generally not correspond to equal weights everywhere on the energy shell — but
the hope is that pretending it does so causes no harm for all common purposes.

For the quantum mechanical prescription one considers Ĥ and its spectrum
{Eν}, the trace tr replaces the phase space integration dΓ ≡ (

∏
i dqidpi)/(N !h3N).

The density of states and the total number of states with energies up to E read

g(E) =
∑
ν

δ(E − Eν) , Γ =

∫
dE g(E) . (125)

Do not take any of the δ-functions too literally. As always in physics, they idealize
a suitable narrowly peaked function. The δ-function in Eq. (124) is supposed to
have width ε0 (independent of system size, e.g. something about the typical energy
of one particle). For a generic interacting system, it will usually be assumed that
so many energy levels (i.e. δ-functions) are contained in this narrow peak region
that a continuum approximation of g(E) is appropriate25.

Recall that for an ideal classical gas the phase space volume takes the explicit
form

Γ(E, V,N) ≡ V N(2πmE)3N/2

N !(3N/2)!h3N
. (126)

Upon introducing the de Broglie wavelength

λE ≡
h√

2πm(2E/3N)
(127)

25The generic expectation for an extensive system with short-range interactions is that g(E)
grows like some number to the power of E/ε0 ' N . For macroscopic systems, there may thus
easily be many more accessible states than particles in the known universe, and a continuum
description is not only well justified but mandatory. As a peculiarity, this generic structure is
only recovered somewhat indirectly in the classical limit of an ideal quantum gas (see below).

49



of a particle of mass m with a kinetic energy of about E and approximating
N ! ≈ NN , one observes

Γ(E, V,N) ≈ (V/N)N/λ3N
E ≡

(
v/λ3

E

)N
. (128)

This suggests the interpretation that the uncertainty relation provides a dis-
cretization of the configuration space of the gas into units of linear dimension λE.
Moreover, with the interpretation of Γ as the number of available states, each of
N non-interacting indistinguishable particles in a volume V is seen to have only
v/λ3

E = (nλ3
E)−1 states available (with v ≡ n−1 ≡ V/N the specific volume) —

rather than V/λ3
E, as one might naively have thought. This is clearly a direct

consequence of the identification of states which only differ by particle permuta-
tions. It turns out to be the single most important insight for understanding some
fundamental properties of condensed matter such as the temperature dependence
of their specific heat, their electrical conductivity, and even transitions to macro-
scopically coherent quantum states like Bose-Einstein condensation, which can
all be understood in terms of (effective) gases of elementary excitations.

Canonical Ensemble

In the limit of an infinite heat reservoir, the equilibrium weight function for an
isothermal system is

ρ(H; β, V,N) =
exp(−βH)

Z(β, V,N)
,

Z(β, V,N) =

∫
dΓ exp(−βH) =

∫
dε g(ε) exp(−βε) .

(129)

The translation rules to switch to a quantum mechanical description are as above.
As one usually considers Hamiltonians that are a quadratic form in the mo-

menta, the momentum integration can be performed once and for all, which
reduces the task of calculating the canonical partition sum to the so-called con-
figuration integral

Z =

∫
dΓ e−β[

∑
i p

2
i /2m+V({rj})] =

1

N !λ3N
T

∫
dNr e−βV({ri}) . (130)

Here, the thermal wavelength

λT ≡
h√

2πmkBT
(131)

was introduced, which is easily recognized as the de Broglie wavelength of a
particle of mass m with a thermal kinetic energy of about kBT . To connect to
the motto preceding this part of the lecture, one may pinpoint the computation
of the configuration integral as the central practical task in statistical mechanics.
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Needless to say, that this task can only in a few exceptional cases be performed
analytically. For the ideal classical gas,

Z(T, V,N) =
1

N !
Z(T, V, 1)N =

(V/λ3
T )N

N !
≈ (v/λ3

T )N . (132)

As for the micro-canonical case, interpreting Z as the number of available states
and using N ! ≈ NN , one recovers the observation that for each particle in a gas of
N non-interacting indistinguishable particles in a volume V there are only v/λ3

T

(instead of V/λ3
T ) states available.

Grand-canonical ensemble

In the limit of an infinite heat and particle reservoir, the weight function for a
system in thermal and chemical equilibrium is

ρ(H,N ; β, V, µ) =
exp[−β(H − µN)]

ZG(β, V, µ)

ZG(β, V, µ) =
∞∑
N=0

∫
dΓ exp[−β(H − µN)] .

(133)

The translation rules to switch to a quantum mechanical description are as above,
N becomes the number operator N̂ . To emphasize that compared to other players
in the game N ' 1023 is not such a large number after all, the discrete notation
is often preferred. The thermodynamic conjugate to the particle number N is
the chemical potential (in units of kBT ). Its Boltzmann factor z ≡ eβµ is called
the fugacity. Note that

ZG(β, V, z) =
∑
N

zNZ(β, V,N) ⇒ Z(β, V,N) =
1

N !
∂Nz ZG|z=0 , (134)

which is why ZG is sometimes called the generating function of Z.
The fluctuating particle number often simplifies the task of summing over all

states, since it allows finite sums to be extended to infinity. In return, the task
of relating the results thus obtained back to a system of fixed known particle
number (but unknown µ) involves the identification of that particle number with

〈N〉 = z∂z lnZG = ∂βµ lnZG (135)

and the elimination of z with help of this equation. For an isothermal gas or
fluid in a closed box, the canonical partition sum Z pertains to the whole box,
whereas the grand canonical sum ZG is useful to address local properties in the
bulk of the material, such as local density fluctuations.
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Consider again the ideal classical gas as the standard example, for which
Eq. (132) implies

ZG(T, V, z) =
∑
N

zNZ(T, V,N) = exp[zZ(T, V, 1)] = ezV/λ
3
T = e〈N〉 . (136)

In the last step Eq. (135) was used to eliminate the fugacity z in favor of the
average particle number 〈N〉 = V n = V z/λ3

T (or density n). The discussion in
the preceding paragraph identified the inverse of nλ3

T as the number of available
states per particle. This is now seen to imply that the fugacity is the crucial
dimensionless parameter controlling the importance of quantum effects in ideal
gases. A more thorough discussion of ideal quantum gases (see Sec. 4.2) indeed
reveals that gases condense into a single macroscopically occupied quantum state
for nλ3

T ≈ 1.

“Deducing” open ensembles

Instead of postulating the canonical, grand-canonical and other generalized en-
sembles constructed along the same lines, one may derive the equilibrium distribu-
tions for these ensembles from the uniform distribution of the micro-canonical en-
semble. The basic strategy is to divide a micro-canonical system Σ into a system
S with Hamiltonian H and a much larger reservoir R, with a weak (short-range)
coupling term in their Hamiltonians that needs not to be specified explicitly,
since it is dropped in the energy balance HΣ = H + HR anyway (imagine it as
something non-extensive, like a surface term). For long-range interactions be-
tween system and reservoir this strategy obviously does not work, which hints at
some limitations. It moreover requires strong assumptions about the part of the
micro-canonical system treated as the reservoir. Basically, one wants the bath to
be a classical ideal gas, which clearly comes pretty close to postulating the result
from the outset. One generates the distribution of the system S from that of Σ
by integrating out (averaging over) the degrees of freedom of the reservoir R,

ρ =

∫
dΓR

δ(H +HR − EΣ)

gΣ(EΣ)
=
gR(EΣ −H)

gΣ(EΣ)
=
gR(EΣ −H)

gR(EΣ)

gR(EΣ)

gΣ(EΣ)
. (137)

The purpose of the last step is to facilitate entering the strong assumptions about
the reservoir. Using the classical ideal gas form Gl. (118) for the density of states
of the reservoir and taking the thermodynamic limit (NR ≈ NΣ → ∞), so that
(1 + x/N)N ∼ ex, one finds

gR(EΣ −H)

gR(EΣ)
→
(

1− H

EΣ

)3
2
NR

→ exp(−βH) , β =
3NR

2EΣ

→ 3NΣ,R

2EΣ,R

. (138)
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More generally, if gR has another form (that should however exhibit a comparably
dramatic growth as for the ideal gas26) one expands ln gR with respect toH � EΣ,

ln
[
gR(EΣ −H)/gR(EΣ)

]
= −βH . . . , β = ∂EΣ,R

ln gR(EΣ,R) , (139)

which yields a more general definition of the intensive constant β that controls
the energy exchange in the canonical ensemble. The thermodynamic limit is
taken such that R ∼ Σ → ∞ for a fixed system size; i.e., there is a strong
scale separation between the reservoir and the system. If the system itself is
large, there is a double scale separation with respect to the atomic scale, but the
subsystem may in principle be chosen arbitrarily small, provided that one does
not mind fluctuations of a comparable order of magnitude as the absolute values.
The observation that weakly coupled subsystems of homogeneous macroscopic
systems are “thermal” in the sense that they obey a canonical distribution is
very general, and the applicability of the canonical ensemble therefore extends
far beyond the limitations of the above derivation (and maybe even its underlying
assumption of a microcanonical ensemble for the total system).

3.4 Recovering thermodynamics

Generally, since the different ensembles correspond to different degrees of isola-
tion of a thermodynamic system, the precise identifications of the formalisms of
statistical mechanics and thermostatics may be expected to exhibit slight differ-
ences for the different ensembles.

Fundamental relations and the first law

The discussions in Sec. 3.2 (isothermal ideal gas) and in the preceding section
(isothermal interacting many-body system) suggested the identification

β = 1/kBT = ∂E ln g(E) (140)

for the parameter controlling the energy partition in the canonical ensemble.
Comparison with the thermodynamic relation

(∂ES)V = 1/T (141)

then suggests that the identifications T = 1/kBβ and S = kB ln g(E) hold be-
yond the special case of the ideal gas. To render the argument of the logarithm
dimensionless one re-introduces the small energy width ε0 of the energy shell,
which can be taken on the order of the energy of a single particle. Writing the
number of states in the energy shell as

W ≡ ε0g(E) (142)

26Hence, one should refrain from expanding gR(E −H)/gR(E) directly.
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Figure 3: Boltzmann’s epitaph with his ground-breaking insight in Planck’s mod-
ernized formulation (left) and visualization of work and heat as (adiabatic) shift-
ing of energy levels and redistribution of occupancies, respectively (right).

harmonizes the notation with that on Boltzmann’s gravestone27 (Fig. 3)

S = kB lnW (143)

Recall that g(E, V,N) comprises the full statistical information about an iso-
lated system. Accordingly, the equation on the gravestone represents a full ther-
modynamic fundamental relation S(E, V,N) once the density of states is known
as a function of E, V and N . This is why Eq. (143) is often regarded as the central
equation of statistical mechanics. Note that for S to be an extensive quantity, g
and W must obviously exhibit an exponential dependence on the particle number,
i.e., they must be of the form (something intensive)N . In other words, the phase
space volume (or number of states) available to a classical gas in a bottle grows
by a fantastic factor of about 101020

if one allows the gas to extend its volume by
a factor of two. Even bigger is your surplus in phase space over your neighbor’s
if you consume a proper beer rather than his half beer (which amounts to taking
the square). Also note that, in line with the identification of heat as the energy
stored in macroscopically unresolved degrees of freedom, this observation sug-
gests to interpret entropy (up to the conventional factor kB) as the number of the
unresolved degrees of freedom (or the missing information compared to whatever
might be considered a complete microscopic description).

The above motivation of the relation between the formalisms of statistical
mechanics and thermostatics was still quite heuristic and formal. It becomes
more compelling if the analogy is first established for the work sector, which is

27“The range of validity and the proper interpretation of this relation are unclear to me”
(E.G.D. Cohen in Dynamics of Dissipation 2002)
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independent of the notions of temperature and entropy. This is achieved in a
most simple and elegant way in the canonical ensemble. The parametric change
δĤ of the Hamiltonian (in a form like δĤ = X̂δf , M̂δh etc., as a product of
conjugate generalized “position” variables and “force” parameters) is identified
as the microscopic work increment28. It changes the kinematics of the system and
thereby its energy levels. According to the first law, the remaining contribution
to the total energy, which is due to the reshuffling of the occupancies of the energy
levels (i.e. the statistics rather than the kinematics, cf. Fig. 3), is identified as
heat. For brevity, the quantum mechanical notation is employed:

dU = d〈Ĥ〉 = 〈δĤ〉+ tr(Ĥδρ̂) = δW + δQ . (144)

Now, note that tr(δρ̂) = 0 (normalization). Hence, using ρ̂ = e−βĤ/Z, one finds

d〈ln ρ̂〉 = tr(ln ρ̂ δρ̂) = −βtr(Ĥδρ̂) = −βδQ , (145)

which establishes β as an integrating factor for the heat increment δQ. A compar-
ison with the Carnot theorem then establishes β = 1/kBT and the corresponding
expressions for the canonical entropy

S = −kB〈ln ρ̂〉 = 〈Ĥ〉/T + kB lnZ(T, V,N) , (146)

and, consequently, the canonical free energy

U − TS = F (T, V,N) = −kBT lnZ(T, V,N) . (147)

In complete analogy, one shows the relation

pV = −J(T, V, µ) = kBT lnZG(T, V, µ) (148)

between the grand canonical potential J and partition sum ZG. Clearly, both
Eq. (147) and Eq. (148) represent — like the formula on Boltzmann’s gravestone
— thermodynamic fundamental relations that contain the complete thermody-
namic information.

The second law

Given the differences between the ensembles and the different expressions for the
entropy, one may well be worried whether the differently defined entropies do
indeed take a maximum in their respective ensembles, as required by the second

28There is a slight subtlety hidden in this argument, as already noted in the discussion of
thermostatics, namely that the work a system can perform typically depends on our practical
ability to access certain (possibly internal) system variables. Therefore, one person’s heat may
to some extent be another (more sophisticated) person’s work. Also note that there is no
hermitian operator for work, hence it is not an observable in the usual sense.
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law. This is, in fact, automatically guaranteed by the sufficiently intelligent con-
struction of the Gibbs ensembles. One can show this, starting from a definition
of the entropy in terms of the density operator as in Eq. (146). Under various
thermodynamic constraints, the Gibbs expressions for the density operators then
follow from the requirement that they maximize this so-called “Gibbs” or “in-
formation” entropy in equilibrium, as demanded by the second law. Take as an
example an isolated system and assume that it can under certain circumstances
be described by a general normalized phase space density operator ˆ̃ρ with nor-
malized eigenstates |ν̃〉 and eigenvalues ρ̃ν̃ , which is required to give the right
thermodynamic averages. For the corresponding Gibbs (information) entropy

S̃ ≡ −kBtrˆ̃ρ ln ˆ̃ρ (149)

one can show that it is never larger than the Boltzmann entropy

S = kB lnW = kB〈lnW〉 , (150)

for which the density used in the calculation of the average clearly does not mat-
ter. The information entropy is at best equal to the Boltzmann entropy, when ˆ̃ρ
is equal to the uniform micro-canonical density (i.e. ρ̃ = ρ = 1/W on the energy
shell). To formally demonstrate the inequality between the two entropies, one in-
troduces an operator-1 constructed from the eigenstates |ν〉 of the microcanonical
density operator ρ̂ (with eigenvalues ρν) into Eqs. (149), (150), while formulating
the trace using the eigenstates |ν̃〉,

S̃ − S
kB

=
∑
ν,ν̃

|〈ν|ν̃〉|2ρ̃ν̃ ln
ρν
ρ̃ν̃
≤
∑
ν,ν̃

|〈ν|ν̃〉|2ρ̃ν̃
(
ρν
ρ̃ν̃
− 1

)
= trρ̂− trˆ̃ρ = 0 . (151)

(For the final equality the initial steps of the calculations were reverted.) Starting
from the definition Eq. (149) one has thus “derived” the microcanonical equilib-
rium form of the density and the entropy by insisting on the maximum principle
embodied in the second law: the Gibbs entropy S̃ of an isolated conservative sys-
tem takes its maximum S = kB lnW (the Boltzmann entropy) for a uniform phase
space density on the energy shell, i.e. if the system is in equilibrium as postulated
by the micro-canonical ensemble. Note that the only essential ingredients in the
derivation of this result are the independence of the Boltzmann entropy of the
density used for averaging in Eq. (150), and the convexity of the logarithm.

The entropy S̃ is called information entropy, because it is used in this form,
except for the different base of the logarithm and the conventional factor kB, in
computer science and information theory. There it serves as a measure for our
ignorance, which is defined as the complement to our bias or a priori information
about the state of a system that is statistically characterized by ρ̃. Equation (151)
then has the interpretation that our bias about the true microscopic distribution
on the energy shell is minimal for the micro-canonical density. This does of
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course nothing to prove that it is the “right” or “best” choice to mimic any
actual microscopic distribution. Yet it is clearly helpful to think of entropy in
terms of ignorance or “missing information29” about the microstate of a given
thermodynamic system.

A similar procedure as above can be applied to an isothermal system to derive
the canonical distribution (exercises). One finds that the Gibbs entropy S̃ of
a system constrained to have an average energy 〈H〉 = U takes its maximum
S = (U −F )/T (the Legendre transform of the free energy) for a canonical form
of the phase space density, i.e. if the system is in equilibrium as defined by the
canonical ensemble. This is of course nothing but the familiar minimum principle
for the free energy F (the second law for an isothermal system) turned around.

This essentially completes the recovery of thermodynamics, although it should
be noted, as an outlook, that the maximum entropy or minimum free energy
principle can be generalized to (and even understood as a consequence of) the
simple equality

〈e−βWdiss〉 = 1 (152)

for the dissipated work Wdiss ≡ W − F . The latter is here understood as a
fluctuating quantity, since the system at hand is assumed not to be in the ther-
modynamic limit. The average refers to an ensemble of realizations of the same
isothermal system subjected to the same prescribed external work protocol that
may take the system far from equilibrium. This and similar so-called fluctuation
theorems can be shown to hold on very general grounds, as discussed in Part III
of the lecture. The second law in the form of Eq. (47), which says that the free
energy is the minimum average work needed to achieve a certain state change
of an isothermal system (or that the dissipation cannot be negative on average),
follows from Eq. (152) by applying the inequality e−x ≥ 1− x.

Also note that along the same lines as in Eq. (151), replacing ρ̂ by a time-
dependent quasi-static density operator ρ̂(t) and ˆ̃ρ by ρ̂(t = 0), one can easily
show that the entropy −〈kB ln ρ(t)〉 averaged with ˆ̃ρ = ρ̂(0) increases with time30.
Physically, it means that if one generates a phase space weight ρ(0) according to
the maximum entropy (minimum free-energy) rule such that it properly predicts
some thermodynamic data at t = 0, and then lets the system — and its distribu-
tion ρ̂(t) — evolve in time under the same conditions, its entropy will grow except
if ρ̂(t) does not evolve, in which case the system happened to be in equilibrium
at t = 0, already. That such an increase in entropy is only observed in one time
direction (called future) in everyday life and not in both, as one would expect
from such a formalism, is an indication that we (and in fact the whole universe)
experience conditions very far from equilibrium31.

29Arieh Ben-Naim, A Farewell to Entropy: Statistical Thermodynamics based on Information
30Wilhelm Brenig, Statistical Theory of Heat. Nonequilibrium Phenomena; Springer 1989.
31J. L. Lebowitz, Boltzmann’s Entropy and Time’s Arrow, Physics Today, 9/1993, 32; D.

Wallace, Gravity, Entropy, & Cosmology: in Search of Clarity, Br. J. Phil. Sci. 61 (2010) 513
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Partial traces and free energies

Note that Eq. (147) for the free energy may be rephrased as

Z(T, V,N) = tr e−βĤ = e−βF (T,V,N) . (153)

The final form emphasizes that the Hamiltonian turns into a free energy upon
integrating/tracing out the microscopic degrees of freedom. This statement gen-
eralizes to partial traces. The calculation of a (partial) partition sum can be
understood as a formal prescription to coarse-grain a more microscopic descrip-
tion into a more macroscopic one. In this sense, a free energy is nothing but a
coarse grained Hamiltonian, and the distinction between the two gets blurred. An
example is provided by the Landau free energy discussed in the Thermodynamics
Part of the lecture, where the order parameter is kept constant upon taking the
trace,

tr|ψ e−βĤ = e−βL(ψ;T,V,h) , (154)

or in fact by any of the free energies of the restrained ensembles. Stretching
the analogy between Hamiltonian and free energy to its extreme, one may take
the trace over fluctuations on successively coarser length scales iteratively and at-
tempt to absorb the coarse-graining effect in a renormalization of the phenomeno-
logical parameters of the Hamiltonian. This produces a flow of Hamiltonians in
parameter space, which is known as the renormalization group flow. Critical
points, which entail self-similar (fractal) fluctuations on all scales, correspond to
fixed points of this flow, an insight rewarded with the Nobel prize in 1982.

Mathematical relation between the ensembles

The various ensembles are related in a very systematic way. Starting point is an
isolated conservative system described by the micro-canonical ensemble, which is
completely specified by its density of states g(E, V,N) as a function of energy,
volume and particle number. The density of states (or, more precisely, W = ε0g)
is the micro-canonical partition sum. If the system is brought into contact with
reservoirs with which it is allowed to exchange some extensive quantities, the
new fundamental relation (or partition sum) for the appropriate larger ensemble
is obtained by Laplace transformations with respect to the liberated quantities.
In the thermodynamic limit, the Laplace transformation boils down to the (much
simpler) Legendre transformation. As a scheme:

g(E, V,N)
Laplace trafo−−−−−−−→ Z(T, V,N)

Laplace trafo−−−−−−−→ ZG(T, V, µ)

S(E, V,N)
Legendre trafo−−−−−−−−→ F (T, V,N)

Legendre trafo−−−−−−−−→ J(T, V, µ)
(155)

The reason for the drastic simplification from a Laplace to a Legendre transfor-
mation is the thermodynamic limit N , E, V →∞, which allows to evaluate the

58



Laplace integral in a saddle-point approximation. To leading order, this amounts
to the approximation of the integral by the maximum of its integrand (see below).
As demonstrated above for the example of the ideal gas, the integrand is (up to
a normalization constant) nothing but the distribution function of the liberated
quantity (in the example, the energy E), which is fixed in the restrained ensemble
but allowed to fluctuate in the open one. Only in the thermodynamic limit, when
this distribution becomes infinitely sharp and the relative magnitude of the fluc-
tuations decays to zero, all the ensembles and the corresponding thermodynamic
potentials are essentially32 equivalent. The following section dwells on this a bit
more and makes this statement more precise.

3.5 Fluctuations

Beyond recovering thermodynamics and gaining a method to compute (at least
in principle) constitutive laws from microscopic Hamiltonians, another benefit of
statistical mechanics is that it provides information about thermal fluctuations
and their spatial and temporal correlations. The study of fluctuations moreover
provides additional insight into the role of the various definitions of the thermo-
dynamic potentials in the various ensembles and their mutual relations.

Liberté, Egalité, Stabilité

Recall that the Laplace transform that takes you from the micro-canonical to the
canonical ensemble and liberates energy from the micro-canonical energy shell is
simply the partition integral; and that the partition function Z(β) is nothing but
the normalization of the canonical energy distribution function w(E),

Z(β) =

∫
dE g(E)e−βE , g(E)e−βE ∝ w(E) ≡ 〈δ(H − E)〉 . (156)

Here 〈. . . 〉 refers to the canonical average. The integral may be rewritten in the
form

Z(β) =

∫
dE

ε0
elnW(E)−βE =

∫
dE

ε0
e−βA(E,β) , (157)

with the micro-canonical free energy

A(E, β) ≡ E − β−1 lnW(E) . (158)

It is taken for granted that N−1 lnW(E) approaches an intensive function of
the energy in the thermodynamic limit, so that the integral can be evaluated in
a saddle point approximation — which requires that a diverging multiplicative
factor N can be isolated in the exponent. The position of the maximum of
the energy distribution and the minimum of A(E, β) is the energy giving the

32One may still worry about situations with diverging fluctuations, e.g. phase transitions.
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dominant contribution to the integral. This is found to be the (canonical) average
energy U(β). Beyond the leading order, the saddle-point approximation consists
in expanding A(E, β) to second order in E around this minimum and performing
the Gaussian integral. With the abbreviation

A0(U, β) ≡ U − β−1 lnW(U)

for the minimum of the micro-canonical free energy, the expansion reads

A(E, β) ≈ A0(U, β) +
(
1− β−1∂E lnW|U

)
(E − U)− (2β)−1∂2

E lnW|U(E − U)2

and one recovers the micro-canonical definition of temperature,

(kBT )−1 = β = ∂E lnW(E)|U , (159)

since the linear term must vanish at the minimum. The coefficient of the quadratic
term is thereby identified as (2β)−1∂Uβ = −(2T∂TU)−1 = −(2TCV )−1, hence

A(E, T ) ≈ A0(U, T ) + (E − U)2/(2TCV ) . (160)

Finally, the (to this order) Gaussian integration in Eq. (157) yields the asymp-
totically exact result

Z(T ) ∼ e−A0(U,T )/kBT

∫
dE

ε0
e
− (E−U)2

2kBT
2CV =

√
2πCV /kB

kBT

ε0
e−A0(U,T )/kBT . (161)

Note that for small systems, the equivalence of the ensembles is troubled by non-
extensive terms, such as the prefactor of the exponential in the last term, which is
of order O(N1/2), corresponding to a positive logarithmic O(lnN) term by which
A0 exceeds the canonical free energy F (T ) = −kBT lnZ(T ). So, the canonical ex-
pression is seen to be superior to the microcanonical one under isothermal condi-
tions, and the central thermodynamic minimum condition is seen to emerge from
the saddle-point condition. Only in the thermodynamic limit the non-extensive
corrections can be dropped, so that the micro-canonical and canonical definitions
of temperature, energy, entropy, and free energy (average or not) all coincide,
demonstrating the asymptotic equivalence of the ensembles :

F (T ) = −kBT lnZ(T ) ∼ A0(U, T ) = U − kBT lnW[U(T )] ∼ U − TS . (162)

Fluctuations and response coefficients in open ensembles

From Eq. (160), the energy fluctuations are seen to be controlled by the square of
the temperature and the heat capacity CV , the response coefficient linking energy
to temperature. Its inverse provides the restoring force that restrains the energy
fluctuations. For positive CV , the variance of the mean-square fluctuations is
proportional to CV , hence extensive, and their square root ∆U ∝ C

1/2
V ∝ N1/2
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(the standard deviation) is therefore non-extensive. The relative importance of
fluctuations vanishes as ∆U/U ∝ N−1/2 in the system size. For finite CV , the
positivity condition CV > 0 thus guarantees thermodynamic stability against
fluctuations (even at formally negative temperatures). In fact, CV > 0 is always
satisfied in the canonical ensemble:

kBT
2CV = −∂β〈H〉 = ∂2

β lnZ = Z−1∂2
βZ − (∂β lnZ)2 = 〈∆H2〉 ≥ 0 . (163)

The observation can be generalized. It is a special case of the fluctuation-
dissipation theorem, saying that the strength of the thermal fluctuations of ther-
modynamic quantities are controlled by response coefficients, more precisely, by
the response coefficient that quantifies the response of the fluctuating variable to
its conjugate intensive parameter — the one that controls its repartition through-
out the system. When going from the canonical to the grand canonical ensemble,
the roles of energy, temperature and heat capacity in Eq. (163), and in the forego-
ing discussion, are taken by particle number, chemical potential, and the (isother-
mal) compressibility κT = v∂pn)T = v2∂µn)T , respectively. The corresponding
fluctuation-response relation reads

nkBTκT = 〈∆N2〉/〈N〉 ≥ 0 . (164)

The divergence of the compressibility at phase coexistence entails a divergence
of the number (density) fluctuations.

Phase coexistence in open and closed ensembles

Two immediate general insights gleaned from Eqs. (163), (164) are that fluc-
tuations grow with the square-root of the system size and response coefficients
cannot become negative in open ensembles. Response coefficients vanish, suscep-
tibilities diverge, and fluctuations become extensive at phase transitions, how-
ever. Moreover, the same response coefficients then turn negative but stay finite
(except at critical points), in the more restrained ensembles, where fluctuations
are suppressed. They rightly denounce phase transitions as thermodynamical
(mechanical) instabilities. Consider the example of a grand canonical density
distribution

w(N) ≡ 〈δN,M〉 ∝ zNZ(T, V,N) = e−βV [f(T,n)−µn] , (165)

In complete analogy to Eqs. (156), (157) the (left out) normalization of w(N) is

ZG(T, V, µ) = V

∫
dn e−βV [f(T,n)−µn] , (166)

where the sum over N has been turned into an integral over n, for convenience. In
case of two coexisting phases (vapor and liquid) the canonical (Landau) free en-
ergy F (T, n) = V f(T, n) develops a double-well form with minima at the densities
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Figure 4: Phase coexistence in the canonical and grand-canonical ensemble. The
hump/valley in the canonical free energy f(n)−µn and density distribution w(n)
indicates the thermodynamic instability of the homogeneous system with respect
to phase separation at the cost of creating phase boundaries. It is ironed out by
the saddle-point approximation involved in the calculation of j(µ) ≡ J(µ)/V via
a Laplace transform, which only sees the largest saddle point (the deepest free
energy minimum) and thus amounts to a Maxwell construction f(n)→ f̄(n).

n< and n>. The energy distribution w(N), or w(n), accordingly has a bimodal
form with two peaks (Fig. 4). In a finite container of fixed volume, phase co-
existence implies phase boundaries. They cost some non-extensive33 surface free
energy showing up as a non-extensive hump between the free-energy minima and
the corresponding valley between the two peaks of w(n), respectively.

In contrast, in an open container that allows particles to be exchanged with
a bath, if the average particle number is raised by adjusting the chemical poten-
tial, the content of the container can switch between the dense all-liquid and the
dilute all-vapor state from one ensemble element to the next (Fig. 4). Thereby,
the costly phase boundary is avoided at the price of large ensemble fluctuations,
thermodynamically reflected by a kinked form of the grand canonical potential
J(µ) = −V p(µ) = −kBT lnZG, which is nothing but the flipped-over version
of the function µ(p) discussed in the Thermodynamics Part of the lecture. The
kink is now understood as a consequence of the saddle-point approximation of
the integral in Eq. (166) and arises when the largest saddle point jumps from one
of the free energy minima of the double-welled free energy f(n)−µn to the other,
upon tilting the free-energy landscape by varying µ. Now, going backwards from
this kinked potential J(µ) to a density-dependent free energy yields a different
form f̄(n) that is no longer double-welled but has a flat region (a Maxwell con-
struction!), where the compressibility diverges — and hence the fluctuations as

33. . . unless the interactions are long-ranged, as e.g. for the van der Waals gas.
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well. The function f̄(n) is the grand canonical version of the free energy (Fig. 4).
The corresponding density distribution w̄(n) then also has a flat region, i.e., a
bridge over the valley between the two peaks of the canonical w(n). In summary,

• For many-body systems with short-ranged interactions the ensembles are
thermodynamically equivalent in the thermodynamic limit, up to non-
extensive fluctuations (∝ N1/2) of the liberated extensive variables.

• In open ensembles, response coefficients of liberated variables are propor-
tional to their mean-square fluctuations. In contrast to the restrained en-
sembles, they thus remain non-negative (but diverge) at phase transitions.

• The saddle-point approximation of the integral over fluctuations involves
the minimum condition for the free energies. It turns the free energies of
the restrained ensembles, which become non-convex at a first-order phase
transition, into a kinked convex potential for the open ensemble. Going
backwards from the kinked open-ensemble to the restrained-ensemble free
energy, divergent response coefficients imply flat (but marginally convex)
free energies, thereby generating a Maxwell construction.

Chapter summary

Finally, standing on the summit of statistical mechanics and enjoying the impres-
sive panorama, contemplate for a moment on what has been achieved. Thermo-
dynamics has not been explained on the basis of the microscopic dynamics, as one
might have hoped. Instead, the true dynamics was replaced by an assumption
about its maximally chaotic character, at least with regard to the usually consid-
ered low dimensional (thermodynamic) projections. This helped to short-cut the
intractable equations of motion and to propose a computational scheme how to
predict thermodynamic quantities and their fluctuations for systems with short-
ranged interactions on the basis of a crude caricature of the overall phase space
structure directly from the microscopic Hamiltonian. A systematic recipe for this
coarse-graining procedure was given, namely the computation of a (partial) parti-
tion sum that is closely related to the density of states or the phase space volume.
This yields the wanted thermodynamic fundamental relations in the form of free
energies. The postulated weights for the phase-space density were seen to take
different forms, depending on the thermodynamic boundary conditions — and
the associated thermodynamic potentials accordingly. But the various ensembles
were found to be thermodynamically equivalent in the thermodynamic limit, up
to some (usually subdominant) fluctuations. A one-to-one relation was discov-
ered between fluctuations and response coefficients, which constrains the former
and suggests non-invasive (scattering, microscopy, . . . ) techniques to measure the
latter. What remains to be done is to slide down from the summit and plunge
into the rich world of applications of the established formalism.
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4 The merry slide-down

The remaining task is basically the calculation of paradigmatic partition sums.
Due to the tremendous reduction of information from the microscopic Hamilto-
nian to the thermodynamic fundamental relations or correlation functions, it is
plausible to expect a highly redundant mapping from huge classes of possible
microscopic systems to only a few characteristic types of thermodynamic behav-
ior. (Indeed, we have innumerable different atomic and molecular constituents
to make up fluids but only one Navier–Stokes equation to describe fluid flow.)
An economic approach will therefore try to single out a minimalistic Hamilto-
nian of ultimate simplicity for each class and try to figure out the corresponding
thermodynamics.

As the partition sum of non-interacting classical systems disintegrates into a
product of single-particle contributions in the open ensembles, solving a single
element obviously amounts to solving the whole. However, they give no clue as to
the rich complexity and the phase transitions possible in interacting many-body
systems. The remainder is therefore mostly devoted to two easily analyzable
model systems that are a bit more complex: the Ising spin chain with near-
est neighbor interactions, as an example for an interacting classical system; and
ideal quantum gases. Somewhat paradoxically, the latter have a phase transition
but not the former (at least no “proper” one with finite transition temperature.
The reason is that, on the one hand, the exchange symmetries of indistinguish-
able particles give rise to effective exchange interactions of range λT that persist
even if the potential interactions between the particles are completely neglected,
while, on the other hand, a one-dimensional Ising chain with finite-range in-
teractions corresponds to an interacting system at its lower critical dimension.
Despite being somewhat pathological examples for generic (interacting) many-
body systems, the studied model systems turn out to be remarkably helpful. The
solutions for the mean-field version of the Ising model (corresponding to an in-
finite dimensional space or infinite-range interactions, respectively) and for the
one-dimensional Ising chain provide a nice bracket for what really happens in in-
teracting many-particle systems with finite-range interactions in spaces of more
interesting dimensionality. Ideal quantum gases are the template for the zoo of
elementary excitations or quasi-particles that capture the physics of solids and
fluids in the quantum regime.

4.1 Interacting many-body systems

4.1.1 The Ising model

The Ising model consists of a regular lattice of N binary “spin” variables si,
which can take the values si = ±1 (or si = ±1/2, si = 1, 0). Depending on
the application one has in mind, these variables can e.g. represent constrained
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magnetic moments that can only point up or down, or the presence or absence of
atoms in a lattice model of a gas, fluid or solid, votes in an election, firing states
of neurons, etc. etc. Depending on the type and dimensionality of the lattice and
the spin interactions, the Ising model may serve as an idealized minimal model for
a large variety of complex physical, biological, or even social systems encountered
in the real world. In presence of an external field h, the Hamiltonian reads

H({si}) = −J
∑

ip

sisj − h
∑
i

si (167)

Here ip stands for a sum over all Nip interacting pairs. Two very useful ideal-
izations are provided by the extreme choices that the pair interactions are either
(1) nearest-neighbor interactions (

∑
ip →

∑
〈ij〉, Nip = Nq/2, with q being the

coordination number, i.e. the number of nearest neighbors per lattice site), or (2)
van-der-Waals type infinite-range interactions (

∑
ip →

∑
i<j, Nip = N(N−1)/2).

Ferromagnetic and anti-ferromagnetic interactions can be realized by choosing a
positive or negative J , respectively. More generally, one may consider a spin glass
with a non-thermal (quenched) distribution of interactions Jij, if one is after a
truly complex model.

Historically, Onsager’s 1944 solution of the two-dimensional Ising model with
nearest neighbor interactions settled debates about the possibility of non mean-
field values for critical exponents, and whether these can be deduced from a
partition sum, at all. In the 1950’s, the theory of Yang-Lee and Fischer zeros
finally elucidated the general mathematical mechanism how a singular free energy
may emerge from a sum of infinitely many positive analytical Boltzmann factors.

4.1.2 Mean-field theory

In infinite dimensions or for infinite-range interactions, i.e. whenever the number
of neighbors of each site is extensive, the interactions with the neighbors create
an essentially deterministic field at that site. Solving the model then boils down
to the evaluation of the partition sum of a single spin in this self-generated field.
More precisely, writing J = I/q for the interaction strength of the q interacting
spin pairs in aribtrary space dimension, and setting q = N , similar as done for the
molecular attractions in the van der Waals gas, one can rewrite the Boltzmann
factor (dropping a non-extensive term βI/2) as

exp(−βH) = exp
[ βI

2N

∑
i 6=j

sisj + βh
∑
i

si

]
=
(βIN

2π

)1/2
∫ +∞

−∞
dζ exp

[
−1

2
βINζ2 + β(Iζ + h)

∑
i

si

]
,

(168)
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Up to the ζ-integration, the calculation of the partition sum Z of the ferromagnet
is thereby reduced to that for a paramagnet34 in an effective field Iζ + h:

Z =
∑
{si}

exp(−βH)

=
(βIN

2π

)1/2
∫ +∞

−∞
dζ e−βINζ

2/2
∑
{si}

eβ(Iζ+h)
∑
i si

=
(βIN

2π

)1/2
∫ +∞

−∞
dζ e−βINζ

2/2
∏
i

∑
si

eβ(Iζ+h)si

=
(βIN

2π

)1/2
∫ +∞

−∞
dζ e−βINζ

2/2[2 cosh(βIζ + βh)]N

=
(βIN

2π

)1/2
∫ +∞

−∞
dζ e−βNa(ζ,β,h) ,

with a(ζ, β, h) ≡ Iζ2/2− β−1 ln[2 cosh(βIζ + βh)] .

(169)

The limit N → ∞ calls for the saddle-point method, which allows to replace
the integral, up to sub-dominant contributions, by the maximum of the inte-
grand exp[−βminζa(ζ)]. The position ζ0 of the saddle point follows from the
minimization of a(ζ) via

0 = ∂ζa(ζ) = Iζ − I tanh(βIζ + βh) . (170)

Note from Eq. (169) that this minimum a(ζ0, β, h) of a(ζ, β, h) then represents
the thermodynamic free energy (per spin) F (β, h)/N . In fact, since it depends
on the external field h, it should actually rather be called a Gibbs free energy or
grand potential. According to the discussion in Sec. 3.5, the integral in Eq. (169)
should thus run over the distribution of the extensive quantity conjugate to h,
i.e. the (site) magnetization

σ ≡ 1

N

∑
i

〈si〉 (171)

If the latter is written as the derivative of the free energy,

σ =− lim
N→∞

∂hF/N

=− ∂h|ζ0a(ζ0)− ∂ζ0|ha(ζ0)∂hζ0

= tanh(βIζ0 + βh) = ζ0 ,

(172)

one indeed recovers the above saddle point equation. The magnetization is there-
fore obtained as the solution of the implicit transcendental equation

σ = tanh(βIσ + βh) . (173)

34Observe from the second and third line in Eq. (169) that the partition sum of N independent
spins in a field h is (2 coshβh)N .
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This self-consistency equation for the order parameter is the major result of this
paragraph, and it is the typical result of any mean-field theory for whatever
underlying microscopic model. In the exercises you discuss this equation further
and show that it implies the emergence of a spontaneous magnetization below a
critical temperature, the Curie temperature Tc, given by

kBTc = I . (174)

Also note that Na(ζ), the logarithm of the magnetization distribution, is the
Landau free energy of the model. The familiar ψ4−structure emerges if a(ζ)/I ≡
(V/N)L(ζ) is expanded for small ζ and βh,

a(ζ)

I
≈ (1− βI)

ζ2

2
+ (βI)3 ζ

4

12
− h

I
ζ ∝ L , (175)

which incidentally corroborates Eq. (174). For the Ising model with infinite-range
interactions, we thus find Landau theory to be an exact theory in the vicinity of
the critical point.

In summary, by allowing for mutual interactions between an extensive number
of elements (degrees of freedom), one obtains so-called mean-field behavior: the
interacting microscopic elements become effecetively decoupled and their mutual
interaction is replaced by the interaction with a self-generated homogeneous ef-
fective field σ, which, for the Ising model, turns out to be the magnetization. If
the actual microscopic interactions have only a finite range, the mean-field the-
ory is still exact in infinite dimensions. The higher the dimensionality, the more
nearest neighbors there are, the more stable is a bulky arrangement of atoms,
and the less destructive is the effect of thermal fluctuations. Ultimately, in an
infinite dimensional bulk material, each atom is surrounded by infinitely many
neighbors, leading to a total slaving, even with short-ranged interactions. In this
limit, there is no room left for critical fluctuations, just as in the case of infinitely
long-ranged interactions in finite dimensions, and the critical behavior becomes
mean-field like, as one says, i.e. of the van-der-Waals or Curie-Weiss type. The
interesting question is whether there is a finite upper critical dimension du above
which this formidable simplification occurs. As it turns out, the answer is pos-
itive. Moreover, mean-field theory even provides a decent approximation for a
finite window of dimensions between an upper and a lower critical dimension
d` < d < du, as discussed further below. It then corresponds to the approxima-
tion of replacing an (anti-)ferromagnet by a paramagnet in a self-generated field
σ or, equivalently, dropping the correlations of fluctuations in the Hamiltonian:

sisj = −σ2 + σ(si + sj) + (si − σ)(sj − σ) ≈ −σ2 + σ(si + sj) . (176)

4.1.3 Hydrodynamics of fluctuations

Some of the neglected fluctuations can be put back into the mean-field model, a
posteriori. A generic method to do this is hydrodynamics. Assuming that the
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thermal fluctuations of the order parameter vary only slowly with the spatial
coordinate (which may not sound like a great idea for Ising spins in low spatial
dimensions but much more so for systems with continuous-range order parame-
ters), one can take them approximately into account by a square-gradient term
in the free energy. This results in a popular density functional theory that goes
under the names of Landau–Ginzburg or Ornstein–Zernike theory. The (normal-
ized) Landau–Ginzburg free energy LG is given by a spatial integral over the
Landau–Ginzburg density functional LG,

LG = nckBTc

∫
V

drLG , LG ≡
`2

2
(∇ψ)2 +

t

2
ψ2 +

g

4
ψ4 − hψ . (177)

Here, the position-dependent magnetization σ(x) was replaced by the general
notation ψ(x) introduced for the order parameter in the Thermodynamics Part
of the lecture. From there, also the notation t ∼ 1 − Tc/T ∼ T/Tc − 1 � 1
for the small dimensionless temperature deviation from the critical point, and g
for a phenomenological numerical coefficient was adapted. Finally, ` denotes a
characteristic microscopic length scale (the lattice constant of the Ising model or
the size of an atom, etc.).

Many sophisticated theories have grown out of the same spirit over the years
to deal with a wide range of phenomena in heterogeneous gases, liquids, and
solids. Classical applications of the Ginzburg–Landau theory comprise phase
boundaries and nucleation phenomena in phase separation. Both phenomena
involve surface energy in a crucial way. Hence, it really pays to explicitly include
it in the discussion, although surfaces are of zero measure in the thermodynamic
limit, and their contribution to the free energy is ultimately negligible compared
to the bulk contributions in an infinite system.

Phase boundaries

As the simplest example for an application of the theory consider an isolated plane
phase boundary at T < Tc within Landau–Ginzburg theory. The two phases
are characterized by the two possible values ψ = ψ1,2 = ±ψ1 corresponding to
the two degenerate free energy minima, respectively. Upon imposing conflicting
boundary conditions ψ(z → ±∞) → ψ1,2 the variational minimization of the
Ginzburg functional

δLG
δψ
≡ ∇ ∂LG

∂∇ψ
− ∂LG

∂ψ
= `2∂2

zψ − tψ − gψ3 = 0 (178)

yields the sigmoidal order parameter profile

ψ(z) = ψ1 tanh(z/
√

2ξ) (179)

perpendicular to the phase boundary (exercises), and the values β = ν = 1/2 for
the critical exponents characterizing the emergence of the order parameter and
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the divergence of the characteristic thickness of the phase boundary, respectively:

ψ1,2 = ±
√
−t/g ∝ |t|β , ξ ≡ `

√
−1/t ∝ |t|−ν . (180)

Generally speaking, ξ represents a correlation length or persistence length for
the fluctuations in the order parameter profile. Its divergence at the critical
point indicates that critical phenomena are characterized by strong (long-ranged)
spatial correlations, or “infinitely extended phase boundaries”.

For phase boundaries to diverge, the energy penalty associated with them has
to vanish at the critical point. Within in the hydrodynamic theory, the surface
tension Σ can be calculated as the surface contribution of the free energy per
unit area. One simply has to plug in the solution for ψ(z) from Eq. (179) into
LG and integrate it through the phase boundary:

Σ = nckBTc

∫ ∞
−∞
dz
[
LG (ψ(z))− LG (ψ1)

]
= nckBTc

∫ ∞
−∞
dz
[
L (ψ(z))− L (ψ1)︸ ︷︷ ︸

=`2(∂zψ)2/2

+
`2

2
(∂zψ)2

]
' nckBTc`

2ψ2
1/ξ ∝ |t|2β+ν .

(181)

(The second step makes use of an identity you discover when solving the Euler–
Lagrange equation for the order parameter profile.) Notice that, up to a prefactor,
the result could have been anticipated without calculation, from dimensional
analysis, namely ∇ → ξ−1 and

∫
dz → ξ:

Σ ' nckBTc

∫
dz `2(∇ψ)2 ' nckBTcξ`

2(ψ1/ξ)
2 . (182)

So, one observes that surface tension does in indeed vanish very dramatically
at the critical point, with the relatively large exponent 2β + ν = 3/2. The effect
can thus be attributed to the vanishing of the order parameter (the difference be-
tween the two symmetry-broken phases), quantified by β, and to the increasing
spatial correlations, quantified by ν, respectively. Experimentally, the conse-
quences can be seen in transparent fluids by the bare eye as critical opalescence.
The sample turns turbid when light is strongly scattered from the density fluctu-
ations, as soon as their correlation length becomes comparable to its wavelength.
This phenomenon already caught the attention of Einstein, who understood this
connection quite well. It indicates that order parameter fluctuations not only
become long-ranged but also strong at the critical point. In other words, they
become large in more than one sense. This should of course be expected, because
the susceptibility corresponding to the order parameter (i.e. the compressibility
in a fluid, the magnetic susceptibility in a magnet) diverges at the critical point35.

35One can indeed show the exponent relation ν = γ
d
δ+1
δ−1 recovering the mean-field estimate

for ν at the upper critical dimension du = 4 and relating ν to the softening encoded in γ, δ.
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And it is a clear demonstration that the homogeneity of the order parameter pro-
file predicted by mean-field theory is not trustworthy for common materials in
physical dimensions, and may even make one worry about the reliability of the
hydrodynamic approach of the Ginzburg theory.

Breakdown of mean-field theory: upper and lower critical dimension

Luckily, a slight variation of the dimensional argument put forward in the previ-
ous paragraph provides a simple derivation of a criterion for the reliability of the
predictions of the theories by Landau and Ginzburg. The idea is that at the criti-
cal point, where the quadratic term ∝ ψ2 in the Landau free energy vanishes, the
task of confining the order parameter fluctuations is largely left to the gradient
term. The relevant integration range and the ∇ are again estimatd by the char-
acteristic correlation length ξ, i.e.

∫
dr → ξd, ∇ → ξ−1. Invoking equipartition

(which states that each quadratic classical degree of freedom carries kBT/2 of
thermal energy in its fluctuations) for correlation volumes ξd, which correspond
to the effective (collective) degrees of freedom, one has

nckBTc

∫
V

dr `2(∇ψ)2 ' nckBTcξ
d−2`2δψ2 ' kBTc (183)

The overall size of the fluctuations of the order parameter is then found to be

δψ2 ' `−dn−1
c (ξ/`)2−d = `−dn−1

c |t|(d−2)/2 . (184)

It is now compared with the absolute value ψ2
1,2 = |t|/g predicted by Landau

theory below Tc. Both δψ and ψ1,2 are changing as a function of the critical
parameter t, and one would expect the Ginzburg theory to be trustworthy in a
range of t where the fluctuations δψ do not exceed ψ1,2 in magnitude, i.e.

δψ2/ψ2
1 ' `−dn−1

c g|t|(d−4)/2 . 1 ⇒ |t| & (g/`dnc)
2/(4−d) . (185)

This is the so-called Ginzburg criterion. It shows that d = du = 4 plays the role of
an upper critical dimension above which fluctuations vanish for t→ 0 and Landau
theory should hold. For d < 4, it defines a critical region |t| . (g/`dnc)

2/(4−d)

where Landau theory fails. In brief: “murder at the critical point — macroscopic
order parameter fluctuations kill Landau theory.” Mean-field theory thus breaks
down close to the critical point, while further away from criticality (albeit not
too far for a Taylor-expanded Landau free energy) one can trust its predictions
(sketch). As an exception to the rule, “classical” superconductors obey the mean-
field prediction very well since the critical region is very small due to the large
off-critical correlation length `� n

−1/3
c of the strongly delocalized Cooper pairs.

The above estimate of the absolute order parameter fluctuations δψ in Eq. (184)
moreover suggests that the order-parameter fluctuations become large in abso-
lute terms, not only relatively to ψ1,2, below d . dl = 2. This hints at an
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even more severe breakdown of the theory below a lower critical dimension dl.
This suspicion, and actually the whole above discussion, is corroborated by a
straightforward diagonalization of LG, using the Fourier modes

ψq ≡
1√
V

∫
V

drψ(r)e−iq·r ψ(r) =
1√
V

∑
q

ψqe
iq·r , (186)

in the harmonic approximation (exercises)

LG = nckBTc
1

2

∑
q

(t+ q2`2)|ψq|2 . (187)

For simplicity, T & Tc (t > 0) and h = 0 shall be required. Now the equiparti-
tion theorem is again employed; this time to the eigenmodes ψq, which looks less
heuristic than the above application to effective correlation volumes ξd, but es-
sentially reproduces the same result. The average strength of the order parameter
fluctuations is then seen to be given by

nckBTc(t+ q2`2)〈|ψq|2〉 = kBTc . (188)

Observe that, while the average order parameter 〈ψ〉 vanishes for T > Tc, its
squared fluctuations have non-vanishing mode amplitudes

nc`
2〈|ψq|2〉 =

1

ξ−2 + q2
. (189)

Here the correlation length ξ of the order parameter fluctuations shows up again.
It controls the spatial decay of correlations, as becomes more evident from the
Fourier back transform, the order parameter correlation function in real space,

〈ψ(r)ψ(0)〉 = FT−1 〈|ψq|2〉√
V
∝


e−r/ξ

r(d−1)/2
(r →∞)

1/r(d−2) (ξ →∞) .
(190)

The average of the product of two values of the order parameter at two points a
distance r apart does not vanish unless r � ξ, although 〈ψ(r)〉 is zero.

From the last expression in Eq. (190), one can again read of the lower criti-
cal space dimension dl = 2. Correlations should decay with distance, not grow
indefinitely. The more general perplexing observation that hydrodynamic fluc-
tuations can cause the complete breakdown of hydrodynamic theories below a
lower critical dimension dl (not only a lack of precision, as below the upper criti-
cal dimension) has been called hydrodynamic suicide36. It is not an artifact of the
theory but due to a real physical effect. Due to the reduced number of constrain-
ing neighbors, long-wavelength hydrodynamic excitations (also called Goldstone

36W. Brenig, Statistical Theory of Heat, Nonequilibrium Phenomena.
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modes) become all pervasive in and below the lower critical dimension dl = 2
at any T > 0, which prevents the phase ordering phenomena observed in higher
dimensions (although not phase separation as such). In particular, it has been
proved in great generality that thermal fluctuations of a continuous order pa-
rameter prevent long-range order in d ≤ 2 if the interactions are not long-ranged
(“Mermin–Wagner theorem”). In other words, it says that there are no proper
crystals in one or two dimensions, thereby hinting at the fact that the physics of
membranes and polymers is dominated by fluctuations. Phase transitions exactly
at d = dl (first discussed by Kosterlitz, Thouless, Nelson and Halperin) are quite
subtle and have kept statistical physicists busy for decades.

There is another important subtlety related to the second Eq. (190). Note that
it makes a prediction for the behavior inside the critical region, where one should
actually not trust the prediction of the Ginzburg theory. As precise measurements
have indeed revealed, there are small systematic deviations from the Ginzburg
form in d < 4 space dimensions. They have (first phenomenologically) been
rationalized by introducing a so-called “anomalous dimension” η,

〈|ψq|2〉 ∝ q−2+η , 〈ψ(r)ψ(0)〉 ∝ 1/rd−2+η , ξ →∞ . (191)

The name derives from the perplexing observation that this relation apparently
violates ordinary dimensional analysis. It implies that there must be a subtle hid-
den dependence on the microscopic length scale `, even — or rather in particular
— at the critical point, where `/ξ → 0. As a side remark, Eq. (191) implies the
exponent relation γ = ν(2 − η). It follows by analogy with the compressibility
equation Eq. (164) relating the order-parameter fluctuations to the corresponding
response coefficient of a gas. For the magnet, we simply have to replace particle
number fluctuations 〈N2〉 by spin number (or magnetization) fluctuations 〈ψ2〉
and the isothermal compressibility κT by the magnetic susceptibility χT .

4.1.4 Defects and low-temperature expansion

Defects as localized fluctuations

The hydrodynamic theory of fluctuations suggests d` = 2 for the lower critical
dimension, as is indeed widely observed. But the Ising model is a bit exceptional
because of its discrete state space. In contrast to ordinary classical variables the
binary spin variables do not have a continuous range and thus cannot change
smoothly in space and time. As a result, the low temperature excitations from
the ground state are not hydrodynamic waves (such as spin waves, sound waves,
etc., collectively known as Goldstone modes) as they would occur in systems with
a continuously varying order parameter amenable to a hydrodynamic treatment.
Instead, they are local defects of microscopic width. Consider for simplicity
first the 1-dimensional Ising spin chain consisting of N spins (or bonds). In the
ground state all spins are aligned. But what does temperature do to the chain?
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It provides thermal energy to topple some spins. A “broken bond” between a
pair of misaligned spins is called a defect, because it is regarded as an annoying
perturbation of the uniform ground state. Its creation costs an energy 2J . Since
an individual bond between spins can either be satisfied or broken, corresponding
to the Boltzmann factors eβJ and e−βJ , and the partition sum Z = eβJ + e−βJ ,
the fraction of broken bonds in equilibrium is simply37 (1 + e2βJ)−1.

Another way of looking at this is the following. Single defects can wander
about along the chain at no cost like gas particles. At low temperatures, βJ � 1,
only a small number Nb of all N bonds is broken, corresponding to a defect
fraction φ ≡ Nb/N � 1. Hence the defects represent a very dilute gas and the
probability φ2 that two defects meet is very small, so that they can be treated as
an ideal gas. They then supply the entropy S ' kBNb ln(T 1/2/φ), and the defect
free energy is

F = U − TS = Nb

[
2J − kBT ln(T 1/2/φ)

]
. (192)

Whenever the term in brackets is negative, which is certainly the case for φ →
0 at T > 0, the free energy can be lowered by increasing the number Nb of
defects. That is, if you had prepared the system in a uniform phase (e.g. all spins
down), the chain would spontaneously split up into up- and down-domains by a
spontaneous creation of defects. The competition between energy and entropy
in the free energy is dominated by entropy. The opposite is expected in phase
separation or phase ordering processes, in which small domains grow and coarsen
until they occupy a macroscopic fraction of the sample homogeneously, as favored
by energy. Note that the limits T → 0 and N → ∞ do not interchange: any
finite chain is ordered at T = 0, while an infinite chain is disordered at any finite
T ), indicative of a non-analytic structure at T = 0, N = ∞, which is studied in
detail, further below.

Low-temperature expansion and Peierls’ argument

In one dimension, point defects thus proliferate at any finite temperature. What
about higher dimensions, where defect lines and surfaces etc. take over the role
of the point defects in the Ising chain? When does the mean-field prediction of a
spontaneous magnetization apply? Defect hypersurfaces of dimension d − 1 are
phase boundaries, since they separate regions of spins with opposite orientation.
They have the tendency to freeze out at low temperatures, and this tendency
increases with the number of intolerant neighbors, which in turn increases with
the space dimension. Upon freezing, they will contract the enclosed volume of
“wrong” spins such that, below a critical temperature Tc > 0, spins of one ori-
entation will dominate over those with the other, giving rise to a spontaneous
magnetization. For a two-dimensional Ising lattice this effect is easily demon-

37This assumes open boundary conditions. In the case of periodic boundary conditions,
defects can only be created pairwise, hence their fraction is 2(1 + e2βJ)−2.
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strated, as first shown by R. Peierls in 1935, which proves that there is a non-zero
transition temperature in the Ising model with nearest-neighbor interactions in
two dimensions. This establishes dIsing

` = 1 as the lower critical dimension, in
contrast to what is found for models with continuous order parameters.

The starting point of Peierls’ discussion is again the observations that for
each pair of unsatisfied neighboring spins an energy 2J has to be paid. At low
temperatures, few such excitations are present, and it makes sense to order the
terms in the partition sum according to the excitation energy. For the above
example of the one dimensional spin chain with N bonds:

Z(1d) = 2eNβJ
N∑
m=0

(
N
m

)
e−2mβJ = 2eNβJ [1 +Ne−2βJ + (N/2)(N − 1)e−4βJ + . . . ]

The leading term is the Boltzmann factor of the twofold degenerate ground state,
the other terms correspond to one defect, two defects, etc., which can occur any-
where along the chain, i.e. at m out of N places. This form of the partition sum as
sum over configurations with increasing numbers of defects is particularly useful
at low temperatures, where accurate approximations are obtained by truncating
the sum after a finite number of terms.

The analogous expression in two dimensions reads

Z(2d) = 2eβJdN
∑
Nb

gNbe
−2βJNb . (193)

The leading term outside the sum again corresponds to the ground-state free
energy, which is attained if all dN bonds are satisfied, and there remains but
the binary up/down degeneracy of the total magnetization for the entropy. The
partition sum for the defects runs over all gNb droplets with a circumference
corresponding to Nb broken bonds. The entropic contributions to the droplet free
energy are contained in the degeneracy factors gNb , which is of course difficult
to calculate in all generality. But for the task of demonstrating the existence of
a finite transition temperature only an upper bound for the average number of
“wrong” spins inside the droplets, say the ↓-spins, is needed. So finding an upper
bound for gNb suffices, and one may simply say that there are 2d = 4 directions the
defect line can chose to go to from an arbitrarily chosen broken bond to the next
(neglecting the possibility that at least one of these other bonds might already
be broken). Lines of broken bonds ending on the boundaries of the square lattice
are relatively rare of order 1/

√
N relative to closed loops that may start (and

end) on any of the N bonds in the lattice, so they are dismissed. Finally, there
clearly cannot be boundaries of length shorter than 2d, but including them in
the sum should not cause much trouble, nor does extending the sums to infinity.
Hence, one sloppily bounds the average number N↓ of spins in droplets with
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closed boundaries by

N↓ ≤
〈N2

b 〉
42
.

∑∞
Nb=0N

2
bN(4e−2βJ)Nb

42
∑∞

Nb=0N(4e−2βJ)Nb
=

(4 + e2βJ)

4(e2βJ − 4)2
(194)

in d = 2 space dimensions. This function is quickly decreasing with βJ for not
too small arguments, so that the number N↓ of spins with the wrong orientation
drops below N/2 at kBT ≈ J , where a finite spontaneous magnetization must
therefore develop38.

Remark: Similarly to the low temperature expansion, one can write down a
high temperature expansion, which has a similar diagrammatic interpretation,
and which turns out to be “dual” (closely related) to the low temperature expan-
sion by virtue of a self-duality symmetry of the two-dimensional Ising model.

4.1.5 Thermostatics of the Ising chain

Transfer matrix

The one dimensional Ising chain with nearest neighbor interactions has been
discussed in the exercises for open boundaries. Here, it shall be reconsidered with
periodic boundary conditions to introduce the popular method of the transfer
matrix. Note that the partition sum

Z =
∑
{si=±1}

e−βH =
∑
{si=±1}

eβ
∑
i

[
Jsisi+1+hsi

]
. (195)

decays into a product of structurally identical terms

Z =
∑
{si=±1}

∏
i

eβJsisi+1+βh(si+si+1)/2 . (196)

This calls for introducing an operator T̂ with matrix elements

〈si|T̂ |si+1〉 = exp[βJsisi+1 + βh(si + si+1)/2] (197)

and matrix representation(
exp[β(J + h)] exp[−βJ ]

exp[−βJ ] exp[β(J − h)]

)
(“transfer matrix”) (198)

in the 2-dimensional spin space with basis {|+〉, |−〉} for si = ±1. With T̂ one
can write

Z =
∑
{si=±1}

〈s1|T̂ |s2〉〈s2|T̂ |s3〉 . . . 〈sN |T̂ |s1〉 . (199)

38Onsager’s exact solution says kBTc ≈ 2.27J .
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Using the completeness of the spin basis, this reduces to

Z =
∑
s1=±1

〈s1|T̂N |s1〉 = trT̂N = λN+ + λN− , (200)

where λ+ and λ− denote the transfer matrix eigenvalues

eβJ
[
cosh βh±(e−4βJ+sinh2βh)1/2

]
∼


eβJ ± e−βJ + eβJ±e3βJ

2
(βh)2 (βh→ 0)

2 cosh βh , 0 (βJ = 0)

eβJ±β|h| (βJ →∞)

.

(201)

Emergence of singularities for T → 0, N →∞

Observe that for finite βJ and βh there is a non-degenerate largest eigenvalue
λ+ > λ−, which is an analytical function of βJ and βh. (This is the Frobenius–
Perron theorem for matrices with finite positive matrix elements). So for finite
matrix entries (finite βJ and βh), the larger eigenvalue λ+ will dominate the
partition sum and the free energy per spin

lim
N→∞

βF/N ∼ − lnλ+ = −βJ − ln[cosh βh+ (e−4βJ + sinh2 βh)1/2] (202)

in the thermodynamic limit (N →∞). Asymptotically, this simplifies to

− ln[2 cosh βJ ]− (βheβJ)2/2 (βh→ 0)

− ln[2 cosh βh] (βJ = 0)

−βJ − |βh| (βJ →∞)

(203)

Also note that, in the high-temperature limit T →∞, the free energy F reduces
to −TS with the entropy S = kBN ln 2.

All thermodynamic quantities of interest can now be obtained as derivatives
of the free energy density f = F/N . For example, the specific heat per particle
ch = −T∂2

Tf is found as

ch
kB

=
(βJ)2

cosh2βJ
(βh→ 0) ,

ch
kB

=
(βh)2

cosh2βh
(βJ → 0) . (204)

The result indicates that the thermodynamics of spins is somewhat untypical and
counter-intuitive, due to their odd state space. Namely, instead of saturating, the
specific heat vanishes for high temperatures due to the limited energy that a spin
degree of freedom (in contrast to particles in ordinary fluids or solids, say) can
take up. The dramatic non-analytic decrease at low temperatures is characteris-
tic of the energy gap 2J that has to be overcome to achieve any excitation at all,
namely to introduce a single defect and thereby put some heat into the system.
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In practice, such behavior is therefore characteristic of semiconductors and su-
perconductors — rather than common magnets. It is called a Schottky-anomaly
to emphasize that it is rather unconventional compared to a dense (gap-less)
spectrum of energy levels that can gradually be populated if heat is added.

Similarly, taking derivatives of f with respect to βh, one arrives at the site
magnetization

∂βhβf = 〈σ〉 =
sinh βh√

sinh2βh+ e−4βJ
∼


βhe2βJ (βh→ 0)

tanh βh (βJ → 0)

sgn(βh) (βJ →∞)

(205)

and the susceptibility
χ = ∂h〈σ〉|h=0 = βe2βJ . (206)

This reduces to the well-known Curie law χ ' β for a paramagnet in the limit
βJ → 0. Because of the analytic parameter dependence, there cannot be a
phase transition for finite parameters. However, in the limit βJ →∞, Eq. (205)
produces a discontinuous magnetization as characteristic of a ferromagnet. In this
limit, the gap between the eigenvalues diminishes if h = 0, so that a singularity
may appear. For this reason, it is advisable to try and see what happens if the
order of the limits is reversed and the contribution from the second eigenvalue λ−
is kept, if one is interested in the low temperature or strong interaction behavior
βJ → ∞ of the model. (Recall that for any finite J 6= 0 any finite chain will
order at T = 0 while an infinite chain will always be disordered at any T > 0,
which hints at the nature of the singularity at T = 0.)

Now, reversing the order of limits, i.e. keeping N finite and taking the limit
βJ →∞ first, and using (1 + x/N)N ∼ ex, Eqs. (200) & (201) give for small βh

Z = eNβJ
[
(1 + |βh|)N + (1− |βh|)N

]
= eNβJ2 cosh(Nβh) , (207)

hence

f ≡ F

N
= −J − 1

βN
ln[2 cosh(Nβh)]

N→∞∼ −J − |h| . (208)

While the ultimate result in the double limit βJ, N → ∞ is the same as in
Eq. (202) above, it is interesting to see also the sub-leading behavior and to
analyze the non-extensive contributions for finite N . The argument of the cosh
is no longer the energy h of a single spin in an external field, as in a paramagnet,
but instead the energy Nh of N aligned spins in the field h. This is reflected in
the site magnetization

〈σ〉 = tanhNβh ∼ sgn(βh) , (209)

and in the susceptibility

χ =
Nβ

cosh2Nβh
∼ 2βδ(βh) . (210)
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They both clearly display how the singularity develops from smooth functions as a
consequence of spontaneous collective behavior, upon taking the thermodynamic
limit N → ∞. For T → 0 all spins align and are turned by an infinitesimally
small field like a single giant spin S = Nsi, hence χ ∼ βN , for h = 0. In contrast,
once the giant spin has been oriented by an infinitesimal field, increasing h has
no further effect, so that χ = 0 for h 6= 0.

The consequence of the formation of a giant spin can also be seen in the
behavior of the specific heat, if calculated for finite N and diverging βJ . Starting
from Eq. (208) instead of Eq. (202), which corresponds to the reverse order of
the limits N →∞ and βJ →∞, reveals a tiny specific heat

ch
kB

=
N(βh)2

cosh2Nβh
∼ p

N
[δ+
βh + δ−βh] . (211)

The symbolic notation δ± refers to a Kronecker−δ centered around slightly pos-
itive or negative arguments, respectively, and p ≈ 0.44. As all spins align into
a giant spin S = Nsi in the low-temperature limit, the free energy becomes
simply the ground state energy −J − |h|. The only remaining entropy is the
non-extensive contribution kB ln 2, as seen by setting h = 0 in Eq. (208) before
taking the thermodynamic limit N →∞. It corresponds to the two-fold ground
state degeneracy, i.e. to turning the giant spin. For this to happen the field has
to be switched off, since otherwise S is firmly aligned along h. Accordingly, only
a small, non-extensive amount ≈ kB of heat can be taken up, altogether, so that
the specific heat vanishes in the thermodynamic limit. Yet, the limit in Eq. (211)
is subtle and interesting. To reveal the specific heat, the ergodicity of the en-
semble has to be broken artificially by an infinitesimally small field (|h| > 0) to
single out the up or the down component. (This is what typically would au-
tomatically happen in a real experiment.) The giant spin can then explore the
other half of the ensemble after the field is switched off (h→ 0) and some heat is
provided. This doubles the accessible phase space volume, which manifests itself
as a (tiny) specific heat. In contrast, setting βh = 0 from the outset would have
allowed both sub-components of the phase-space to remain equally populated.
This would have killed the specific heat entirely, as it formally corresponds to
T =∞, meaning that the system cannot be heated up.

4.1.6 Critical scaling and Yang–Lee zeros

Recovering the scaling hypothesis and finite-size scaling

The non-analytic strong coupling behavior revealed by the above discussion is
indicative of a phase transition at T = 0. It is worthwhile checking whether the
general framework of the scaling hypothesis introduced in Part I is still applicable
here. Recall that the singular part of the free energy density fs was supposed to
diverge as t1/at = t2−α in absence of an external field (h = 0), where by conven-
tion t = |T/Tc − 1| (or better |1 − Tc/T |) is used to measure the dimensionless
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distance from the critical point. This was the scaling hypothesis, which provided
a neat phenomenological explanation of the observed non-trivial divergencies at
the critical point T = Tc. The existence of a single characteristic diverging length
scale ξ ∝ t−ν near the critical point together with dimensional analysis moreover
suggests that fs, as a spatial density, should obey fs ∝ ξ−d ∝ tdν , together with
the above fs ∝ t2−α, hence the exponent relation

dν = 2− α (212)

known as the hyperscaling relation. Moreover, for transfer matrices, one can
show that the dimensionless correlation length ξ̂ (in units of the lattice constant)
generally obeys

ξ̂−1 = − lim
r→∞

1

r
ln〈sisi+r〉 = ln(λ1/λ2) , (213)

showing that its divergence at the critical point is related to the decreasing dis-
tance between the eigenvalues. In the exercises it was indeed shown by direct
calculations that the spin correlations in the open Ising chain with nearest neigh-
bor interactions decay exponentially

h(n−m) ≡ 〈snsm〉 = [tanh βJ ]|n−m| = e−|n−m|/ξ̂ . (214)

with the correlation length

ξ̂−1 = − ln tanh βJ ∼ 2e−2βJ (βJ →∞) . (215)

Physically it is clear, that for |n−m| � N this will also hold in a closed chain.
To match this prediction to the generic power-law singularities discussed in Part I
of the lecture, one apparently should identify e−βJ with the critical parameter t,
so that dν = ν = 2 and α = 0 as required by the absence of a divergence in the
specific heat. The unusual critical parameter is obviously a consequence of the
Schottky-anomaly (or of the system being at its lower critical dimension). From
Eq. (206) γ = 2 is read off, which together with the exponent relation 2 − α =
2β+ γ implies β = 0, in accord with the absence of a spontaneous magnetization
for any finite coupling strength. Finally, the anomalous dimension η = 1 follows
from the exponent relation deduced from Eq. (191), namely γ = ν(2 − η). One
may also check the scaling ansatz for the singular part of the free energy density,
directly. Keeping only the leading order terms in the critical parameters e−βJ

and βh for large βJ , one finds from Eq. (202)

βf ∼ −βJ − e−2βJ
√

1 + (βhe2βJ)2 . (216)

The singular part fs of the free energy f per spin, which is up to a division
with the lattice constant the same as the free energy density f, is indeed of the
expected scaling form

βfs = βf + βJ ∼ −ξ̂−1ϕ(βhξ̂) = −tνϕ(βh/tν) = −t2−αϕ(βh/tγ+β) (217)
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where the last expression corresponds to the general scaling hypothesis introduced
in Part I. Similarly, for large (but finite) N , βJ and βh = 0

Z =(eβJ + e−βJ)N + (eβJ − e−βJ)N = eNβJ [(1 + e−2βJ)N + (1− e−2βJ)N ]

∼2eNβJ cosh(Ne−2βJ) ⇒

βfs ∼−
1

N
ln[(2 cosh(Ne−2βJ)]

)
∼− e−2βJ

[
Ne−2βJ −N3e−6βJ/6 + . . .

]
/2

∼− ξ̂−1φ(N/ξ̂) (βJ →∞ , N →∞)

(218)

where φ = O(1) should hold for large and small arguments, to reproduce the
critical behavior, and because the free energy density must be intensive. The finite
size scaling relation, Eq. (218), clarifies that any finite chain already becomes fully
critical at a length-dependent finite distance from the critical point, namely as
soon as ξ̂ exceeds N , so that φ(N/ξ̂) ∼ φ(0) saturates. Or, turned the other
way round, one can find the exponent ν from comparing the free energy of finite
chains of different lengths N . By tuning the temperature such that the singular
part of the free energy density vanishes like fs ∝ 1/N , one knows that one has
achieved N/ξ̂ = constant, so that one can infer the divergence of the correlation
length with temperature. The method is not limited to the free energy, of course,
and is in fact a standard trick used in computer simulations to extract precise
values of critical exponents for systems of finite size.

Yang-Lee zeros

The above calculations have shown explicitly how thermodynamic quantities de-
velop non-analytic behavior as a function of the coupling strength, the external
field, and the particle number. Another way of looking at what is going on here
focuses on the zeros of the partition sum in the complex field or temperature
plane for large βJ and N . Starting from the partition sum for finite N and
βJ → ∞, corresponding to the free energy in Eq. (208), one has to find the
complex solutions of

Z = 2eNβJ coshNβh = 0 ⇒ βh = ±iπ(n− 1/2)/N n ∈ N . (219)

While these lie on the imaginary h-axis, they close up to the origin for increasing
N and eventually accumulate there in the limit N → ∞ — thereby destroying
the analyticity at the origin by literally cutting the real axis into two halves.

Similarly, starting from the partition sum for vanishing field (h = 0), and
using Ne−2βJ � 1 and again (1+x/N)N ∼ ex, one finds the zeros in the complex
“temperature” plane

Z = 2eNβJ cosh[Ne−2βJ ] = 0 ⇒ t2 ≡ e−2βJ = ±iπ(n− 1/2)/N n ∈ N .
(220)
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Again, there is an accumulation of zeros that cut the complex plane into pieces
at the origin for N → ∞. They approach on the imaginary axis of the complex
t2−plance, or along the diagonals in the complex t-plane, respectively. Somewhat
more impressive sets of Yang-Lee zeros can e.g. be found in the book “The Beauty
of Fractals” by H.-O. Peitgen and P. H. Richter.

4.2 Ideal quantum gases

Ideal quantum gases are of similar complexity as interacting classical gases. This
is so because of effective exchange interactions, which are a consequence of iden-
tifying states that differ only in the exchange of indistinguishable particles. This
condition is usually implemented by imposing appropriate symmetries on the
wave function (rather than by formulating the wave function in a projective con-
figuration space). Identical bosons, with symmetric many-body wave functions,
then effectively attract each other. And identical fermions, with asymmetric
many-body wave functions, effectively repel each other. While an approximate
description of an ideal quantum gas as an interacting classical gas is therefore
possible, as discussed further below, an exact quantum mechanical description is
more appropriate and not more complicated. It turns out to be surprisingly help-
ful in the understanding of a broad range of phenomena. In fact, it is the passkey
to a quantum theory of the (sometimes not so) low-temperature thermodynam-
ics of condensed matter. The reason is that the elementary collective excitations
responsible for all types of transport in cold solids and liquids can after quan-
tization be interpreted as weakly interacting quasi-particles of either bosonic or
fermionic nature39, at sufficiently low temperatures. Familiar examples comprise
electronic excitations (so-called “electrons” and “holes”) in metals and semicon-
ductors, sound and spin waves (phonons, magnons) and hybrid excitations made
e.g. from light and matter (polarons, polaritons, etc) or from other quasiparti-
cles (Cooper pairs). The low temperature physics of all matter can therefore be
understood on the basis of the following discussion of ideal quantum gases. Here
“low temperature” can mean several ten-thousand Kelvin for some systems (con-
duction electrons in normal metals) but the lowest temperatures in the universe
for others (ordinary gases). The remoteness of the Planck scale makes it quite
plausible40 that even the so-called elementary particles of the standard model are
but another example of such emergent low-temperature elementary excitations
that hardly give a clue at whatever theory may describe the constituents of the
underlying “vacuum”. In any case, the densities and temperatures where the
classical gas description breaks down are defined by the condition nλ3

T ' 1.

39This statement holds in a three-dimensional world. Due to the different topology (J.M.
Leinaas, J. Myrheim, Il Nuovo Cimento 37 B (1977), p.1), anyons, which defy this classification,
should prevail in a two dimensional space (F. Wilczek, Physics World 19/1 2006, p.22).

40Grigory E. Volovik: The universe in a helium droplet; Oxford 2003.
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4.2.1 Kinematics and statistics

Kinematics

The basis for the quantum mechanical description of ideal gases is the free Hamil-
tonian

Ĥ =
∑
i

p̂2
i

2m
(221)

which is a sum over non-interacting particles. Each sector of the Hamiltonian
can thus be treated individually and is diagonalized by the eigenfunctions

〈r|p〉 = eip·r/~ . (222)

Usually one imagines the particles to sit in a cubic box of volume V (to be taken
to infinity, in the end) — in which case the eigenfunctions will be sines instead
of exponentials — so that

εk =
p2

2m
p =

~π
V 1/d

(k1, . . . , kd) ki ∈ N . (223)

The one-particle density of states (or level density)

g(ε) ≡ 2π(2m)d/2h−dεd/2−1 (224)

will always enter the discussion if a sum over eigenstates is turned into an energy
integral, ∑

states

=
∑
{p}

= V
∑
{p}

[
∆p

~π

]d
→ V

∫ ∞
−∞

ddp

hd
= V

∫ ∞
ε0

dε g(ε) , (225)

Note that the sum over ki ∈ N turns into an integral over the positive momentum
sector — 1/2d of the full momentum space — and also that the volume V is not
included in g(ε). This slight variation of the convention used so far will be more
convenient when dealing with densities, as opposed to extensive values, below.
To include slightly more general cases involving quasi-particles such as phonons,
photons, magnons, etc. which may have different dispersion relations, the density
of states is in the following assumed to be of the form

g(ε) = g g0 ε
d/τ−1 . (226)

The factor g0 comprises some numerical constants, g counts the spin degeneracy
(or polarizations for photons), and the effective mass m or velocity c characterize,
together with the exponent τ , the dispersion relation41

g =


2 (photons)

d (phonons)

2 (electrons)

g0 =


2βd/2

λdTΓ(d/2)
4π

(hc)d

τ =

{
2 (massive)

1 (massless)
. (227)

41Here, Γ(d/2) (= 1 in d = 2 and
√
π/2 in d = 3 dimensions) denotes the gamma function.
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It is often o.k. to think of massive modes as “particles” and of massless modes
as “waves”. Note that everything up to now is pure kinematics, independent of
statistics, and will stay fixed for the rest of the discussion.

Statistics

While the kinematics of noninteracting gas particles in a box is invariably fixed
by the above expressions that only depend on the properties of a single particle,
the “exchange behavior” determines how the single-particle energy spectrum is
populated, if a given volume is occupied by many gas particles. The cases

δ →


−1 Bose statistics

1 Fermi statistics

0 Maxwell–Boltzmann statistics

(228)

can efficiently be treated in parallel. For N indistinguishable particles, the pro-
jective nature of their phase space may be taken care of on the level of the wave
function. If it is written as a totally (anti-)symmetrized product wave function

|{pi}〉 ≡
1√
N !

∑
P

(−δ)P |pP1〉|pP2〉 . . . |pPN〉 (229)

constructed from N ortho-normalized one-particle wave functions |p〉, one can
think of it as a function living on the naive (non-projective) phase space. The
short-hand notation for permutations of the single particle wave functions em-
ploys the permutation operator P and the length of the permutation P (i.e. the
number of pairs exchanged by P). Note that the total anti-symmetrical construc-
tion for fermions, called a “slater determinant”, suppresses multiple occupancies
of the same state. This is the Pauli principle. In contrast, occupancies of arbi-
trary multiplicity are allowed for bosons42.

For the purpose of calculating partition sums, all that Eq. (229) adds to the
above discussion of the single particle spectrum, is the constraint that the many-
body states have to conform with (anti-)symmetrization. This means that two or
more identical fermions cannot occupy the same state (spin degeneracy is counted
separately in g), while up to N identical bosons can occupy the same state. One
can take advantage of this situation by a clever way of counting states, which
consists in counting occupation numbers within the preset one-particle energy
spectrum. Formally, one may say that one can uniquely represent the actual
N−particle states in an occupation number representation

|{nk}〉 (230)

42Possible worries about the proper normalization in the case of multiple occupancies are
best vetted later, when taking the trace.

83



with nk the occupancy of the one-particle eigenstates from Eq. (223). As a conse-
quence of this smart way of counting degrees of the freedom, the N -body density
of states, which was the central object of the classical treatment in Sec. 3.2, now
never enters the discussion. All one ever needs is the one-particle level density
from Eq. (226).

If the total number of particles N is fixed, i.e. for true non-relativistic particles
that cannot arbitrarily be created and destroyed, the convenience of the number
representation is somewhat spoiled by the auxiliary condition

N =
∑
k

nk . (231)

This is a good reason to turn to the grand-canonical ensemble43, in which a
chemical potential will take care of fixing N on average without one having to
bother about Eq. (231). The grand canonical partition sum reads

ZG =
∞∑
N=0

trN exp[−β(Ĥ − µN̂)] . (232)

The index N indicates that the canonical trace has to respect Eq. (231). But,
luckily, the additional summation over all N resolves the inherent difficulty: sum-
ming traces respecting Eq. (231) over all N is the same as taking the unrestricted
trace over all possible states of arbitrary N , right away. The index N at the trace
and the N -summation thus effectively cancel each other, and one is left with the
much simpler task of computing the infinite sum

ZG =
∑
{nk}

exp
[
−β
∑
k

nk(εk − µ)
]

=
∏
k

∑
nk

exp[−βnk(εk − µ)] . (233)

Taking into account the different occupancies allowed for fermions and bosons,
this yields the neat result

ZG =
∏
k

[1 + δe−β(εk−µ)]1/δ . (234)

For fermions (relegating the issue of spin degeneracies to the density of states) the
sum has only two terms, nk = 0, 1, because of the Pauli principle. For bosons the
sum is infinite, nk = 0, 1, 2, 3, . . . , and one uses the Euler formula for geometric
series. Its convergence is only guaranteed for β(εk − µ) > 0, though. Given that
the ground state energy in the box is ε0 ' O(V −τ/d)→ 0, the chemical potential
is therefore required to be negative for bosons, as for classical gases, for which

43One should of course check a posteriori that the results do indeed apply to experimental
situations with constant particle number. For the thermodynamic averages computed below,
this does not cause problems. Occupancies of individual states are a more subtle issue.
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µ ' −s < 0, up to irrelevant terms. The marginal case µ→ 0 is analyzed further
below. The classical limiting case (Boltzmann statistics) is obtained for δ → 0,
where the characteristic exponential scaling with the particle number, Eq. (136),
is recovered by the effective exponentiation: (1 + δx)1/δ ∼ ex.

According to Eq. (148) the logarithm of the grand canonical partition sum is
the grand canonical potential, and its density is the pressure,

pV = −J(T, V, µ) = kBT lnZG =
kBT

δ

∑
k

ln[1 + δe−β(εk−µ)] (235)

This represents the thermodynamic fundamental relation of an ideal quantum
gas, i.e. it contains the complete thermodynamic information. Yet, some work
remains to be done to squeeze out the relevant physics from it. Some easy-to-
derive major implications are discussed in the following.

4.2.2 Thermodynamics of ideal quantum gases

Practically speaking, for systems with a prescribed number of particles N , the
chemical potential µ, on which the thermodynamic properties apparently depend
quite sensitively, is a priori not known. It has to be inferred from Eq. (231) to
make Eq. (235) useful. In other words,

∂βµ lnZG = 〈N〉 =
∑
k

〈nk〉 , (236)

must be solved for µ(〈N〉), which can only be achieved perturbatively. In the
following, the strategy is to avoid this laborious task as long as possible, since a
sufficient amount of interesting results can already be obtained without it.

The crucial quantity that appears in Eq. (236) and in many other tasks is the
number distribution (sketch!)

n(εk) ≡ 〈nk〉 = ∂εkJ =
1

eβ(εk−µ) + δ
. (237)

It generalizes the classical Boltzmann factor, to which it reduces for δ = 0. The
thermodynamic properties of ideal quantum gases are obtained from this central
quantity (and its derivatives). The Fermi- or Bose distribution n(ε), as it is called
for δ = ±1, respectively, contains the essential statistical information as opposed
to the kinematic information encoded in the density of states g(ε). The product
w(ε) = g(ε)n(ε) is the energy distribution, which determines the relative amount
of particles with a given energy ε at a given temperature and chemical potential.

The task of computing the pressure from Eq. (235) (as most others) leads
one directly to the number distribution and to the energy distribution. In the
integral approximation, Eq. (225), which is admissible as long as the individual
level contributions to the total sum are negligibly small,

p =
kBT

δ

∫ ∞
0

dε g(ε) ln[1 + δe−β(ε−µ)] . (238)
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In the thermodynamic limit the ground state energy vanishes, so that the lower
bound of the integral can be set to zero, where the integrand vanishes (at least in
three space dimensions). Using Eq. (226), i.e., g(ε) ∝ εd/τ−1 so that

∫
dε g(ε) =

ετg(ε)/d, an integration by parts relates the pressure

p =
τ

d

∫ ∞
0

dε g(ε)n(ε)ε =
τu

d
=

{
2u/d (massive)

u/d (massless)
(239)

to the energy density

u ≡ 〈H〉
V

= − 1

V
∂β|z lnZG =

∑
k

〈nk〉εk =

∫ ∞
0

dε g(ε)n(ε)ε =

∫ ∞
0

dεw(ε)ε .

(240)
The purely kinematic relation between p and u was already derived in Eq. (110)
from elementary considerations for the classical ideal gas. Alternatively, it may
be obtained from the virial theorem (exercises). Both alternative derivations un-
derscore that it holds for arbitrary statistics (arbitrary δ), and merely depends on
the space dimension and the dispersion relation encoded in the density of states
of the ideal gas. It is exactly this part of the classical ideal gas equations of state
that survives at low temperatures, whereas the dependence of the energy den-
sity and pressure on temperature and number density are modified by exchange
effects.

So far, the computational task has only been shifted from the pressure to the
internal energy. In calculating thermodynamic quantities one will typically end
up with integrals of the above type, which have been tabulated as functions of
the fugacity z = eβµ, under the name of polylogarithms or Fermi–Dirac (δ = 1)
and Bose–Einstein (δ = −1) integrals, respectively44

1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex ± 1
=

{
fν(z)

gν(z)
. (241)

Their graphs are not very exciting. They lie close to z if ν is large, curving
somewhat upwards and eventually diverging at z = 1 (bosons) or downwards like
logν(z) for large z (fermions), for the more relevant small values of ν. For z = 1,
corresponding to the marginal case µ = 0, the Bose integrals gν(1) reduce to the
Riemann zeta-function45

gν(1) = ζ(ν) ≡
∞∑
k=1

k−ν . (242)

44The Bose–Einstein function, which always comes with an index and a dimensionless argu-
ment, should of course not be confused with the density of states.

45Use Euler’s geometric sum formula, (ex − 1)−1 = e−x/(1 − e−x) =
∑∞
k=1 e

−kx and the
definition of the Γ-function to confirm this.
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With the new notation, the pressure p = τu/d and the energy density of some
important ideal quantum gases in three dimensions (d = 3) are expressed in the
form

p =
τ

3
u =


g
f5/2(z)

βλ3
T

(massive fermions)

g
g5/2(z)

βλ3
T

(massive bosons)

gπ
2

45
(kBT )4

(~c)3 (massless non-conserved bosons)

(243)

The number of massless bosons like photons and phonons is usually not per se
conserved46 so that their chemical potential vanishes in equilibrium. This allows
for the explicit evaluation of the energy density using ζ(4) = π4/90 for z = 1 and
moreover implies

µ = 0 =⇒ s = (u + p)/T = (1 + τ/3)u/T = (1 + 3/τ)p/T (244)

After considering the emission geometry from a hole in a hot oven, this equa-
tion yields the Stefan–Boltzmann law of black-body radiation. Moreover, the
integrand in Eq. (240) can for massless bosons be rewritten as a function of
frequency ω in the form

~ωw(ω) = ~ωg(ω)n(ω) =
g~ω3

2π2c3

1

eβ~ω − 1
. (245)

Up to factors considering the radiation geometry this should be recognized as
Planck’s famous black-body spectrum. It is found to be very accurately realized
in the cosmic microwave background (CMB) with T ≈ 2.7K, which is nowadays
measured with ever increasing precision. Alternatively, if c is interpreted as the
sound velocity instead of the velocity of light (and considering g = 3 instead
of g = 2), it can be interpreted as the Debye phonon spectrum in a solid at
frequencies lower than a cutoff frequency c v−1/3 corresponding to a minimum
wavelength v1/3 (on the order of the size of the unit cell) and a maximum phonon
energy kBTD ' ~ c v−1/3, with TD the Debye temperature (roughly around 103 K
for many crystals).

In summary, thermodynamic observables for ideal quantum gases will gener-
ally have the form

〈Â〉 =

∫ ∞
0

dεw(ε)A(ε) with w(ε) = g(ε)︸︷︷︸
kinem.

n(ε)︸︷︷︸
statist.

. (246)

At first sight, the expression for the energy distribution w(ε) looks very much
like the one for a classical ideal gas, Eq. (122). But note that, for δ 6= 0, the
good old Boltzmann weight is replaced by the Fermi- and Bose distributions n(ε)

46Massless bosonic excitations (quantized classical waves) usually have weak self-interactions
and are thermalized “externally” by mechanisms that do not conserve their numbers.
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(which, in general, still depends on µ) and the N−particle density of states is
replaced by the level density of a single particle in a box. The peculiarity that
an ideal gas of N particles admits a description with a single-particle formalism,
is already familiar from the discussion in Sec. 3.2. If A(ε) is of polynomial form,
the integrals can be expressed by polylogarithms, as exemplified in Eq. (243).

The case of non-conserved massless bosons is special, since µ = 0 means
z = 1, where the integrals can then be evaluated in closed form using the zeta
function. For fermions and conserved bosons, the interpretation of the results in
Eqs. (243), (246) is less obvious. They still depend on the (generally unknown)
chemical potential µ via the fugacity z = eβµ, the dimensionless argument of the
Bose- and Fermi-functions. The following paragraphs show that a similar simpli-
fication as for non-conserved bosons occurs for conserved bosons if a condensate
is present, and how one otherwise can calculate µ(〈N〉) and the normalization of
n(ε), perturbatively.

4.2.3 Bose–Einstein condensation

In this subsection the low temperature behavior of Bose gases is discussed in
greater detail. For concreteness, consider massive bosons with spin 0 in three
space dimensions

δ = −1 , τ = 2 , g = 1 , d = 3 . (247)

Note that there appears to be a potential problem with Eq. (236) for the average
particle number if the integral approximation Eq. (225) is used,

〈N〉
V

=
1

V

∑
k

〈nk〉 '
∫ ∞

0

dε g(ε)n(ε)
δ=−1
= g3/2(z)/λ3

T (248)

The Bose function g3/2(z) is a monotonically increasing function of z which takes
its maximum for z = 1:

nλ3
T = g3/2(z) ≤ g3/2(1) = ζ(3/2) ≈ 2.612 . (249)

This equation clearly fails to hold for high densities 〈N〉/V ≡ n > nc ≡ ζ(3/2)λ−3
T

(which defines a critical density nc for prescribed temperature) and below a crit-
ical temperature Tc = given by λ3

Tc
≡ ζ(3/2)/n (for prescribed density n). The

intuitive interpretation of the condition Eq. (249) is that the particles’ wave pack-
ets start to overlap or that their thermal energy would be overwhelmed by their
kinetic rest energy due to uncertainty, if you tried to prevent this.

One might think that the breakdown of Eq. (248) detected in Eq. (249) could
be indicative of a maximum density, which would make sense for fermions but
sounds implausible for bosons. In fact, the limit z → 1 was noticed to suffer from
convergence problems, above, and it is now high time to have a closer look at these
issues. For µ→ 0 or z = eβµ → 1 the ground state contribution (for ε = ε0 → 0)
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to the number distribution n(εk) in Eq. (237) diverges in the thermodynamic
limit. This comes in quite handy now. The divergence that is required to rescue
Eq. (236) corresponds to an extensive ground state occupancy,

n(ε0) =
1

eβ(ε0−µ) − 1
∼ kBT

ε0 − µ
= O(N) = O(V ) . (250)

One can convince oneself that the ground state alone absorbs the problem and
excited states yield only negligible contributions in the thermodynamic limit47.
Accordingly, for T ≤ Tc (or n ≥ nc) and in the thermodynamic limit, the appro-
priate way to write Eq. (248) with the integral approximation is

n =
〈N〉
V

=

∫ ∞
0

dε g(ε)n(ε) +
n(ε0)

V

⇒ nλ3
T = ζ(3/2) +

λ3
T

V
n(ε0) . (T ≤ Tc)

(251)

The integral approximation is now only used for terms yielding negligible individ-
ual contributions to the total sum, as it should be. The fact that the additional
term n(ε0)/V is of order one in Eq. (251) explains why it could be neglected in
the discussion of u and p, above, where its contribution to the integral would
have been suppressed by the multiplicative term ε in the integrand, anyway.

The sudden onset of an extensive population of the ground state is called
Bose–Einstein condensation (BEC). It manifests itself most dramatically in the
velocity distribution of the gas that develops a central peak at the origin for T <
Tc (figure!). BEC is the paradigm for transitions into a state with a macroscopic
occupancy of a pure quantum state, for which suprafluids and superconductors
provide spectacular (but more complicated) examples. The first realizations of
BEC with atoms were achieved in the 1990s, 70 years after it was theoretically
predicted, by rapid cooling of relatively dilute (hence weakly interacting) atomic
gases into the µK range using elaborate technical equipment. It took another
decade to achieve the same for gases of fermionic atoms, since fermions have first
to pair up into bosonic quasi-particles that can then themselves undergo BEC.
In this form BEC is very analogous to superconductivity. Nowadays BECs are
studied in free fall to reduce gravity, which, amazingly, counts among the limiting
disturbances of the homogeneity of the temperature in a BEC. BECs of a variety
of quasi-particles such as exciton-polaritons, and even of bare photons, have been
produced.

The thermodynamics of a massive Bose gas in presence of a condensate, i.e.
below Tc, is relatively easy to analyze due to the free exchange of particles be-
tween the condensate and the excited states, which pins the chemical potential

47Here is a hint: from Eq. (223), the occupancy of the first excited state will at most be on
the order of kBT/(~2π2/2mV 2/3 + ε0−µ) ∝ V 2/3 — hence still large but down by some factor
V −1/3 and therefore non-extensive in the thermodynamic limit.
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(essentially) at µ = 0. To obtain the “normal properties” just above the tran-
sition is slightly less straightforward, since they depend on a negative chemical
potential µ < 0, which has to be calculated from Eq. (231). An example of a
perturbative calculation of µ is given for the Fermi gas in the next subsection, and
a calculation of the limiting asymptotic approach to the classical gas behavior
can be found in the subsequent paragraph about the classical limit. This is taken
as an excuse for restricting the present discussion to the case with condensate,
where µ = 0, z = 1.

Then, Eq. (251) can be read as an equation for the redistribution of particles
between the ground state and the excited states. The condensate fraction

ψ ≡ N0

〈N〉
=
n(ε0)

nV
T<Tc= 1− ζ(3/2)

nλ3
T

(252)

plays the role of an order parameter : it vanishes above the transition and con-
tinuously grows towards one below Tc (above nc) (sketch!),

ψ =

{
0 (T ≥ Tc, n ≤ nc)

1− (T/Tc)
3/2 = 1− nc/n (T ≤ Tc, n ≥ nc)

. (253)

BEC is thus a continuous transition. As already noticed above, the expressions
derived for the thermodynamic quantities such as the pressure p, the energy den-
sity u, the entropy density s = (u+p)/T = 5u/3T , etc., do not acquire corrections
below Tc. But with Eq. (253) they can now be given a new intuitive physical in-
terpretation by rewriting them in a form that emphasizes their proportionality to
the normal fraction 1−ψ of the gas. So by combination of Eqs. (243), Eq. (249),
(253), one finds

p = 2u/3 = 2sT/5 =
ζ(5/2)

ζ(3/2)
nkBT (T/Tc)

3/2 ≈ 0.51kBTnc , (254)

ncV = T∂T s = ∂Tu =
15ζ(5/2)

4ζ(3/2)
n(T/Tc)

3/2 ≈ 1.9kBnc , (255)

with the density nc(T ) = n(1−ψ) = n(T/Tc)
3/2 of normal (not condensed) parti-

cles. Plainly, the condensate, as a pure quantum state, neither carries entropy nor
heat, nor does it exert pressure to the surrounding normal fraction48. Therefore,
the thermodynamic properties of the gas are entirely determined by the normal
fraction. A rough but essentially correct characterization of the thermodynamics
of the Bose gas in presence of the condensate is thus the following: it is all due
to the particles of the normal fraction 1 − ψ, which behave more or less like a
classical ideal gas.

48It exerts a quantum mechanical ground-state pressure on the walls of the box, though.
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From Eq. (254), the isotherms in a p − v or p − n diagram are found to be
horizontal (independent of n), which is reminiscent of a liquid-vapour transitions
(sketch!). The coexistence pressure grows with temperature according to

pc(T ) = p(n = nc) = ζ(5/2)(2πm/h2)3/2(kBT )5/2 . (256)

This also defines a line of maximum pressure that delimits the physically acces-
sible region, hence a critical pressure pc = p(n ≥ nc) in a p − T diagram. Using
Eq. (249), it may alternatively be expressed as a function of the specific volume
v at T = Tc,

pc(v) = p(T = Tc) =
h2ζ(5/2)

2πmζ(3/2)5/3
v−5/3 , (257)

defining a line akin to the liquid-vapour binodal in the p−v diagram of a classical
liquid-gas transition. As familiar from liquid-vapor coexistence, any attempt to
compress the gas beyond that limit merely increases the condensate fraction
ψ. (In reality, if one crosses this line, one compresses a pure condensate that
eventually turns into a solid or liquid, which is clearly out of reach for the present
discussion based on non-interacting particles.)

The thermodynamic properties in presence of a BEC do not attain their clas-
sical limiting form right at Tc. To study the convergence to the classical limit,
µ(T > Tc) has to be calculated perturbatively, as already mentioned. (Such a
calculation is exemplarily performed for the Fermi gas, below.) One then finds,
for example, that the specific heat decreases continuously from its critical value
cV (Tc) ≈ 1.9kB to its classical value cV (T → ∞) = 3kB/2, with a kink but no
discontinuity at Tc (sketch!).

4.2.4 Almost degenerate Fermi gas and Sommerfeld expansion

Consider, as in the preceding paragraph, an ideal gas of massive particles in
three-dimensional space, but now let them be fermions instead of bosons, i.e.

δ = 1 , τ = 2 , d = 3 . (258)

What is the difference? It turns out that, at low temperatures and high densities,
the behavior of an ideal Fermi gas could hardly be less similar to that of a Bose
gas. Maybe the most striking difference is the different sign of the chemical
potential, which results from the self-avoidance due to the different exchange
properties.

The chemical potential µ is implicitly given by the number conservation equa-
tion. In the integral approximation, it reads

n =

∫
dε g(ε)n(ε) = gf3/2(z)/λ3

T . (259)
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At low temperature, the Fermi distribution degenerates to a Heavyside step func-
tion with the step marking the value of the chemical potential at T = 0,

n(ε) =
1

eβ(ε−µ) + 1

β→∞−−−→ θ(εF − ε) , (260)

so that Eq. (259) simplifies to

n = Γ(εF ) =

∫ εF

0

dε g(ε) =
τ

d
gg0ε

d/τ
F , (261)

with the single-particle momentum space volume Γ(ε) and the Fermi energy

εF ≡ µ(T = 0) = [d n/(gg0τ)]τ/d . (262)

Here Γ is not the gamma function, and there is the same abuse of the earlier
notation for the total phase space volume as for g(ε) in Eq. (225). Equation. (261)
says that the number of accessible quantum states (or the phase space volume in
unit of λ3

T ) Γ(εF )V is equal to the number of particles N (rather than on the order
of e〈N〉). The N/g lowest levels are occupied, each g times, and all higher levels
are empty. This is just as in the ground state of an atom, which certainly justifies
the notion of a “degenerate” gas. Writing εF ≡ kBTF ≡ p2

F/2m, one defines the
Fermi temperature and Fermi momentum, accordingly. With Eq. (258), Eq. (262)
can then alternatively be written in the forms

pF = ~(6π2n/g)1/3 and nλ3
TF

=
4g

3
√
π
. (263)

Given that the density of (unbound) conduction electrons in a metal is very
roughly of the same order of magnitude as the electron density in an atom,

one estimates n ' Å
−3

and εF ' Ry, which implies TF ' 105 K. Hence, at
room temperature the conduction electrons in metals correspond very well to a
degenerate Fermi gas, if their mutual Coulomb interactions are neglected. Due
to their long range, this is indeed a very reasonable approximation.

In sharp contrast to the Bose gas, the average energy and pressure do not
vanish in a Fermi gas for T → 0,

p0 =
τ

d
u0 =

τ

d

∫ εF

0

dε g(ε)ε =
nεF

1 + d/τ
∝ n1+τ/d . (264)

Superficially, the result p0 ∝ n5/3 ∝ v−5/3 is reminiscent of the relation for the
critical (maximum) pressure of the Bose gas, but while Bose condensation bounds
the pressure of the Bose gas from above, the Pauli principle bounds the pressure
of a Fermi gas from below.49 This means that a Fermi gas needs to be confined

49This should intuitively be clear. The formal justification follows below.
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by some external means that counterbalance the Fermi pressure. (For the gas of
conduction electrons in a metal the confinement is due to the potential energy
that holds the material together.) Similar as for the Bose condensate, the entropy
s0 of the “Fermi condensate” (the degenerate Fermi gas) vanishes, though. To
see this, note that, with u0 = 3nεF/5 and p0 = 2nεF/5, T s0 = u0 + p0−nεF = 0.
It turns out that the finite-temperature corrections to u0, µ0 ≡ εF , and p0 are of
order O(T 2), hence s(T → 0) = O(T ), as required by the third law.

To formally demonstrate the last statements, µ(T > 0) has to be calculated
perturbatively. One can exploit that the derivative of n(ε) is almost a Dirac
δ-function for the almost degenerate Fermi gas to arrive at a low-temperature
expansion known as the “Sommerfeld expansion”. The idea is to rewrite the
integrands in the form ∂εn(ε) (the δ-function like peak) times a rest that can be
expanded around the peak position (sketch). At vanishing temperature the peak
sits at ε = εF , but at finite temperatures T > 0 at µ(T ) 6= εF , which must be
calculated perturbatively, itself, using the number conservation equation:

n =

∫ ∞
0

dε g(ε)n(ε) = Γ(ε)n(ε)|∞0︸ ︷︷ ︸
0 in d=3

−
∫ ∞

0

dεΓ(ε)∂εn(ε) . (265)

Now, expanding Γ(ε) to second order around the yet unknown position µ of the
peak yields

n = Γ(µ)︸︷︷︸
gg0

τ
d
µ
d
τ

n(0)︸︷︷︸
1

− 1

2!
∂εg(ε)|ε=µ︸ ︷︷ ︸
gg0( d

τ
−1)µ

d
τ −2

∫ ∞
0

dε (ε− µ)2∂εn(ε) . (266)

The lower bound of the integral can be shifted to negative infinity without incur-
ring serious errors, and, due to the symmetry of ∂εn(ε), the integral over the first
order term vanishes. Hence, the calculation of corrections to the fully degenerate
Fermi gas in Eq. (264) boils down to the evaluation of integrals of the form∫ ∞

−∞
dε (ε− µ)γ∂εn(ε) = β−γ

∫ ∞
−∞

dx
xγex

(ex + 1)2

γ=2−−→ π2

3β2
(267)

with x ≡ β(ε−µ). The first non-vanishing correction to the chemical potential is
obtained for γ = 2 after eliminating n from Eq. (266) by use of Eqs. (261), (262),

1 =
( µ
εF

)d/τ[
1 +

π2

6β2

d

τ

(d
τ
− 1
)
µ−2
]
. (268)

Perturbative solution for µ (and completely analogous calculations for u) yield
for d = 3, τ = 2

µ ∼ εF

[
1− π2

12

( T
TF

)2]
u =

3

2
p ∼ 3

5
nεF

[
1 +

5π2

12

( T
TF

)2]
. (269)
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The obvious interpretation goes much along the lines of what was said for the
cold Bose gas, above. The correction to the ground state energy u0 and pressure
p0 of the frozen fermion condensate is given by a normal fraction 1− ψ = T/TF
of particles which exhibit essentially classical ideal gas behavior:

p− p0 =
2

3
(u− u0) =

π2

6
nckBT where nc ≡ n(1− ψ) = nT/TF (270)

again denotes the normal (not condensed) fraction of the gas.

4.2.5 Low-temperature specific heats and the third law

Particularly wide reaching consequences that follow immediately from the above
results concern the low-temperature specific heat not only of gases but also of
fluids and solids. Thermal transport in the latter is dominated by elementary
excitations, which can in a reasonable approximation often be represented as
weakly interacting or ideal quantum gases of quasi-particles. These comprise
sound waves (“phonons”) and excitations of the electronic degrees of freedom
(so-called “electrons” or “holes”) in conductors or semiconductors, spin waves
(“magnons”) in magnets, and so on. The derivation of the specific heat of ideal
quantum gases goes a long way towards explaining the microscopic origin of the
third law.

The contributions by the conduction electrons to heat and charge transport in
insulators and semiconductors freeze out with a Schottky anomaly (i.e. exponen-
tially, as for the Ising chain), because of their band gap. Therefore, sound waves,
which are bosons, dominate their low-temperature specific heat and heat trans-
port. In normal conductors, the conduction electrons, which are reasonably well
described as an almost degenerate Fermi gas, also make a relevant contribution
to the specific heat at low temperatures.

More specifically, for non-conserved bosons or conserved (massive) bosons at
low temperatures, assuming a vanishing chemical potential βµ = 0 such that
z → 1 and gd/τ+1(z)→ ζ(d/τ + 1), Eq. (243) gives

ncV = (∂Tu)V ⇒ cV /kB ∝ T d/τ =

{
T d/2 (massive bosons)

T d (massless bosons)
. (271)

which should be contrasted with the classical predictions cV /kB = d/τ = constant.
Sound waves in solids, i.e. phonons with cV /kB = (2π2/5)(T/TD)3, and spin waves
in antiferromagnets behave as massless bosons, while the massive case pertains
to ferromagnetic spin waves and bosonic atoms. For all except the last example,
the temperature does not have to be terribly low to observe the low-temperature
behavior.

In contrast, the specific heat of an ideal Fermi gas at low temperatures is

cV /kB =
π2

2

T

TF
(fermions) (272)
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Formally, this is a consequence of u(T � TF ) ' n[kBTF +O(T/TF )2]. Physically,
it can be rationalized by observing that the Fermi gas freezes if T � TF . The
Fermi distribution near εF is softened within a range kBT compared to the lim-
iting step function, so T/TF is the fraction of particles excited from the region
ε < εF to the region ε > εF . In other words, since the fraction ψ of particles
frozen into their ground state does not contribute to transport (except for the
Fermi pressure resulting from the Pauli principle), only the normal fraction 1−ψ
of about T/TF behaves gas-like. Similarly as discussed for bosons with a BEC,
it is only the normal fraction that contributes to heat and charge transport and
carries entropy, so that the corresponding potentials and transport coefficients
are reduced compared to the classical laws at T � TF by this factor.

An important aspect of the foregoing discussion is that the notion of “low
temperatures”, which always means nλ3

T & 1 for an ideal gas, can refer to utterly
different temperature values for typical fermi and bose gases. Remembering that
nλT = z = eβµ for a classical ideal gas, one expects the interesting things to
happen at kBT ' |µ|. But the chemical potentials of bosons and fermions have
different signs and magnitudes. Bosons can all settle into the ground state at
T → 0, which can give or take particles at no cost, so that µ(T → 0) vanishes upon
cooling, and the interesting things happen at very low temperatures, accordingly.
In contrast, due to the Pauli principle, N fermions will condense into the lowest
N states, instead. For conduction electrons in a metal, this implies that the
chemical potential is on the order of the Rydberg energy, even for T → 0, i.e.
µ(T → 0) = kBTF with a Fermi temperature TF on the order of tens of thousands
of Kelvin, so that conduction electrons are deeply frozen at room temperature.

4.3 Classical limit and exchange interactions

As demonstrated in the preceding subsections, non-interacting but indistinguish-
able particles exhibit strongly correlated behavior (dependent on their exchange
statistics encoded in the parameter δ) at high densities and low temperatures,
where a quantum mechanical description applies. In the case of bosons, even
a phase transition occurs. In brief, they share certain features with, and are
of comparable complexity as, interacting classical systems. In fact, requiring N
particles to be indistinguishable imposes a type of N -body interaction that is not
decomposable into pair interactions (which would act between any pair of parti-
cles, irrespective of what all the other particles are meanwhile doing). A simple,
convenient pair description only emerges in the “classical limit”

nλ3
T → 0 (273)

(in d = 3 dimensional space) corresponding to high temperatures and low den-
sities, such that the available energy states are sparsely occupied (Γ � N) and
can be approximated as a continuum, and multiple occupations have little chance
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to occur. The different exchange properties of fermions and bosons turn out to
still make a sizable effect through the (anti-)symmetrized wave functions, giv-
ing rise to effective entropic interactions. By exploring this limit quantitatively,
one can therefore get some idea of how interacting many-body systems might be
approached.

For simplicity, spin degeneracies are in the following neglected (g = 1). With
the (anti-)symmetric product eigenstates |{pi}〉 of Eq. (229) and (222) the canon-
ical partition sum then reads

Z = tr exp
[
−βĤ

]
=
∑
{pi}

〈{pi}| exp
[
−β
∑

i
p2
i

2m

]
|{pi}〉 . (274)

The trace amounts to a summation “
∑
{pi}” extending over all (anti-)symmetrized

N-particle states enumerated by the sets {pi}. This counts all possible combi-
nations of single particle energy levels. It therefore should not be interpreted as∑

p1
· · ·
∑

pN
, as this would generate N ! redundant terms50. With Eq. (229) the

bracket is written in the form

〈{pi}|{pi}〉 =
1

N !

∑
P, P ′

(−δ)P+P ′〈pP1|pP ′1〉〈pP2|pP ′2〉 . . . 〈pPN |pP ′N〉 (275)

Here, one of the redundant sets of permutations can be canceled against the
factor 1/N !, i.e. all occurrences of P ′ and P ′ can be crossed out together with
the factorial factor. Now, insert N unity operators

∫
dri |ri〉〈ri|/V constructed

from one-particle position eigenstates |r〉 into the one-particle momentum-state
brackets. After rearranging the factors in order to gather terms with the same
momentum, and using Eq. (222), one has

〈{pi}|{pi}〉 =

∫
dNr

V N

∑
P

(−δ)P e−ip1(r1−rP1)/~ · · · e−ipN (rN−rPN )/~ .

Upon rearranging factors, the permutation symbol has moved from the momen-
tum to the particle coordinates. The next step involves going from the level
sum in Eq. (274) to a sum over all positive one-particle momenta (which is then
straightforwardly turned into an integration over the full momentum space di-
vided by the factor 2d),∑

{pi}

=
1

N !

∑
p1

· · ·
∑
pN

→ V N

∫
dNp

h3NN !
. (276)

This is how the classical phase space integration measure evolves from the sum
over (anti-)symmetrized many-particle quantum states, thereby justifying a pos-
teriori the normalization of the phase space volume by Plack’s constant, as intro-
duced in Part II of the lecture. Altogether, the partition sum in the continuum

50One cannot prescribe to the (anti-)symmetrized wave function which particle has which
momentum — all combinations are automatically included.
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limit reads

Z =

∫
dNp dNr

N !h3N

∑
P

(−δ)P exp
[
−βp2

1/2m− ip1 · (r1 − rP1)/~
]
· · ·

· · · exp
[
−βp2

N/2m− ipN · (rN − rPN)/~
]
.

(277)

As usual, the momentum integrals can be performed immediately (first complete
the square in the exponentials), and using the definition

f(r) ≡ exp[−πr2/λ2
T ] ∼

{
1 (|r| � λT )

0 (|r| � λT )
(278)

one then is left with the configuration integral (Zig denotes the partition sum for
a classical ideal gas)

Z = Zig

∫
dNr

V N

∑
P

(−δ)Pf(r1 − rP1) · · · f(rN − rPN) . (279)

The length of the permutation P (i.e. the number of exchanged particle pairs)
counts the factors that differ from unity in each term of the sum. The unit
permutation (P = 0) simply produces a one in the form f(0)N , which, of course,
corresponds to the classical ideal gas of indistinguishable particles. Since the
function f(r) vanishes quickly for distances r � λT , permutations are likely to
produce vanishing contributions to the sum. Non-vanishing contributions only
result if the exchanged particles happen to reside in the same volume element
of size λ3

T , which occurs rarely in the classical limit nλ3
T → 0. The estimated

contributions of the products of f ’s thus decrease like (nλ3
T )P with the length

P of the permutation, which can therefore be used as an ordering scheme for
the series in Eq. (279). To extract the dominant correction to the classical ideal
gas in a low-density expansion, it suffices to truncate the series after the second
order, with only two non-trivial factors of f (for indices ij and ji, hence the

∑
i<j)∑

P

(−δ)Pf(r1 − rP1) · · · f(rN − rPN) = 1− δ
∑
i<j

f 2(ri − rj) +O(f 3) . (280)

The leading correction to the classical ideal gas (of indistinguishable particles) can
be interpreted as consequence of a fictitious pair interaction potential (sketch!)

Veff({ri}) ≡
∑
i<j

νeff(ri − rj) , νeff(r) ≡ −kBT ln
[
1− δ exp

(
−2πr2/λ2

T

)]
. (281)

via the identification of the integrand in Eq. (279) with a Boltzmann factor,

1− δ
∑
i<j

f 2(ri − rj) ∼
∏
i<j

[1− δf 2(ri − rj)] = exp
[
−βVeff(ri − rj)

]
. (282)
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The purely entropic origin of this “statistical potential”, which does not involve
a real interaction energy, is betrayed by the prefactor kBT of νeff . It arises
solely from the (anti-)symmetrization of the wave functions in Eq. (229). The
corresponding positional correlations between particles sharing the same volume
can thus be represented by an effective pair interaction νeff , in the dilute limit.
It is as if identical non-interacting bosons and fermions attract and repel each
other, respectively, a point of view that is clearly limited to the classical limit.

If naively extrapolated to higher densities, the interaction representation of
the many-body exchange correlations suggests a classical condensation in real
space, whereas the real BEC is of course a condensation in momentum space.
Yet, Eq. (281) can be useful for many practical purposes. Namely, using the
fictitious pair potential, which has N(N − 1)/2 equivalent terms, corrections to
the fundamental relation Fig(T, V,N) of a classical ideal gas are readily estimated
(exercises). You simply have to revert the above arguments to get the leading
correction to the fundamental relation F (T, V,N) for the classical ideal gas from

Z

Zig

=

∫
dNr

V N
exp
[
−βVeff({ri})

]
∼ 1− δN(N − 1)

2

∫
dr

V
e−2πr2/λ2

T ,

which amounts to the interaction or “excess” free energy (per particle)

β(F − Fig)/N = Bn , with the second virial coefficient B = δλ3
T/2

5/2 . (283)

From this, the proper asymptotic behavior of the specific heat cV above the BEC
transition (a decay ∝ T−3/2 to the classical value 3kB/2) follows, and similarly
good estimates for the pressure, p = nkBT (1 + Bn). The maximum errors —
with respect to the correct limits at T = Tc obtained from Eqs. (254), (255),
(270), respectively — are only a few percents. The exchange interactions are
thus recognized as the culprits for the slight deviations of the low-temperature
thermodynamics of the normal fraction from the classical ideal-gas laws, and it
often suffices to deal with them on the level of the second virial coefficient.

Chapter summary

Ideal quantum gases, though slightly artificial at first sight, are the basis of our
understanding of quantum effects in condensed matter. At low temperature the
latter are often governed by dilute gases of elementary excitations, the so-called
quasi-particles that arise upon quantizing low-energy collective excitations such
as sound waves, spin waves, etc., or representing the effective behavior of an
electron or an electron vacancy, say, in a solid. Apart from the most spectac-
ular macroscopic quantum properties such as suprafluidity, superconductance,
quantum-Hall resistance, and Bose–Einstein condensation, the consequences of
this observation also concern such apparently mundane properties as the normal
metal conductance or the specific heat of solids, which could impossibly be under-
stood without understanding the different statistics of bosons and fermions. The
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effective exchange interactions completely alter the behavior of the gas compared
to the classical ideal gas whenever nλ3

T is non-negligible. The consequences are
very different for the gas of conductance electrons in a metal as opposed to dilute
atomic Bose gases, say, due to their very different chemical potentials µ at low
temperatures. Exchange effects start to dominate over conventional classical ideal
gas behavior at temperatures as high as many thousands Kelvin in the first case,
but not before reaching the lowest temperatures in the universe, in the second.
Moreover, the possibility to form a condensate bounds the pressure of Bose gases
from above and makes it vanish at low temperatures, whereas the Pauli principle
keeps the pressure of Fermi gases finite and thus prevents a collapse of the gas,
down to zero temperature. Together with what was said about quasi-particles
and elementary excitations, the fact that the specific heat for ideal Fermi and
Bose gases vanishes according to a power-law at low temperatures goes a long
way in explaining the third law of thermodynamics.

Fermata

Statistical Mechanics has traced back the great generality and simplicity of the
laws of Thermodynamics to the assumption of a uniform phase space density on
the energy shell. Technically, obtaining thermodynamic fundamental relations
for a given Hamiltonian was reduced to the calculation of a phase space volume
or a sum over quantum states. Under appropriate additivity assumptions, the
fundamental law called the “Summit of Statistical Mechanics” by Feynman was
motivated, and quite a number of interesting predictions for the thermodynamics
and the fluctuations of gases and interacting spin systems were derived from
it. If combined with the concept of quantized elementary excitations, or quasi-
particles, and the dissimilar exchange rules for bosons and fermions, far reaching
general consequences for the material behavior of gases, fluids, and solids can be
deduced. The stunning success of this simple recipe amazes me.

This brings us to the essential
mystery of statistical mechanics,
whether equilibrium or
nonequilibrium — why do such
models work in the first place?

R. Zwanzig
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