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Die Begründung der statistischen
Mechanik bereitet begriffliche
Schwierigkeiten. Die dabei
durchzuführenden Rechnungen
sind jedoch meist einfach. Dieser
Sachverhalt kehrt sich bei den
Anwendungen der statistischen
Mechanik gerade um. Begrifflich
gibt es dabei nahezu keine, dafür
um so mehr mathematische
Schwierigkeiten.

W. Brenig

1 The empty canvas

The aim of this part of the lecture is to introduce general theoretical tools that
have been developed and used in many areas of physics to address interacting
many-body systems on a microscopic basis.

Statistical Mechanics provides a microscopic foundation of the thermostatics
of many-body systems, i.e., it answers the question how the properties of the few
degrees of freedom conventionally used to describe macroscopic material behavior
emerges from the many degrees of freedom of all contributing atoms. The central
paradigmatic many-body system discussed in introductory courses is an isother-
mal (classical) ideal gas. This toy model with no interactions and no packing
structure is briefly recapitulated to set the stage. Thermodynamically, the ideal
gas is defined in an operational way by two equations of state: (i) the caloric
equation or energy equation

U/N ≡ u = 3kBT/2 , (1)

which can be measured in a calorimeter (it amounts to equipartition of energy U
among dN degrees of freedom in d = 3 space dimensions and contains the full sta-
tistical information of the model); (ii) an equation linking energy to mechanical
properties (e.g., the pressure p),

pV/N ≡ pv = 2u/3 = kBT . (2)

The first equality contains new information, namely about the kinematics of mas-
sive Newtonian particles, the second simply substitutes the “heat quantum” kBT
from Eq. (1). Using Eqs. (1) and (2) to express the intensive variables in terms
of the (densities of) extensive ones, and invoking homogeneity, the differential
fundamental relation (per particle)

ds(u, v) =
1

T
du+

p

T
dv (3)
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in a 3-dimensional thermodynamic state space spanned by energy U , volume
V , and particle number N can be integrated to yield the fundamental relation
S(U, V,N) = Ns(U/N, V/N), from which all thermostatic properties follow.

In Statistical Mechanics, which represents a system in terms of all of its mi-
croscopic degrees of freedom, one is used to addressing the fundamental relation
directly—at least on a conceptual level—via the (e.g. canonical) partition sum

Z ≡
∫

dΓ e−βH = e−βF (T,V,N) dΓ ≡ Πidqidpi
N !hdN

. (4)

Integrating out the microscopic degrees of freedom at fixed thermodynamic pa-
rameters is called coarse graining. It transforms the the Hamiltonian into a free
energy (a kind of Hamiltonian with much less variables). This is how it works in
principle but rarely in practice. In fact, most of the following serves to introduce
more practical approaches to avoid doing this monstrous integral, since a brute-
force approach works only for toy-models, such as the ideal gas. In fact, with the
Hamiltonian H =

∑
i p

2
i /2m, one easily finds the fundamental relation

Z = (V/λ3
T )N/N ! ⇒ F = −kBT lnZ = NkBT [ln(nλ3

T )− 1] (5)

The thermal wavelength

λT ≡
h√

2πmkBT
(6)

appears as a natural length scale in a quantum statistical description, and defines
an elementary unit cell size in the classical configuration space. It is the de Broglie
wavelength of a typical gas particle of mass m with an energy of about kBT , as
dictated by equipartition. The naive interpretation of V/λ3

T as the number of
“available classical states” for each of N non-interacting particles turns out to be
inappropriate if these are indistinguishable, though. Since particle permutations
produce no new states in this case, each particle can only explore the specific
volume v = 1/n instead of V , and there are only W ≈ v/λ3

T classical states per
particle available, which is also apparent from the entropy S = (U − F )/T =
(U + pV − µN)/T , which is essentially (up to a thermodynamically irrelevant
gauge constant) the chemical potential µ, namely

s/kB = 5/2− µ/kBT , µ/kBT = ln(nλ3
T ) . (7)

It essentially counts the effective degrees of freedom that participate in energy
partition according to Eq. (1), in units of Boltzmann’s constant kB, evidencing
that individual-particle degrees of freedom are not independent for indistinguish-
able particles, and pointing at an entropy crisis or “freezing” at low T .

Not too surprisingly, the model therefore breaks down if one attempts to raise
the density or to lower the temperature beyond the limit nλ3

T ' 1. Equipartition,
saying that the same energy is stored in each degree of freedom (in particular also
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in the thermodynamically unresolved ones, which constitute sort of a black box
constantly absorbing other forms of energy), is a classical approximation. Quan-
tum mechanics shows that degrees of freedom freeze out at low temperature T ,
causing the condensation of an increasing fraction of particles into their quantum
ground states. These particles do not scatter any more between different states.
Therefore they carry no heat or entropy and behave very differently from what is
expected for a gas. The number of particles available to contribute to the classical
gas behavior, or to any sort of thermodynamics, is thus reduced and the thermo-
dynamic properties are modified with respect to the classical expectation; e.g.,
it is found that the pressure is bound from below for fermions and from above
for bosons. With a grain of salt, one can say that the thermodynamics at low T
is essentially all due the normal fraction of the gas, which has a reduced density
nc = n(T/Tc)

ζ with a characteristic exponent ζ and BEC/Fermi-temperature Tc,
but otherwise still behaves like a classical ideal gas.

2 Packing structure and material behavior

2.1 Pair interactions and pair correlations

Pair interactions

For atoms and molecules, potential interactions can usually not be neglected. It
is usually via these “direct interactions” (as opposed to the “statistical” exchange
interactions encoded in the chemical potential µ of an ideal gas) that we notice
the existence of these particles, in the first place. And the existence of various
phases of the same substance and its physical properties are primarily the result
of strong mutual particle interactions. The reason that the model of an ideal
(interaction-free) gas is useful at all, and in fact highly successful, is due to the
fact that many elementary excitations in condensed matter may (after quanti-
zation) to a good approximation be described as dilute gases of quasi-particles
(so-called “phonons”, “magnons”, “electrons”, “holes”, etc.), at least at low tem-
peratures. Interactions govern the phase transitions into condensed states, their
packing structure and energetics, and, last but not least, the often complex and
composite (hybrid) nature of the elementary excitations that may then, eventu-
ally, be treated as dilute Bose or Fermi gases.

Before entering the discussion of direct interactions, it is useful to estimate
their importance relative to the effective “statistical interactions” arising from
the exchange statistics of indistinguishable particles. Roughly, the latter should
start to matter once the effective statistical pair potential becomes of similar
range and strength as the direct interactions. A common feature of all direct
interactions between atoms and molecules is their strong hard-core repulsion at
distances on the order of a few Bohr radii aB = ~2/mee

2. For the weak statistical
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interactions to become relevant, they need to be of considerably longer range,

λT/aB � 1 ⇒ kBT � Ryme/m = O(m eV) , (8)

where me and m denote the masses of the electron and the atom, respectively.
Also note that at the characteristic distance λT the statistical interaction strength
is only about ±2 · 10−3kBT . In contrast, the strength of the repulsion is propor-
tional to the electron density, which decays exponentially and is down to about
1 Ry/e at the nominal atom radius. Altogether, this argument thus suggests
that atoms and molecules have to be cooled down substantially below room tem-
perature, if not to the lowest temperatures in the universe, before the exchange
interactions become relevant. A related estimate via the comparison of the direct
and exchange contributions to the second virial coefficient is discussed in the ex-
ercises. Both estimates show that the energetics and packing structure of atoms
and molecules is usually completely dominated by “direct” potential interac-
tions1. Of course, these direct interactions themselves arise as an effective picture
from a complex combination of the wave-like nature of matter (uncertainty rela-
tion), exchange interactions (Pauli principle), and Coulomb interactions within
the electronic degrees of freedom of the atoms, as discussed in atomic physics.

The most convenient starting point for studying the effects due to direct inter-
actions on the many-body physics is the approximation of pure pair interactions,
i.e., pair-wise additive interactions between the individual particles. In the fol-
lowing, only such pair interactions V({rj}) =

∑
i<j ν(ri − rj) in an Euclidean

configuration space, corresponding to the Hamiltonian

H =
∑
i

p2
i

2m
+
∑
i<j

ν(ri − rj) , (9)

are considered. This excludes the effective interactions due to the exchange
statistics and other possible M -particle interactions with M > 2 from the very
beginning. And even without invoking quantum mechanics there are many situ-
ations where this is inappropriate. As an example one may mention the effective
depletion attractions induced between two tagged hard spheres by other hard
spheres that cannot enter the depletion zones around these particles (sketch).
These effective attractions are, in general, not pair-wise additive2 although they
arise from the purely pairwise interactions between the individual hard-spheres.
This example therefore also serves to illustrate the point that the restriction to
“elementary” pair interactions does of course not exclude the possibility that
complicated many-body correlations arise and govern the packing structure and
macroscopic behavior.

Now, the general task is to calculate the partition sum, or rather (since the in-
tegration over momenta can immediately be performed) the configuration integral

1For conduction electrons in solids exchange interactions are crucial, at room temperature.
2A dilute, strongly bi-disperse mixture of hard spheres provides an exception (exercises).
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over the coordinates qi for the Hamiltonian (9). Except for a few toy models,
this is analytically completely out of reach, which leaves one with essentially
two choices. The first one is to calculate Z numerically. This replaces an ar-
bitrary generic problem in equilibrium statistical mechanics by a rather specific
technical challenge, namely the accurate numerical evaluation of an extremely
high-dimensional integral. The universal method to address this is called Monte
Carlo simulation. To get the basic idea, imagine a simple 2-dimensional example,
namely the evaluation of the area of a circle. Draw your circle inside a sand pit
of known area and let the kids randomly throw pebbles into the sand pit. At the
end of the day you collect the pebbles from inside and outside the circle area and
compare their accumulated weights to get an estimate of the ratio of the circle
area to the known sand pit area (see exercises). An alternative approach (less
suitable for the exploitation of child labor) is pursued in the following.

Pair correlations in real space: the radial distribution function

As another restriction, the following focuses almost exclusively on the discussion
of pair correlations. They contain in many cases the most salient information.
Higher-order correlations may well contain essential additional information, but
they are certainly more difficult to measure and to calculate. In fact, a framework
based on pair-interactions and pair-correlations is to date the most common and
most practical way to approach many of the formidable challenges provided by
many-body systems. But beware! In general, pair correlations will not only not
tell us the whole story, but they may even fail to provide a good qualitative
picture of the overall behavior. Concentrated hard spheres can serve as a striking
example. They interact only pairwise, yet exhibit a dramatic slowing down of
their dynamics, called a glass transition, without any obvious sign in their pair
correlations3. Similarly, complex ring-like bridges involving subtle correlations
between more than just pairs of particles are held responsible for the jamming of
granular flows (which complicates the construction of a good hourglass).

The microscopic particle concentration is

n̂(r) ≡
N∑
i

δ(r− ri) . (10)

The ensemble-averaged position-dependent “1-body” or “1-point” density (in the
grand-canonical formulation)

n(r) = 〈n̂(r)〉 = 〈
∑
i

δ(r− ri)〉 = 〈Nδ(r− r1)〉 (11)

simply contains the information how many particles are found on average in a cer-
tain region of configuration space. For a homogeneous (i.e., translation-invariant)

3In contrast, their crystalization is well detectable in the pair correlations.
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system, n(r) = n ≡ N/V it is just the overall density, which is constant. The
more interesting function to look at is then the 2-point density or pair correlation
function. It shall here be defined as 〈n̂(r)n̂(r′)〉 minus the self-correlations4,

n(r′, r′′) ≡ 〈
∑
i 6=j

δ(r′ − ri)δ(r
′′ − rj)〉 = 〈N(N − 1)δ(r′ − r1)δ(r′′ − r2)〉 . (12)

There are usually still interesting pair correlations if the system is translation
invariant. Then n(r′, r′′) is solely dependent on the relative position r = r′ − r′′.
This can be exploited by setting the origin of the coordinate system at the center
of an arbitrary particle and defining a dimensionless correlation function g(r) by

n2g(r) ≡ 1

V

∫
dr′ n(r + r′, r′)

ng(r) =
1

〈N〉

∫
dr′ n(r + r′, r′) =

1

〈N〉

∫
dr′ 〈

∑
i 6=j

δ(r + r′ − ri)δ(r
′ − rj)〉

=
1

〈N〉
〈
∑
i 6=j

δ(r + rj − ri)〉 =
1

〈N〉
〈N(N − 1)δ(r + r1 − r2)〉 ;

(13)

g(r)
r12≡r2−r1=

V

〈N〉2
〈N(N − 1)δ(r− r12)〉 N=const.

= V 〈δ(r− r12)〉 (14)

This manifestly translation invariant form of the pair correlation function encodes
the neighbor correlations in the simplest possible way, namely as a local particle
density as seen from the position of an arbitrary particle. If the system is moreover
isotropic, the argument of g(r) is actually the distance r ≡ |r|, and one speaks of
the radial distribution function g(r). It gives the probability density 4πr2g(r)/V
to find a particle at distance r from an arbitrarily chosen test particle. For a
statistically homogeneous and isotropic system the full information about the
packing structure, as far as pairs of particles are concerned (i.e. excluding the
information, with which probability three or more particles are found in a certain
correlated state), is thus encoded in a single scalar function of a scalar variable.
For hard core particles5 g(r → 0) = 0. For systems without long-range order, such
as liquids and gases, the limit g(r →∞) = 1 exists, for crystals g(r) will oscillate
indefinitely around it. For Fourier transforming g(r), it is customary to subtract
the 1, which would otherwise always produce a δ-function corresponding to the
forward scattering of a homogeneous material. The resulting function, which only
retains the non-trivial pair correlations or “pair fluctuations”, is often denoted
by

h(r) ≡ g(r)− 1 =
[
〈n̂(r)n̂(0)〉 − 〈n̂(0)〉2

]
/n2 . (15)

(The last expression should be understood as a notational convention; the self
correlations drop out.)

4The experts often tacitly use the same notation, no matter whether they want the self-
correlations in or out, which has then to be decided from the context.

5Remember that self-correlations, which would contribute a δ(r) to ng(r), were subtracted.
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Pair correlations in Fourier space: the structure factor

It should be familiar from elementary optics that the Fraunhofer interference
patterns resulting from scattering in optically dilute (i.e. essentially transparent)
media correspond to a Fourier transform of the pattern of point scatterers. The
relevant non-technical information, namely the (relative) scattering intensity with
scattering vector q, is contained in the structure factor

Sq ≡
1

〈N〉
〈
∑
ij

exp[−iq · (ri − rj)]〉

=
1

〈N〉

∫
dr′dr′′ exp[−iq · (r′ − r′′)]〈n̂(r′)n̂(r′′)〉

=1 +
1

〈N〉

∫
dr′dr′′ exp[−iq · (r′ − r′′)]n(r′, r′′)

=1 + n

∫
dr exp(−iq · r)g(r)

=1 + (2π)dnδ(q) + n

∫
dr exp(−iq · r)h(r) .

(16)

For the first equality, introduce a 1 in the form
∫
dr′dr′′ δ(r′ − ri)δ(r

′′ − rj). The
leading 1 emerging in the third line corresponds to the incoherent scattering
from 〈N〉 independent particles and results from the self-correlations in the den-
sity auto-correlation 〈n̂(r)n̂(r′)〉. The remaining terms are due to interference
and encode correlations. The δ-function amounts to the forward “scattering”
from the homogeneous contribution contained in g(r) and subtracted in h(r). It
is quite often tacitly omitted, which makes the limit q → 0 of the structure fac-
tor continuous, in agreement with the experimental procedure of using a beam
stop to block the contribution at q = 0. The last term contains the interest-
ing information in the form of a Fourier transform of the pair fluctuations. The
information encoded in small-angle scattering (q 6= 0) is the integral over the
fluctuations h(r), hence according to Eqs. (14), (15)

Sq→0 ∼ 1 + n

∫
drh(r) = 1 + 〈N(N − 1)〉/〈N〉 − 〈N〉 . (17)

Using a result from introductory statistical mechanics relating number fluctua-
tions and compressibility κT (exercises), we find the so-called compressibility sum
rule

Sq→0 ∼ 〈(N − 〈N〉)2〉/〈N〉 = nkBTκT . (18)

It provides a reverse perspective at the relation between fluctuations and re-
sponse. While fluctuations are usually understood to increase in magnitude be-
cause of a weakening of the restoring forces, which are controlled by the response
coefficient, Eq. (18) expresses the value of a response coefficient by an integral
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over the fluctuations. It thereby clearly displays the connection between a diverg-
ing correlation length, which entails a (spatially) slow decay of the fluctuations
encoded in h(r), and a divergence of response coefficients at a critical point.

In summary, the pair distribution completely determines one of the most
important experimental observables of the packing structure of a material, namely
the static structure factor. Its spatial integral moreover also determines the
materials’ mechanical strength (its compression modulus) via a sum rule, which
provides a special case of the general fluctuation-response theorem, one of the
major predictions by statistical mechanics that repeatedly reappears in various
generalizations throughout this part of the lecture.

Exercise: Argue loosely that for dilute gases, one can calculate g(r) by only
considering two particles, and that, in this limit, g(r) ∼ e−βV(r), where V(r)
represents interaction potential between the particles. Use this to show that
g(r) = θ(r − σ) for a gas of hard spheres with diameter σ and density n �
σ−3. Calculate and sketch the structure factor Sq and discuss the small angle
scattering. Sketch your qualitative expectations for g(r) and Sq for a liquid, for
a crystal, and close to a liquid-vapor spinodal.

2.2 Correlation functions and constitutive relations

Exploiting the simplifications ensuing from the limitation to pair interactions,
Eq. (18) can be taken somewhat further, to express the two constitutive equations
(or equations of state) of an interacting gas in terms of the pair distribution
function g(r).

The caloric equation of state or energy equation, Eq. (1) is readily generalized,

U = 〈H〉 = 3〈N〉kBT/2 + 〈V〉 . (19)

Noting that all pairs of particles give the same contribution to the last term, it
may be rewritten as

〈V〉 = 〈N(N − 1)ν(r12)〉/2 . (20)

Now, introducing a 1 in the form
∫
dr δ(r − r12) and using Eq. (14), this may

immediately be rephrased in the form

U = 〈H〉 =
3

2
〈N〉kBT

[
1 +

n

3

∫
dr g(r)βν(r)

]
. (21)

Similarly, the thermal (mechanical) equation of state may be extended and related
to the radial distribution,

βp = −β∂V F |T = ∂V ln
(
ZigQ

)
= n+Q−1∂VQ . (22)

The normalized configuration integral Q is defined via Z ≡ ZigQ, hence (in the
canonical ensemble)

Q =

∫
dNr

V N
e−βV({rj}) . (23)
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Due to the normalization the only volume dependence in Q is due to ν(rij), i.e.
∂V ν(rij) = ∇ν(rij) ·∂V rij. Exploiting homogeneity and writing rij = V 1/3ξij with
volume-independent matrix elements ξij, one finds ∂V rij = rij/3V and

∂VQ = −
∫

dNr

V N

N(N − 1)

2

β r12

3V
· ∇ν(r12)e−βV({rj}) . (24)

Using again the trick with the inserted delta function, and keeping the N ’s inside
the averages to allow for a grand-canonical interpretation if required, one thus
has

Q−1∂VQ = − 1

6kBTV

∫
dr r · ∇ν(r)〈N(N − 1)δ(r− r12)〉 (25)

With Eq. (14) the average can be rewritten as 〈N〉2g(r)/V , so that the correction
to the thermo-mechanical constitutive equation of the ideal gas resulting from the
potential interactions is found to be given by the average of the virial (weighted
by the pair distribution), hence the name virial equation of state

p = nkBT

[
1− n

6kBT

∫
dr g(r)r · ∇ν(r)

]
. (26)

Equations (18), (21) and (26) show how thermodynamics follows from packing
structure6. They reduce the task of deriving the thermodynamic equations of
state to integrations over the spatial density fluctuations. Or, more precisely,
the thermodynamics of a homogeneous isotropic fluid with pair interactions can
be expressed solely in terms of the two-point correlation function that reduces
to g(r) for a homogeneous system. To make any practical use of this formal re-
sult, one has to find g(r) in a continuous parameter region, which is indeed the
central task of so-called liquid-state theories and of many Monte Carlo simula-
tions. In particular, a very educated guess about the general form of g(r) and
ν(r) is indispensable to apply the result in reverse, namely to infer aspects of the
microscopic packing structure and interaction potential from macroscopic ther-
modynamic measurements. Historically, we owe much of our knowledge about
molecular interactions to this connection, and thanks to recent developments in
microscopy, it might become a fruitful path to explore even further, in the fu-
ture. An important advantage of such an approach (over attempts to address the
partition sum) is that it readily generalizes to conditions far from equilibrium,
where the usual partition sum and free energies make no sense.

2.3 Dilute gases and the virial expansion

It is intuitively obvious that encounters between particles in a dilute gas are
rare. Then, multiple collisions are probably very weakly correlated and therefore

6Three constitutive equations cannot be independent, of course, and errors of approximate
liquid-state theories are sometimes estimated (or reduced) by comparing (or superimposing)
the predictions obtained from Eq. (26) and Eq. (18), respectively.
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exponentially rare, i.e., the probability for M particles to collide simultaneously
decays like (σ3n)M , with σ a characteristic interaction range. Hence, to extract
the dominant thermodynamic effect of the interactions it suffices to calculate
the radial distribution of one particle in the field created by a second particle,
which may be located at the origin of the coordinate system, for a homogeneous
system. Given the interpretation of g(r) as a real space probability distribution,
this problem is of course equivalent to the derivation of the barometer equation,
with the known result (exercises) that g(r) is just the Boltzmann factor7:

g(r) ∼ e−βν(r) (n→ 0) . (27)

Before a more formal discussion is provided, some immediate consequences of
this shall be derived. Inserting Eq. (27) into the energy and virial equations of
state, Eqs. (21), (26), one immediately deduces the equations of state of a dilute
interacting gas8

U

3NkBT/2
∼ 1 +

n

3
T∂T

∫
dr f(r) = 1− 2n

3
T∂TB(T ) (28)

and
p

nkBT
∼ 1 +

n

6

∫
dr r · ∇f(r) = 1 + nB(T ) , (29)

respectively. The notation makes use of two important and common definitions,
the second virial coefficient

B(T ) ≡ −1

2

∫
dr f(r) , (30)

and the Mayer function
f(r) ≡ e−βν(r) − 1 , (31)

which here plays the role of the function denoted by the same symbol in the re-
lated expansion at the end of the introductory statistical mechanics lecture. The
Mayer function vanishes at large arguments for well-behaved interactions, thanks
to the subtracted 1, which renders the above integrals non-extensive (which guar-
antees convergence in the thermodynamic limit). Also notice that the Mayer-
function is the low-density limit of the pair correlation function, h(r) ∼ f(r) for
n → 0. The second virial coefficient B(T ) is an effective volume that quan-
tifies the leading corrections to the ideal gas limit of the constitutive equa-
tions. A positive/negative B(T ) (corresponding to effectively excluded/gained
volume) is indicative of a predominantly repulsive/attractive interaction, which
increases/decreases the pressure and the energy density, correspondingly.

7The symbol ∼ means “asymptotically equal”, i.e. an exact equality in the indicated limit.
8For U , use βνe−βν = −β∂βf = T∂T f and the definitions of f(r), B(T ); similarly for p.
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A more formal derivation of the above results starts from the grand-canonical
potential

pV

kBT
= lnZG = ln

∑
N

zNZ(N) , (32)

where Z(N) ≡ Z(V, T,N) is the canonical partition sum. Expanding ZG in the
fugacity z ≡ eβµ, which is a small quantity zig = nλ3

T � 1 in the classical ideal-
gas limit, one obtains a series with coefficients9 that roughly increase like powers
of 1/z. The corresponding cumulant expansion (see exercises)

lnZG = ln[1 + Z(1)z + Z(2)z2 . . . ] = Z(1)z + [Z(2)− Z(1)2/2]z2 + . . . (33)

is much better behaved. It not only has a small expansion parameter but also
small expansion coefficients for a system close to the ideal gas limit. Note that the
second order simply measures the deviation of the 2-particle partition sum Z(2)
from that of 2 independent particles, Z(1)2/2!, and corresponding cancellations
occur in all higher orders, as suggested by the observation that the leading term
of the cumulant expansion already yields the exact result for an ideal gas after
eliminating z in favor of 〈N〉,

〈N〉 = ∂βµ lnZG = z∂z lnZG = Z(1)z + [2Z(2)− Z(1)2]z2 + . . . (34)

For the leading terms in Eq. (32), i.e., neglecting O(Nn2) in “. . . ”, one then has

pV

kBT
= lnZG = 〈N〉 − [2Z(2)− Z(1)2]

z2

2
+ . . .

= 〈N〉 − 〈N〉2 2Z(2)− Z(1)2

[Z(1)z + . . . ]2
z2

2
+ . . .

(35)

The series in powers of the particle concentration n thus obtained is called the
virial expansion

p

nkBT
= 1 +B(T )n+O(n2) (36)

with the second virial coefficient

B(T ) = −V
2

[
Z(2)

Z(1)2/2
− 1

]
= −V

2
[Q(2)− 1] = −1

2

∫
dr f(r) , (37)

where Zig(2) = Z2(1)/2 was used in the second step. This result demonstrates
that it is indeed sufficient to solve a two-body problem, namely the two-particle
configuration integral Q(2), to compute the leading thermodynamic correction to
the ideal gas. While the solution of a one-body problem was sufficient to describe
a gas of N non-interacting particles, the solution of a two-body problem (which

9For the classical ideal gas Z(1) = V/λ3
T = N/(nλ3

T ) = N/zig⇒ Zig(N) = Z(1)N/N ! ≈ z−Nig .
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can always be reduced to a one-particle problem in an external field, viz. the
barometer equation) suffices to deal with N rarely colliding particles.

In summary, the corrections to the thermodynamics of an ideal gas are for
dilute systems completely contained in B(T ), which contains a two-body configu-
ration integral. Assuming the general functional form of the interaction potential
to be given — e.g. Lennard–Jones, (sticky) hard sphere, etc. — measurements of
B(T ) can be used (and have excessively been used) to determine the potential
parameters for atoms, simple molecules, colloidal particles or globular proteins.
Dilute interacting gases are not more complex than ideal gases in an external
field, i.e. the barometer equation. Calculations of higher order terms in the virial
expansion require increasing effort and are of limited use, as the whole expansion
will break down at the first really interesting occasion (e.g. a phase transition,
or long-ranged interactions, which jeopardize the otherwise plausible fast conver-
gence of the series).

Motivated by Eq. (27), one writes also the pair distribution g(r) of a dense
fluid in the form

g(r) = e−βw(r) , (38)

which can be used to define the potential of mean force w(r). With Eq. (14)

∇w(r) =
V

βg(r)
〈∇r12δ(r− r12)〉 =

V

g(r)
〈δ(r− r12)∇r12ν(r12)〉 = 〈∇r12ν(r12)〉r12=r

follows by partial integration, which explains the name and provides an alterna-
tive definition. From the last expression or — by analogy with the barometer
formula — from Eq. (38), w(r) is seen to be the reversible work needed to ap-
proach two infinitely distant particles of the fluid to a distance r through the
“background solvent” provided by all the other particles. Splitting off the corre-
sponding work ν(r) for the pair in empty space,

w(r) = ν(r) + ∆w(r) , (39)

one obtains the work — or, in fact, free energy — ∆w(r) isothermally absorbed
by the solvent during this process, i.e. the part of the reversible work solely
due to the presence of the solvent. In other words, the other particles induce an
effective interaction ∆w(r) between a chosen pair of test particles. This is further
discussed in the exercises for the example of the so-called “depletion attractions”
induced in a fluid of purely repulsive particles.

The hard sphere fluid: paradigm of condensed matter

To illustrate the above formalism, it is useful to consider a fluid of hard spheres,
for which

ν(r) =

{
∞ r < σ

0 r > σ
⇒ g(r) =

{
0 r < σ

e−β∆w(r) r > σ
(40)
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This model idealizes the most salient feature of all atomic, molecular and most col-
loidal interactions, a strong hard-core repulsion at short center-of-mass distances,
which plays the major role in determining the characteristic packing structure of
most simple fluids. This is why the hard sphere fluid may justly be called a
paradigm of condensed matter. Attractive interactions are often less pronounced
than the hard-core repulsion and can be taken into account perturbatively once
the hard sphere fluid is under control.

The only work in displacing a pair of hard spheres for distances r > σ is due
to the effective interactions ∆w(r) induced by the solvent, i.e. by the surrounding
spheres. The function ∆w(r) can therefore be identified as the free energy cost
for bringing two cavities of the size of the spheres from infinity to a distance
r. The corresponding part of the radial distribution function gc(r) = e−β∆w(r)

is therefore also known as the “cavity distribution”. Inserting Eq. (38) into the
virial equation (26) yields a relation between the pressure and the contact value
g(σ) of g(r),

p

nkBT
= 1− n

6

∫
dr e−βν(r)−β∆w(r)βν ′(r)r

= 1 +
2πn

3

∫
dr
(
e−βν(r)

)′
e−β∆w(r)r3

= 1 +
2πn

3

∫
dr δ(r − σ)gc(r)r

3

= 1 +
2π

3
nσ3g(σ) = 1 + 4φg(σ) .

(41)

Here, φ ≡ 4π/3 ·(σ/2)3n denotes the volume fraction of the spheres, and the final
g(σ) should be understood10 as gc(σ) = g(r → σ+). The take-home message is
that the equation of state of a hard sphere fluid is determined by the contact value
of the radial distribution function, i.e. by the number of collisions between the
spheres. For concentrations n ≈ ncp = 1/vcp near close-packing11, a simple free
volume consideration suggests that the radial distribution function must develop
a pointed next-neighbor peak of width ∆ ≈ (v − vcp)/3σ2 at r = σ. The area
under the peak,

4πn

∫ σ+∆

σ

dr r2g(r) ∼ C (n→ ncp) (42)

gives the number of nearest neighbors or “coordination number” C. For dense
fluids and close-packed crystals C ≈ 12. A simple estimate for the hard sphere
equation of state p(φ) is therefore obtained by parametrizing the next-neighbor
peak for r & σ, e.g. by and exponential g(σ)e−r/∆, plugging this into Eq. (42), and

10In contrast to g, gc is smooth at r = σ and no ambiguities due to discontinuity arise.
11In three dimensions, closest packing is attained in a fcc/hcp-crystal with n =

√
2/σ3 cor-

responding to φ ≈ 0.74, as conjectured by J. Kepler, proved by K. F. Gauß with respect to all
crystalline packings, and, at the end of the 20th century, by T. C. Hales in full generality.
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solving for the contact value g(σ) as a function of n = 1/v. More accurate semi-
empirical formulas for the equation of state and the free energy of the hard-sphere
fluid were proposed by Carnahan and Starling (and others) by extrapolating from
the leading terms of the virial expansion:

p

nkBT
≈ 1 + φ

4− 2φ

(1− φ)3
,

F

NkBT
≈ Fig

NkBT
+ φ

4− 3φ

(1− φ)2
. (43)

They can also be understood as results of a heuristic approach called “scaled
particle theory” and, alternatively, the Percus–Yevick expression for g(r), intro-
duced further below. Reality is more complex. Already at φ ≈ 0.58 one observes
a dramatic slowdown of the dynamics attributed to a glass transition that can
not directly be guessed by simple free-volume arguments or any other of the men-
tioned theories, but is very well described by mode-coupling theory12, a dynamic
theory that builds on liquid-state theory. Moreover, there is a fluid-crystal phase
coexistence with p(n) = constant for 0.49 . φ . 0.55, which is best addressed
by density functional theories, as outlined further below.

3 Attacking the many-body problem

3.1 Ornstein–Zernike integral equation

A central task in many-body theory is the prediction of phase transitions and the
accompanying structural changes, as these provide not only the most spectacular
applications but also the most significant and critical tests of the theory. The
challenge then is to demonstrate how long-range correlations and divergent re-
sponse coefficients emerge from a typically short-ranged interaction potential. At
a critical point or at a spinodal, the pair correlation function h(r) = g(r)− 1 has
to become long ranged such that its integral and, according to Eq. (18), the com-
pressibility Sq→0/(nkBT ) diverges within a narrow parameter range. A standard
trick to guarantee that this subtle structure is preserved in practical calculations
(which are, of course, approximate calculations) consists in introducing a new
function c(r) and its Fourier transform cq, called the direct correlation function,
via

Sq = 1 + nhq =
1

1− ncq
(44)

A small change in the density n then translates into singular behavior of Sq→0,
and a finite error in cq will only affect the precise location of the phase transition
but not wreck its singular nature. This equation, and its transformation into real
space

h(r) = c(r) + n

∫
dr′ c(r− r′)h(r′) , (45)

12W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Oxford
Univ. Press, Oxford 2009.
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are called Ornstein–Zernike (integral) equations (OZE). A formal justification of
the pertinence of this structure and the interpretation of c(r) are postponed to
the next section, while the remainder of this section first attempts to provide an
intuitive physical interpretation.

By expanding the denominator in Eq. (44) or iterating Eq. (45), respectively,
one immediately sees that the OZE decomposes the correlations in h(r) into
chains of “direct correlations” as expressed by c(r) (each ∗ stands for a convolu-
tion integral in real space or multiplication in Fourier space, respectively)

h = c+ nc ∗ c+ n2c ∗ c ∗ c+ . . . . (46)

Indeed, the intuition of long-range correlations in g(r) building up as chains of
short-range correlations in c(r) is an important guide in applications of the OZE.
For long-ranged interactions, such as a Coulomb potential, the trick also works
backwards and helps to explain how a long-ranged pair interaction gets screened
by the presence of other charges. The chain structure of Eq. (46) suggests that the
direct correlation function c(r) should be a close relative of the pair potential ν(r),
since it is the latter that helps to transmit interactions from particle to particle
and thereby generates correlations between distant pairs of particles. However,
in reality, these correlations are not merely transmitted by linear chains (there
could be branches and loops in between). Therefore, the “dressed” interaction
c(r) and the “bare” interaction ν(r), although they play similar roles, are not
identical.

There are essentially two different ways of applying Eq. (45) to a system of
interest. First, as an exact self-consistency relation that has to be solved for
the functions h and c, simultaneously. To this end, one has to supply closure
conditions to constrain the two unknowns. Ideally, one would like to choose
closures that avoid violations of any a priori known properties of g(r), but there
is no general systematic way how to find an exact closure. In practice, the self-
consistent solutions are therefore non-perturbative, uncontrolled approximations
corresponding to partial resummations of the virial series. A popular example is
the Percus–Yevick closure for hard spheres,

h(r < σ) = −1 c(r > σ) = 0 . (47)

While the first equation simply expresses the no-overlap condition, g(r < σ) = 0,
and therefore is obviously exact, the second expresses the expectation that the
direct correlation function should be of similar range as the interaction potential
itself, i.e. it is a physically motivated approximation of a priori unknown quality.
With the closure (and some effort), the OZE is analytically solvable and yields

c(r < σ) =
1

(1− φ)4

[
6φ(1 + φ/2)2r/σ − (1 + 2φ)2(1 + φ r3/2σ3)

]
, (48)

which completes the information on c(r) for an arbitrary volume fraction φ ≡
nπσ3/6 of the spheres. From this one gets pretty accurate approximations (see
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the yellow curve in Fig. 1) to the numerically exact g(r) and Sq, which are known
from Monte Carlo simulations (not shown). After integration, it also yields the
Carnahan–Starling expression for the equation of state, Eq. (43).

The second reading of the OZE is as a kind of perturbation series that es-
sentially “creates a highbrow h(r) out of a lowbrow c(r)”. This view can also
provide some insight as to what might be a good closure. For example, one may
start from the observation that, in the low-density limit,

n→ 0 ⇒ g(r)− 1 ≡ h(r) ∼ c(r) ∼ f(r) = e−βν(r) − 1 . (49)

Using this approximation for c(r) in the OZE, one obtains the first correction to
the limiting form for h(r) ∼ f(r), namely

h(r) ∼ f(r) + n

∫
dr′ f(r− r′)f(r′) . (50)

In particular, for hard spheres f(r > σ) = 0 and h(r > σ) = e−β∆w(r) − 1 ∼
−β∆w(r) is small at low densities, so that one immediately reads off

β∆w(r12) = −n
∫

dr3 f(r13)f(r23) +O(n2) , (51)

which amounts to an exponentiation of the right-hand side of Eq. (50). Inserting
the hard-sphere Mayer function and doing the integral one thus obtains the in-
teresting prediction that a pair of test spheres experiences an effective attraction
(∆w < 0), called depletion attraction, due to the unbalanced pressure exerted by
the surrounding particles (see exercises). The product of the two Mayer functions
indicates that, to leading order, ∆w(r) takes the effect of a single additional par-
ticle onto the interaction of the pair of test particles into account. The leading
order approximation therefore amounts to treating the “solvent” of other parti-
cles as an ideal gas, except for its interactions with the two test particles. This
is known as the Asakura–Oosawa approximation in colloid science. A more ac-
curate expression for ∆w for hard-sphere suspensions that takes the interactions
of the solvent particles into account, is easily reverse-engineered from Eqs. (38),
(39) and the Percus–Yevick form for g(r), of course.

To summarize, by an apparently simple rewriting (expressing h or S in terms
of c), one has thus gained a robust and efficient approximation scheme for the
otherwise forbiddingly complicated many-body problem encoded in a ridiculously
high-dimensional nested configuration integral. The OZE involves only a single
integration and the guessing of appropriate closures. With the OZE, already the
simple limiting form of the direct correlation function for vanishing density (in
fact, nothing but the good old barometer equation) yields interesting predictions
for the pair correlations and the structure factor (see Fig. 1) that stay qualita-
tively trustworthy for finite (not too large) densities n and may even give a rough
idea whereabout and how a phase transition might occur.
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Figure 1: The structure factor of a hard sphere fluid of volume fraction φ = 0.3
(purple) and φ = 0.6 (blue) as estimated by the simplistic procedure described
in the main text, which uses the hard-sphere Mayer function f(r) = θ(r− σ)− 1
as an approximation for c(r); see Eq. (50). While not quantitatively useful, it
captures the qualitative features of the exact result (and, in fact, of the structure
factor of any simple fluid) surprisingly well, as demonstrated by the comparison
with the quite accurate Percus–Yevick result, Eq. (48) for φ = 0.3 (yellow).

The following section establishes the above structure of pair correlations and
direct correlations and their relation by the OZE on a more systematic basis, the
double hierarchy of correlation functions generated from a twin couple of gen-
erating functionals generalizing the equilibrium free energy and grand-canonical
potential.

3.2 Thermodynamic perturbation theory & FDT

The formalism to be introduced in this section provides the formal grounds for
the Ornstein–Zernike equation and also for the discussion of the fluctuation-
dissipation theorem and the density functional theories in the remainder of this
part of the lecture.

The 2-lane stairway of correlations & response

This section generalizes the double hierarchy of isothermal derivatives of the
equilibrium free energy F (T, V,N) and grand-canonical potential J(T, V, µ), or
rather their volume densities f(T, n) and j(T, µ), respectively,

∂nf = µ , ∂2
nβf = ∂nβµ = (n2kBTκT )−1

−∂µj = n , −∂2
βµβj = ∂βµn = nSq→0 ,

(52)

where β and V are understood to be constant throughout. The procedure can
clearly be continued to higher order derivatives, which will however not be pur-
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sued in the following. Note that the compressibility sum rule, Eq. (18) is equiv-
alent to the statement that the second derivatives of the mutually Legendre-
transformed potentials are inverse to each other,

(∂2
nβf)(−∂2

βµβj) = (∂2
nf)(−∂2

µj) = 1 . (53)

This double hierarchy of derivatives of mutually Legendre transformed potentials
becomes a very useful tool when it is upgraded to allow for spatial variations of all
quantities involved except for the temperature T = 1/kBβ, which parametrizes
the local equilibrium. The constant volume V is used to turn all extensive quanti-
ties into local densities. Spatial variations can arise from external forces that are
represented by a potential U(r) or from the (pair-)interaction potential V(r) in
the Hamiltonian. The latter can be rewritten in terms the microscopic densities,

H =
∑
i

p2
i

2m
+ V({ri}) + U({ri}) =

∑
i

p2
i

2m
+
∑
i<j

ν(ri − rj) +
∑
i

u(ri)

=
∑
i

p2
i

2m
+

1

2

∫
drdr′ n̂(r)ν(r− r′)n̂(r′)−Nν(0)/2 +

∫
dr n̂(r)u(r)

(54)

The subtraction of Nν(0) from — and the prefactor 1/2 in front of — the in-
teraction term correct for counting the self-interactions and for double counting
all pairs, respectively. The aim is to write the free energies in a similar way, but
with the microscopic densities n̂ replaced by the ensemble averaged densities n
(without hats). It turns out that a practical approximation for the free energy
is indeed obtained by simply “forgetting the hats” in the Hamiltonian, which is
indicative of the smooth evolution of the energy functional under coarse graining,
but may initially cause some confusion.

The main difference of the local formalism thus obtained compared to the
above formulas for homogeneous systems is that partial derivatives of the free
energy densities turn into functional derivatives of the free energies themselves
and that multiplications of free energies have to be interpreted as convolutions.
(By Fourier transformation, one can always get rid of this complication). The
benefit is that derivatives generate correlation and response functions and not
merely moments of some global quantities and response coefficients, respectively.

To see how one arrives at such a formalism for the free energies, notice that
the external potential has the form of a space-dependent generalization of the
chemical potential term −µN employed for homogeneous grand-canonical sys-
tems. The familiar structure is recovered for a constant (position-independent)
potential −µ. With the notion of a spatially heterogeneous generalized chemical
potential (known as “electrochemical potential” in solid state physics)

µ(r) ≡ µ− u(r) (55)

one can therefore delegate the thermodynamic consequences of the external po-
tential to the grand-canonical potential in such a position-dependent chemical
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potential. For its functional derivatives with respect to µ(r) one finds by straight-
forward formal calculations using Eq. (54),

−δJ
δµ(r)

= n(r) ,
−δ2βJ

δβµ(r)δβµ(r′)
=

δn(r)

δβµ(r′)
= 〈δn̂(r)δn̂(r′)〉 ≡ G(r, r′) , (56)

with δn̂(r) ≡ n̂(r)−〈n̂(r)〉. Also recall that the pair correlation function G(r, r′) is
essentially the Fourier transform of the structure factor (times particle number).

A corresponding “free-energy route” then follows by a Legendre transforma-
tion of the functional J [µ(r)] with respect to µ(r)

F [n(r)] = J +

∫
drn(r)µ(r) . (57)

Since the external potential in the Hamiltonian was subsumed into the generalized
chemical potential µ(r) in Eq. (55), this so-called intrinsic free energy belongs to
the Hamiltonian without it. It clearly lacks the average potential energy

〈U({ri})〉 =

∫
dr 〈n̂(r)〉u(r) =

∫
drn(r)u(r) (58)

contained in the Helmholtz free energy for Eq. (54) but subtracted in Eq. (57).
The functional derivatives of F [n(r)] are13

δF

δn(r)
= µ(r) ,

δ2βF

δn(r)δn(r′)
=
δβµ(r)

δn(r′)
= G−1(r′, r) , (59)

so that∫
dr′′

−δ2J

δµ(r)δµ(r′′)

δ2F

δn(r′)δn(r′′)
=

∫
dr′′G(r, r′′)G−1(r′′, r′) = δ(r− r′) . (60)

It is often useful to isolate the exactly known ideal gas contribution or, more
generally, any other “known” reference free energy. Up to gauge terms O(N)
(such as the −1 inside the curly brackets), the free energy of the inhomogeneous
ideal gas reads

βFig[n(r)] =

∫
drn(r){ln[n(r)λ3

T ]− 1} (61)

with the derivatives

δFig

δn(r)
= kBT ln[n(r)λ3

T ] ≡ µig(r) ,
δ2βFig

δn(r)δn(r′)
=

1

n(r)
δ(r− r′) . (62)

13Do not worry about the distribution of r′ and r′′ onto the first and second arguments of
the functions involved. Second derivatives of free energies are interchangeable.
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This suggests to introduce the so-called excess free energy Fex ≡ F − Fig, with
the derivatives

δFex

δn(r)
= µ(r)− µig(r) ≡ µex(r) ,

δ2βFex

δn(r)δn(r′)
=
δβµ(r)

δn(r′)
− 1

n(r)
δ(r− r′) =

δβµex(r)

δn(r′)
≡ −c(r, r′).

(63)

By comparison with the second line of Eq. (54), c(r, r′) can be said to be the
dressed version of the bare pair interaction ν(r−r′) (the free energy looks like the
Hamiltonian but with n and c in place of n̂ and ν, respectively). The notation
c(r, r′) is not an accident. The quantity thus defined, or rather n(r)c(r, r′), is
seen to encode “excess” correlations beyond the δ-correlations of the ideal gas
and reduces to the direct correlation function n c(r − r′), introduced above, in
the special case of a translation invariant system. Inserting Eq. (63) together
with the (total) pair correlation function14

n(r)n(r′)h(r, r′) ≡ n(r, r′)− n(r)n(r′) = G(r, r′)− n(r)δ(r− r′) , (64)

into Eq.(60), one finds the familiar structure (exercises):

h(r, r′) = c(r, r′) +

∫
dr′′ n(r′′)c(r′′, r)h(r′, r′′) . (65)

This is, of course, nothing but the Ornstein–Zernike equation in new garment.
The earlier versions are immediately recovered for a homogeneous system with
constant density n(r) = n, for which also the definition of h(r, r′) reduces to that
of h(r− r′).

This now further clarifies the pertinence of the OZE and the notion of the di-
rect correlation function, and shows that both are deeply ingrained in the general
structure of equilibrium thermodynamics and statistical mechanics, providing a
paradigm for quantum field theories and non-equilibrium statistical mechanics.
The OZE constitutes a relation between the 2-point correlation and/or response
functions of different hierarchies, one obtained along the free-energy route, the
other along the grand-potential route. In terms of response functions, it simply
states the (mathematically trivial) reciprocity of ∂µn and ∂nµ in terms of the
excess fluctuations and response. The response of the density to an infinitesimal
fluctuation of the chemical potential is the reciprocal of the response of the chemi-
cal potential to an infinitesimal density fluctuation. As the above discussion tried
to convey, despite this seemingly trivial content, the OZE can serve as a powerful
passkey to the otherwise forbiddingly complicated many-body problem.

14Here, n(r, r′) is the usual 2-point correlation function without self-correlations.
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Fluctuation-response theorem

As already pointed out, the second derivatives of the generalized thermodynamic
functionals F [n(r)] and J [µ(r)] in Eqs. (56) and (59) can be interpreted as spa-
tially varying susceptibility functions or correlation functions, respectively. These
equations thus generalize results about the equivalence of fluctuations and re-
sponse coefficients; e.g. the relation between grand-canonical number fluctuations
and the compressibility derived in introductory texts on statistical mechanics, or
the compressibility sum rule in Eq. (18). They can also be understood as a
local, differential version of the virial equation from Sec. 2.1 for spatially vari-
able pressure. The relation between packing structure, thermal fluctuations, and
macroscopic material properties is thereby cast into a form that includes detailed
spatial information on both the structural and material side, to leading order.
To bring it into a more familiar form, which also exposes more clearly its pertur-
bative nature, it shall now be re-derived for the special case of a homogeneous
fluid. For the sake of the argument, the external perturbation is assumed to
be periodic (a Fourier component of a weak but otherwise arbitrary perturbing
electric or gravitational potential, say),

u(r) =
uq
V
eiq·r . (66)

This corresponds to the perturbation Hamiltonian U = uqn̂−q/V , with n̂q =∑
i e
−iq·ri the Fourier transformed microscopic density. Then, the resulting den-

sity field 〈n̂q〉U in presence of the perturbation U is obtained to leading order in
the perturbing field as

〈n̂q〉U =
〈n̂qe−βU〉
〈e−βU〉

∼ 〈n̂q(1− βU)〉
〈1− βU〉

∼ nq +
βuq
V

(
〈n̂q〉〈n̂−q〉 − 〈n̂qn̂−q〉

)
.

Here and in the following, quantities calculated in, or pertaining to the perturbed
state are marked with U to distinguish them from corresponding quantities in the
reference fluid. The strength of the deviations from the homogeneous reference
state are controlled by the structure factor Sq of the unperturbed system, which—
at the same time—characterizes the fluctuations and packing structure,15

∆n(U)
q ≡ 〈n̂q〉U − 〈n̂q〉 = −βuq

V
〈δn̂qδn̂−q〉 = −βuqnSq . (67)

This is a typical linear-response result. The response of the density is linearly
proportional to the perturbing field uq. The prefactor is an unperturbed equilib-
rium average independent of uq, hence characteristic of the equilibrium system.
The local susceptibility χ generalizing the overall isothermal compressibility κT

15Note the overloading of the symbols Sq (q = 0 contribution included/excluded) and δ (Dirac
delta, functional derivative and variation δn̂ ≡ n̂− n around a local/global average n ≡ 〈n̂〉).
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is the functional derivative of the local density with respect to the perturbing
potential. For a homogeneous system, it turns into an ordinary partial derivative
in Fourier space,

χ(r, r′) ≡ δn(r)/δu(r′) = −βG(r, r′) , χq = ∂nq/∂uq = −βnSq . (68)

The structure factor, the two-point correlation function of the density fluctua-
tions, is at the same time the susceptibility controlling the density change in
response to an external perturbing potential. This is the fluctuation-response
theorem, which contains the compressibility sum rule as the special case q → 0,
and which is itself a specialization (to temporally stationary situations) of the
more general (dynamic) fluctuation-dissipation theorem (FDT).

Perturbation theory

Perturbation theories can be used to systematically improve a “known” reference
system, such as the ideal gas or the hard sphere fluid. The ultimate aim would
be to calculate the excess free energy. The fluctuation-response relation derived
in the preceding paragraph concerns the linear response to (or first-order pertur-
bation by) an external potential. This can be integrated to obtain a “perturbed”
free energy that contains corrections to the reference system. Similarly, start-
ing from the first Eq. (63) (at vanishing density), one can integrate16 over the
strength α of a given fixed density profile nα(r) ≡ αn(r), namely

βFex =

∫ 1

0

dα

∫
dr n(r)µex

α (r) . (69)

The index α refers to the implicit dependence of µex
α (r) on the density nα = αn

and keeps track of the accumulating changes in the packing structure (reflected
in µex) upon increasing it. If you loosely think of the “charging parameter” α as
the amount of air pumped into a dinghy of shape n(r) to inflate it, the index α
of the generalized chemical potential µex

α (r) reflects the increase of the resisting
elastic force in the rubber upon stretching, so to say.

Starting from the second Eq. (63), instead, one has to integrate the direct
correlation function from the reference state to the state with the desired density
n of excitations. Since there are now two factors of the density, one has to
integrate twice:

βFex[n(r)] = −
∫ 1

0

dα

∫
drn(r)

∫ α

0

dα′
∫

dr′ n(r′) cα′(r, r
′) . (70)

The first integration produces a non-trivial force at a finite density nα that has
then to be integrated up over the differential response ndα to get the free energy.

16Do not confuse this with functional integration over the functional argument of Fex[n(r)].
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The dependence of the direct correlation function on α again tracks the accumu-
lating changes in the pair structure upon increasing αn from zero to n. For a
homogeneous final state, using the identity∫ 1

0

dα

∫ α

0

dα′ cα′ =

∫ 1

0

dα (1− α)cα , (71)

this simplifies to

βfex = n2

∫ 1

0

dα (α− 1)

∫
dr cα(r) . (72)

A similar game can be played by blowing up the interaction potential ν(r, r′)
rather than the external potential or the density. Starting from

δJ

δν(r− r′)
=

δF

δν(r− r′)
=

1

2
n(r, r′) , (73)

if the interaction να = ν0 +α(ν−ν0) (with ν0 = 0 in the simplest case) is switched
on by a charging parameter α, one has

Fex[n(r)] =
1

2

∫ 1

0

dα

∫
drdr′ nα(r, r′)να(r, r′) . (74)

The problem with the exact relations Eqs. (70), (74) is that cα and nα are
of course not known, a priori. As already mentioned in the context of the con-
stitutive equations, one needs expressions for the radial distribution in a whole
continuous parameter range to infer the thermodynamics from the packing struc-
ture. In some practical situations, one might be satisfied with a less ambitious
program, though. First order perturbation results are for instance obtained by
replacing the unknown pair functions in Eqs. (70), (74) by those pertaining to the
reference state. This is reminiscent of the first order corrections to energy levels in
quantum mechanics, which are given by the matrix elements of the perturbation
Hamiltonian in the basis functions of the unperturbed problem.

Further, the so-called RPA (“random phase approximation”) replaces Eqs. (70),
(74) by17

Fex[n(r)] =
1

2

∫
drdr′ n(r)ν(r− r′)n(r′) (RPA) . (75)

This ubiquitous approximation can be interpreted as arising from dropping the
α−integrations and either of the following two simplifications

n(r, r′)→ n(r)n(r′) or c(r, r′)→ −βν(r, r′) . (76)

The first is known as the decoupling approximation, which shows that the RPA
becomes exact at large distances in a (non-critical) fluid, where the correlations

17The homogeneous contribution n2νq→0 to the integrand is sometimes excluded by replacing
the density fields n(r) by their deviations δn(r) from the homogeneous reference state n(r) = n.

23



decay over a finite length scale. The second amounts to replacing the dressed by
the bare interaction. It has already been used above in a slightly upgraded version
— namely in the form c(r) → f(r) = e−βν(r) − 1, which amounts to a different
partial resummation of the virial series (see Fig. 1). There, it was motivated as
a low-density approximation. From the first interpretation in Eq. (76), it is now
seen to also hold for dense fluids at large distances |r − r′| → ∞. In particular,
Eq. (76) corroborates that c(r) and ν(r) are of similar range in a fluid, where
n(r, r′)→ n(r)n(r′) for |r− r′| � σ. This property is an important ingredient in
all successful closure schemes for the OZE of fluids.

Finally, the thermodynamic minimum property of the grand potential (the
2nd law),

δJ

δn(r)
=

δF

δn(r)
− µ(r) =

δFex

δn(r)
− µex(r) = 0 , (77)

can be exploited to venture beyond the above approximations by a variational
principle. Free energies calculated with approximate structure functions (or based
on guessed trial functions) can then a posteriori be minimized with respect to
free parameters. Similarly, the independence of the free energies of artificial
decompositions of the interactions into a reference part ν0 and perturbation part
ν − ν0 can be exploited. All of the above techniques (and many others) are used
in so-called density functional theories.

A schematic sketch of how these theories work in principle (not literally) is
provided in Fig. 2, think of a fluid of interacting particles, where the interactions
can be split into an effective hard-sphere part and a perturbation part. The
hard-sphere part is dealt with in the Percus–Yevick approximation to obtain
c(r) analytically via the Ornstein-Zernike equation, while the perturbation part
is dealt with in perturbation theory, e.g. in the RPA approximation. Finally,
the free energy obtained by integration is minimized to find an optimum value
for some artificial model parameters (schematically represented by the effective
hard-core diameter σ in the figure). To put such ideas to work in practice is an
intricate story of its own. The next section only provides a very brief outline.

3.3 Density-functional theories

Density-functional theory (DFT) is a very successful and popular framework
based on the above formalism that extends (and includes as a special case) the
well-known Ginzburg–Landau theory discussed in introductory texts, but also
theories of freezing and melting transitions (in simple fluids as well as in liquid
crystals), and the Poisson–Boltzmann and Debye–Hückel theory. Appropriately
extended versions of DFT involving particle exchange effects are very useful in
quantum mechanical many-body problems, e.g. in describing electrons and quasi-
particles in (semi-)conductors and large atoms. In the following, the emphasis is
on a few paradigmatic examples of fundamental interest in many areas of physics.
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Figure 2: Schematic of how the various perturbative and non-perturbative ap-
proximation methods introduced so far — hard-sphere-fluid, PY, OZE, thermo-
dynamic integration, RPA, free energy minimization — can (in principle) be
combined to produce approximate expressions for the free energy functional F [n]
of a dense interacting fluid with pair interaction potential ν(r).

Inhomogeneous ideal gas

Basically the only exactly known density functional of an inhomogeneous fluid
is that of the inhomogeneous ideal gas. It is obtained by replacing the constant
density n by the spatially varying field n(r) in the known bulk formula,

βFig[n(r)] =

∫
drn(r)

(
ln[n(r)λ3

T ]− 1
)
⇒ βδ2Fig

δn(r)δn(r′)
=

1

n(r)
δ(r− r′) . (78)

In the homogeneous state the fields degenerate to n(r) = n, G(r, r′) = nδ(r− r′),
and hence ng(r) = n, h(r) = c(r) = 0, and Sq ≡ 1.

Slightly inhomogeneous fluids

Even for a strongly interacting many-body system, weak fluctuations around a
homogeneous reference state may often be treated as a weakly interacting gas.
The corresponding model of a slightly inhomogeneous fluid is among the most
commonly applied models in many-body physics. It is the (classical) basis for
the quantized elementary excitations and quasi-particles that govern the world
of solid-state physics, but it is equally useful in soft matter physics. The in-
homogeneous part of the free energy in terms of the weak density fluctuations
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δn(r) = n(r)− n with |δn(r)| � n reads18

βFih =

∫
dr {n(r) ln[n(r)/n]− δn(r)} − 1

2

∫
drdr′ c(r, r′)δn(r)δn(r′) . (79)

Note that due to the assumed weakness of the fluctuations, there is no addi-
tional integration over a “charging parameter” α involved, here. This is simply
a rewriting of the second line of Eq. (63) as a differential form for infinitesimal
δn(r). The direct correlation function of the reference state is assumed to be
known from somewhere (e.g. from the OZE) or estimated via the RPA. A fa-
miliar example for such theories is the square-gradient expansion familiar from
the Ginzburg–Landau free energy for critical fluctuations, that amounts to the
additional small wave vector approximation cq ∼ c0 + c1q

2/2. (Here, c1/4β would
become the coefficient in front of the square gradient term in the free energy after
Fourier back transformation.) But many other remarkably successful DFTs —
in fact all those introduced here — are constructed in the same way.

For the inhomogeneous free energy, Eq. (79), the minimum condition, Eq. (77),
reads

βδFih

δn(r)
= βµih(r) = ln[n(r)/n]−

∫
dr′ c(r, r′)δn(r′) . (80)

This has to vanish or to balance an external potential −βu(r), if present. (The
overall chemical potential µ serves to fix the value of n.) In other words, the
spatial density profile n(r) obeys the self-consistency relation

n(r) = ne−βueff(r) with βueff(r) = βu(r)−
∫

dr′ c(r, r′)δn(r′) (81)

a position dependent effective potential, which is self-generated by the inter-
actions. This generalizes the well-known self-consistency equation, most often
first encountered in the mean-field theory for the Ising model in introductory
statistical-mechanics texts, to a spatially varying mean field. It incidentally im-
proves it by replacing the bare pair interaction potential with the direct correla-
tion function. (In return, one learns that, if mean-field theory is exact in infinite
dimensions and/or for van-der-Waals-type pair interactions that couple all possi-
ble pairs with equal strength, then the same must hold for the RPA, which further
supports the robust character of this approximation.) For vanishing interactions
the barometer equation is recovered. The calculation of weak density fluctua-
tions in an interacting fluid thus parallels the solution of the barometer equation
for an ideal gas with the additional (hard) problem of finding the self-consistent
self-generated mean field (the last term in the equation). If the direct correlation
function is not yet known (e.g. from the OZE), it is commonly replaced by the
bare potential (or by the Mayer function), in the RPA approximation. Even then,

18The last term in the curly brackets is a gauge term (actually vanishing upon integration)
kept to make later cancellations with the first term explicit.
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the Eq. (81) represents an infinite-dimensional nonlinear eigenvalue problem that
usually cannot be solved exactly by analytical means.

Example: Poisson–Boltzmann theory

A widely known and applied example for the above formalism is the Poisson–
Boltzmann theory (also known by the name Guoy–Chapman theory to chemists).
It corresponds to the RPA approximation of the self-consistency equation (81),
namely the replacement of the direct correlation function by the bare Coulomb
potential, −c(r) → βν(r) = z2`B/r. The effective potential βueff is then simply
the electrostatic potential (as felt by a charge ±ze)

βueff ≡ ±βφ(r) =

∫
dr′
±z2`B
|r− r′|

ne(r
′) , (82)

arising from the charge fluctuations ne(r) ≡ n+(r)−n−(r) in the globally neutral
plasma of particles of charge ±ze and local densities n±(r). The characteris-
tic length scale `B ≡ βe2, called Bjerrum length, is defined by the balance of
electrostatic and thermal energy for two elementary charges at distance `B (i.e.,
kBT = e2/`B).

The name Poisson–Boltzmann theory derives from the following obvious in-
terpretation. The electrostatic potential φ(r) generated by the charge density
ne(r) is a solution of Poisson’s equation

∇2βφ(r) = −4πz2`Bne(r) = −κ2[n+(r)− n−(r)]/n (Poisson) . (83)

Here, the Debye screening length κ−1, with κ2 ≡ 4πz2`Bn, appears as a natural
scale. From the Poisson equation, the Poisson–Boltzmann equation

∇2βφ(r) = κ2 sinh βφ(r) (Poisson–Boltzmann) (84)

follows by simply estimating the local densities of the positive and negative
charges on the right from the barometer formula (the Boltzmann factors) for
the self-generated potential φ(r), namely,

n±(r) = (n/2)e∓βφ(r) (barometer) . (85)

The physical significance of the Debye length is clearly revealed if one linearizes
Eq. (84). In this so-called Debye–Hückel approximation (βφ� 1) it is seen to be
the distance over which a charge mismatch is compensated by the polarization
of the surrounding plasma. As a consequence, the long-ranged bare Coulomb
interaction is screened beyond distances r ≈ κ−1 by charge fluctuations, and the
“dressed” interactions decay exponentially φ(r) ∝ e−κr/r rather than reciprocally
with the distance r (in 3 dimensional space).

The above derivation of the Poisson–Boltzmann equation clearly exposes the
mean-field character of the theory, as it treats the particles as an ideal gas in
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the self-generated mean field φ(r), without considering more subtle inter-particle
correlations, which is bound to fail for a not so weakly inhomogeneous system.

The RPA charge structure factor and fluctuation function are readily obtained
directly from the OZE expression for the structure factor, namely

Seq
RPA
≈ 1

1 + nβνq
=

q2

κ2 + q2
=⇒ −heq = 1− Seq =

κ2

κ2 + q2
(86)

The vanishing of the “charge compressibility” Seq→0 is clearly equivalent to global
charge neutrality. Fourier back transformation Eq. (86) yields the Debye–Hückel
form of he(r), which can, to the present order of approximation, be identified
with the (charge) potential of mean force βwe(r)

−he(r) ≈ βwe(r) ≈ z2`b
r

exp(−κr) . (87)

So the actual interaction potential between two charge fluctuations embedded in
a plasma is not the bare Coulomb potential, but a screened (or “dressed”) version.
It is Coulombic only at short distances r � κ−1 but vanishes at large distances
r � κ−1. A charge fluctuation is thus not visible from large distances. The
result can also be interpreted in terms of the “solvent contributions” encoded in
∆w(r) = z2`b(e

−κr− 1)/r, which suppress the tail of the bare Coulomb potential
by creating a polarization cloud or correlation hole around any net charge. The
screening by this cloud becomes more effective with higher plasma density n, but
is somewhat “washed out” at high temperature T , which is reflected in the T−
and n−dependencies of κ.

Freezing and mesophases

Other significant early examples for DFTs were the Thomas–Fermi theory for
atoms with many electrons and Onsager’s theory of a nematic transition in sus-
pensions of hard rods. Onsager’s theory19 from 1949 is particularly interesting,
since it combines two independent theoretical concepts introduced above, the
virial expansion and density-functional theory. It is a paradigm of partial order-
ing (orientational ordering without positional ordering) into a so-called micro- or
mesophase, a theme with countless variations in (soft) condensed matter theory;
and finally it is an early example for a purely entropic or “geometric” transition.
Thereby, it anticipates later theories of freezing and melting of simple fluids.

The essential physics of the nematic transition is that isotropic rods of length
L and diameter a jam up at high densities, as familiar from the mikado game.
To avoid an entropy crisis, i.e., a complete loss of conformational entropy at the
jamming density20 n = nc ≈ 1/L2a, the system sacrifices a bit of its orientational

19L. Onsager, Annals of the New York Academy of Sciences 51 (627-659) 1949.
20Onsager argues that, by virtue of the low critical volume fraction a2Lnc ' a/L, the virial

series can be truncated after the second virial coefficient and the direct correlation function can
be approximated by the Mayer function, both with negligible error, for very thin needles.
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disorder to retain some more of its translational freedom. This trick only works
if a macroscopic fraction of the molecules can agree on an average preferred
orientation: spontaneous long-range orientational order has to emerge in order
that the center-of-mass coordinates can retain their fluid-like distribution (whence
the name liquid crystal, referring to the lack of positional long-range order).

In 1979, Ramakrishnan und Yussouff used Eq. (79) along similar lines with
good success to elucidate the geometric nature of the freezing and melting tran-
sitions in classical fluids, explain the universality of the packing structure near
these transitions, and numerically compute quantitative predictions for the phase
diagram. Their analysis provided a theoretical basis for successful phenomeno-
logical rules of thumb, such as the Verlet rule and the Lindemann criterion, which
are widely used in practical applications. The Lindemann criterion states that
crystals melt if the mean-square fluctuations of the atoms exceed 10% of their av-
erage next-neighbor distance (the lattice unit), and the Hansen–Verlet rule states
that fluids freeze if the height of the main peak in their structure factor exceeds
3, thereby hinting at different underlying mechanisms for both transitions.

The DFT approach regards the crystal as a (not so) slightly inhomogeneous
fluid. The procedure can be characterized as “fishing for crystal structures”.
Briefly, one looks for instances of a non-zero order parameter nKi

≡ 〈
∑

j e
iKi·rj〉 =

O(N) (i.e. Bragg peaks) in a preferably exhaustive set of possible reciprocal lattice
vectors Ki. To this end one needs an ansatz. Typically, a sum of Gaussian
distributions of width a centered at the lattice sites {R}

n(r) = ns
(√

πa/a0

)−3
∑
{R}

e−(r−R)2/2a2

(88)

is plugged into Eq. (79) as a trial function. Local minima of the resulting free
energy other than the homogeneous fluid reference state are then searched by
varying the model parameters ns, a0, and a for a prescribed trial crystallographic
lattice {R(a0)} such as BBC, FCC, etc., and the one with the lowest free energy
is then proposed as the (most likely) equilibrium structure. While the lattice
constant a0 refers to the abstract lattice, the density ns refers to the actual mass
sitting on this lattice. If it is treated as an independent parameter (not tied to
1/a3

0, say), the ansatz can account even for vacancies.

Limitations of DFT

The above examples illustrate that DFT can be a quick and easy way to get im-
pressive results by comparably little effort — essentially by dropping the magic
hats on the densities n̂(r) in the Hamiltonian to accomplish much of the impos-
sible task of calculating the partition sum of an interacting many-body system.
The trick works remarkably well, even for some pretty complex first-order phase
transitions. Are we in paradise, then, or what are the limitations of this strikingly
simple and powerful recipe? Even though DFT exploits and builds on formally
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exact relations and admits fluctuations via the spatially varying density field
n(r), it is mean-field like (as van-der-Waals or Curie-Weiß theory), in practice.
The approximations required to address real-life applications (such as weak in-
homogeneity, RPA) usually introduce uncontrolled errors that spoil the critical
behavior at continuous phase transitions and other subtle correlations. Briefly,
from the structure of the OZE and the compressibility sum rule

nκT = βSq→0 =
β

1− ncq→0

RPA
≈ β

1 + nβνq→0

=
k−1
B

T − Tc
. (89)

So the compressibility κT can clearly be made to diverge like (T − Tc)
−γ with

γ = 1 at a critical temperature Tc ≡ −nνq→0/kB. But it remains obscure how
γ might ever acquire a non-mean-field (non-rational) value — as phenomenolog-
ically observed — without extraordinary conspiracy. This discrepancy turned
into an outstanding historical challenge for theoretical physics that was resolved
in the 1970’s, as discussed in the next section. Another limitation of DFT is
that it usually does not get rid of some guessing of trial functions or, in more
elaborate versions, at least of some free parameters. With respect to the task of
obtaining numerically precise predictions this freedom may suit the practitioner,
while it is somewhat less satisfying with respect to the task of generating insight
into fundamental physical mechanisms.

4 Critical phenomena and renormalization

4.1 Critical behavior and Landau theory

Critical exponents

Critical behavior is the thermodynamic behavior associated with continuous
phase transitions, as typically found at an end of a discontinuous phase transition
lines (such as the liquid-vapor coexistence line in a p−T−diagram). Generic ex-
ample are provided by the liquid-vapor critical point or by a periodic spin lattice
that responds paramagnetically at high temperature but turns into a ferromagnet
below the Curie temperature. The Bose–Einstein condensation from the intro-
ductory lecture is a somewhat trivial example, since the model is interaction-free.
Quite generally, one characterizes critical behavior phenomenologically by the
exponents of the power-law singularities of various thermodynamic quantities of
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interest at vanishing critical parameter t ≡ T/Tc − 1 (or t ≡ 1− Tc/T ),

CV ∝ |t|−α (90)

ψ ∝ |t|β (t < 0) (91)

χT ∝ |t|−γ (ψ> = 0;ψ< = ψ̄) (92)

h ∝ |ψ|δ (t = 0) (93)

ξ ∝ |t|−ν (94)

Broadly speaking, α characterizes the thermal anomaly and γ the mechanical,
magnetic, etc. instability, at the transition. For the liquid-gas critical point χT =
κT , and γ quantifies the divergence of the compressibility. The shape of the
critical isotherm h(ψ) is characterized by δ. The notation |t| indicates that both
positive and negative t are to be considered, and that the singular behavior above
and below the transition is quite symmetric (except for numerical factors). The
emerging order parameter that characterizes the new quality emerging “below”
the critical point is quantified by β (defined only for t < 0), and its spatial
correlations by the correlation length ξ with exponent ν. A spontaneous symmetry
breaking is often associated with the transition; e.g., a spontaneously emerging
(self-)magnetization clearly has to point in some definite but a priori arbitrary
direction, and domain walls break homogeneity but can come up anywhere.

There are two perplexing experimental facts about critical phenomena:

1. Their universality, meaning that phenomenologically very different systems
such as magnets and fluids may share the identical critical behavior (the
same critical exponents), which allows to group the wide variety of materials
and other physical systems into a small number of universality classes.

2. Up to rare exceptions, the critical exponents are irrational numbers related
by so-called exponent relations.

Landau–Ginzburg theory

A general way to deal with small order parameter fluctuations ψ at a critical
point is via Landau–Ginzburg (LG) theory, which is a DFT of the weakly-
inhomogeneous type discussed above. It assumes the existence of a Taylor expan-
sion of the intrinsic free energy (the Legendre transform of the grand potential in
the order parameter and its conjugate field) in the small deviations ψ(r) (“order
parameter”), t ≡ T/Tc − 1 (“critical parameter”) and h(r) (“conjugate field”),
around the critical point:

LG[ψ(r), h(r)] = nckBTc

∫
V

drLG , LG ≡
`2

2
(∇ψ)2 +

t

2
ψ2 +

g

4
ψ4 − hψ . (95)

For a fluid, ψ and h correspond to the distance from the critical density and
the distance from the critical chemical potential, for a magnet to magnetization
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and external magnetic field, respectively. The fields are understood to be nor-
malized to the critical values nc and Tc of the density and temperature, in order
to make them dimensionless. In fact, the whole free energy functional is made
dimensionless by the factor nckBTc and by ` being a length and g some number.
The generic form of the Landau functional can be written down for any system
of interest without a precise knowledge of the direct correlation function, simply
on the basis of the dimensionalities of the order parameter and the embedding
space, and considering only terms in the Taylor expansion that are allowed by
symmetry21. For example, for an up-down symmetric magnet no odd powers of
the magnetization are allowed.

To second order in the order parameter field, the expansion has two contri-
butions. The factor in front of the quadratic term ∝ ψ2 is the leading term of
the inverse pair correlation G−1(r, r′) for q → 0, i.e., for a homogeneous system
it is a response coefficient (the inverse isothermal compressibility κ−1

T in case of
a fluid), and in accord with Eq. (89) it is denoted by t (the dimensionless critical
temperature parameter). In the spirit of hydrodynamic theories, long-wavelength
spatial structure (to order q2) is encoded in the gradient term, which suggests
that the length ` should be on the order of the range of the direct correlation
function (roughly the interaction range22).

So, Landau–Ginzburg theory is clearly a DFT of the sort devised above to deal
with weak long-wavelength fluctuations about a reference state, namely the criti-
cal state. Upon minimizing LG (i.e. going over from the Legendre to a Legendre–
Fenchel transform), it correctly predicts the emergence of order below Tc. And it
suggests that thermodynamic behavior may be classified into universality classes
according to the topology of the embedding space and the order parameter field
and according to fundamental symmetries. So it accounts for observation (1)
from the preceding paragraph.

However, as already pointed out, such a “hydrodynamic” theory cannot pre-
dict non-mean-field values for the critical exponents. So the theory cannot ac-
count for observation (2) from the preceding paragraph. The failure of the theory
is not merely a quantitative problem, which could be overcome by a slightly im-
proved model. It is a failure in principle, due to the basic assumption that the
free energy (or the direct correlation function) may be expanded in a Taylor
series in the small parameters. It also would not help to simply replace the fac-
tor of t in the Landau functional by tγ, as this would be inconsistent with the
thermodynamically required exponent relations discussed next.

21This may sound familiar from the standard model of particle physics — a Landau theory.
22Do not worry about the precise values of any of the factors for any particular system, it

would be against the spirit of the whole approach, which aims at universal aspects.
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Scaling hypothesis and exponent relations

As pointed out above, a major shortcoming of Landau theory and density-
functional theories, in general, is their failure to properly predict the non-trivial
behavior at continuous phase transitions and critical points. It is also not easy to
repair the theory by hand, since the critical exponents are known (phenomenolog-
ically and thermodynamically) to obey a set of nontrivial exponent relations, i.e.,
they are not independent. It turns out that this observation can be rationalized
by a postulate known as the scaling hypothesis. It consists in the requirement
of a generalized homogeneity relation for the Landau free energy L, or rather its
singular part Ls,

λLs(t, h) = Ls(λatt, λahh) , (96)

where λ is a positive scale factor and at and ah are real numbers. In particular,
choosing λ = |t|−1/at , Eq. (96) reduces to

Ls(t, h) = |t|1/atLs(±1, h/|t|ah/at) ≡ |t|1/atL±(h/|t|ah/at) . (97)

Landau’s analyticity assumption for L is now replaced by regularity requirements
for the scaling function L± and its first and second derivatives at the origin,
complemented by the asymptotic condition L′± ≡ ∂xL±

x→∞∼ −x1/δ (to reproduce
the critical isotherm). Then Eq. (97) immediately produces the desired power-law
behavior for t→ 0:

CV ∝ −T∂2
tLs(t, h = 0) ∝ |t|1/at−2L±(0) (98)

ψ ∝ − ∂hLs|h=0 ∝ |t|
(1−ah)/atL′±(0) (99)

χT ∝ − ∂2
hLs
∣∣
h=0
∝ |t|(1−2ah)/atL′′±(0) (100)

ψ(h) ∝ −∂hLs ∼ −|t|(1−ah)/atL′±(h/|t|ah/at) (101)

∝ |t|1/at−ah/at(1+1/δ)h1/δ (t→ 0) .

Comparison with the definitions in Eqs. (90)-(94) moreover yields

α = 2− 1/at (102)

β = (1− ah)/at (103)

γ = (2ah − 1)/at (104)

δ = ah/(1− ah) . (105)

The fact that two independent exponents create a substantial part of the Greek
alphabet immediately explains the existence of exponent relations, such as 2−α =
2β+γ, which were historically postulated on thermodynamic grounds (exercises),
and originally motivated the scaling hypothesis, in the first place. Also note that
equipartition implies23 that for T ≈ Tc correlation volumes ξd have a free energy

23Equipartition means that each degree of freedom carries kBT/2 of thermal energy in its
fluctuations, as corroborated by an explicit calculation for the LG energy, below.
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Ls(V = ξd) equal to the thermal energy kBTc. In other words,

nckBTc

∫
ξd

drLs ' nckBTcξ
dLs ' kBTc , (106)

so that the free-energy density scales like Ls(t, h = 0) ∝ n−1
c ξ−d. Since the critical

density nc is just some constant (on the order of `−d with ` being an estimate for
the range of the pair interaction), the correlation length diverges at the critical
point such that ξ−d ∼ nc|t|1/at , according to Eq. (97). With, Eqs. (94), (102), the
so-called hyperscaling relation dν = 2 − α follows, which depends on the space
dimension d. It says that the values of the exponents are not only mutually
dependent but that there is a distinct set of such exponents for each d.

The Ginzburg criterion and the upper and lower critical dimension

The above scaling hypothesis is an entirely phenomenological approach to critical
phenomena. It postulates a specific scaling form of the free energy but does not
give a clue how it might arise from a microscopic description. One can press
Landau–Ginzburg theory a bit harder to better understand the reason for its
breakdown, and from there develop an idea about the origin of the scaling in
Eq. (96). Namely, as a DFT for small fluctuations around the critical reference
state, it is expected to fail when the (relative) fluctuations become large, which,
because of the vanishing/diverging transport coefficients, actually happens right
at the critical point. As a reference for what “large” means, one can take the
equilibrium value ψ̄ of the order parameter for t < 0 and h = 0, which follows
from minimizing the (homogeneous) Landau free energy density, namely

L =
t

2
ψ2 +

g

4
ψ4 ∂ψL=0

⇒ ψ̄ = ±
√
−t/g . (107)

Note that this implies the prediction β = 1/2. The theory’s estimate for the size
of the critical parameter region around the critical point, where this prediction
becomes inaccurate, is known as the Ginzburg criterion. The idea is the following.
When the quadratic term vanishes at the critical point, the task of confining
the order parameter fluctuations is largely left to the gradient term, since the
ψ4−valley is very flat. Using dimensional analysis, the relevant integration range
and the ∇ are estimatd by the characteristic correlation length ξ, i.e.

∫
dr →

ξd, ∇ → ξ−1. One now repeats the above argument with equipartition for the
fluctuations in correlation volume elements ξd (as effective collective degrees of
freedom near the critical point), but this time for the explicit model provided by
the LG free energy. This yields

nckBTc

∫
ξ3

dr `2(∇ψ)2 ' nckBTcξ
d−2`2δψ2 ' kBTc . (108)
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Here δψ ≡ ψ− ψ̄ is the order-parameter fluctuation around the equilibrium state.
Its strength follows as

δψ2 ' `−dn−1
c (ξ/`)2−d ' |t|(d−2)ν LG

= |t|(d−2)/2 . (109)

The last expression employs the LG prediction ν = 1/2 corroborated in Eq. (114),
below. Now, compare this with the (squared) absolute value ψ̄2 = |t|/g of the
order parameter. Both δψ and ψ̄ are functions of t, and one would expect the
Ginzburg theory to be trustworthy in a range of (small) t where the fluctuations
δψ do not exceed ψ̄ in magnitude:

δψ2/ψ̄2 ' `−dn−1
c g|t|(d−4)/2 . 1 ⇒ |t|(d−4)/2 . nc `

d/g . (110)

This is the so-called Ginzburg criterion. It shows that d = du = 4 plays the role of
an upper critical dimension. For d > du fluctuations vanish for t→ 0 and Landau
theory should hold close to (and at) the critical point. In contrast, for d < du,
Eq. (110) defines a critical region |t| . (g/`dnc)

2/(4−d) around the critical point
where Landau theory fails. In brief: “murder at the critical point — macroscopic
order parameter fluctuations kill Landau theory.” Mean-field theory thus breaks
down close to the critical point, while further away from criticality (albeit not
too far for a Taylor-expanded Landau free energy) one can trust its predictions
(sketch). As an exception to the rule, “classical” superconductors do obey mean-
field theory, since their critical region is very small due to the large off-critical
correlation length `� n

−1/3
c due to the strongly delocalized Cooper pairs.

The above estimate of the order parameter fluctuations δψ in Eq. (109) more-
over suggests that these become large in absolute terms (not only relative to ψ̄),
below d . dl = 2. This hints at an even more severe breakdown of the the-
ory below a lower critical dimension dl. This suspicion, and actually the whole
above discussion, is corroborated by a straightforward diagonalization of LG in
the harmonic approximation (exercises), by means of the Fourier modes

ψq ≡
1√
V

∫
V

drψ(r)e−iq·r ψ(r) =
1√
V

∑
q

ψqe
iq·r , (111)

LG = nckBTc
1

2

∑
q

(t+ q2`2)|ψq|2 . (112)

For simplicity, T & Tc (t > 0) and h = 0 shall be assumed. Invoking equipartition
for the eigenmodes ψq, the average strength of the order parameter fluctuations
follows from

nckBTc(t+ q2`2)〈|ψq|2〉 = kBTc . (113)

Observe that, while the average order parameter 〈ψ〉 vanishes for T > Tc, its
squared fluctuations have non-vanishing mode amplitudes

nc`
2〈|ψq|2〉 =

1

ξ−2 + q2
. (114)
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Here the parameter combination ξ ≡ `/
√
|t| is identified with the correlation

length of order parameter fluctuations, which corroborates the LG value ν =
1/2 employed in Eq. (109). The correlation length controls the spatial decay of
correlations, which becomes more evident from the Fourier back transform, the
order parameter correlation function in real space,

h(r) = 〈ψ(r)ψ(0)〉 = FT−1 〈|ψq|2〉√
V
∝


e−r/ξ

r(d−1)/2
(r →∞)

r(2−d) (ξ →∞) .
(115)

The average of the product of two values of the order parameter at two points a
distance r apart does not vanish unless r � ξ, although 〈ψ(r)〉 is zero for T > Tc.

From the last expression in Eq. (115), one can again read off the lower crit-
ical space dimension dl = 2. Correlations should decay with distance, not grow
indefinitely. The more general (perplexing) observation that hydrodynamic fluc-
tuations can cause the complete breakdown of hydrodynamic theories below a
lower critical dimension dl (not only a lack of precision, as below the upper criti-
cal dimension) has been called hydrodynamic suicide24. It is not an artifact of the
theory but due to a real physical effect. Intuitively, due to the reduced number
of constraining neighbors, long-wavelength hydrodynamic excitations trying to
restore the broken symmetries (also called Goldstone modes) become all perva-
sive at and below the lower critical dimension dl = 2 at any T > 0. That this
prevents the phase ordering phenomena observed in higher dimensions (although
not phase separation as such) for continuous order parameters in d ≤ 2, if the
interactions are not themselves long-ranged, has been proved in great generality
(“Mermin–Wagner theorem”). It implies that there are, in the thermodynamic
limit, no (proper) one- or two-dimensional crystals. This hints at the fact that
the physics of membranes and polymers is dominated by fluctuations25. Phase
transitions exactly at d = dl (much discussed by Kosterlitz, Thouless, Nelson and
Halperin) are quite subtle and have kept statistical physicists busy for decades.

There is another important subtlety related to the second Eq. (115). It is a
prediction for the cirtical behavior inside the critical region, where one should
actually not trust the prediction of the Ginzburg theory. Precise measurements
have indeed revealed small systematic deviations from the Ginzburg form for
r � ξ in d < 4 space dimensions. They have (first phenomenologically) been
rationalized by introducing a so-called “anomalous dimension” η, writing

nc`
2〈|ψq|2〉 ∝ q−2+η , 〈ψ(r)ψ(0)〉 ∝ 1/rd−2+η , ξ →∞ . (116)

The name derives from the perplexing observation that this relation apparently
violates ordinary dimensional analysis. It implies that there must be a subtle

24W. Brenig, Statistical Theory of Heat, Nonequilibrium Phenomena.
25In these cases, fluctuations are even stronger than suggested by the theorem, which does

not consider embedding space dimensions exceeding the dimension of the system manifold, but
states that, even without them, crystaline order would be destroyed by thermal noise.
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hidden dependence on the microscopic length scale ` with an odd irrational ex-
ponent η, even — or rather in particular — at the critical point, where `/ξ → 0.
This is a consequence of the strong coupling of fluctuations on all scales (large
and small) at the critical point. As a side remark, Eq. (116) implies the expo-
nent relation γ = ν(2 − η). It follows from the compressibility sum rule that
relates the order-parameter fluctuations in the form of the integral over h(r) to
the corresponding response coefficient (the isothermal compressibility). This re-
lation clearly is not limited to gases or fluids. For a magnet, one simply has
to replace particle number fluctuations 〈N2〉 by spin number (or magnetization)
fluctuations and the isothermal compressibility κT by the magnetic susceptibility
χT to arrive at the same conclusion.

4.2 Learning from toy models: the Ising chain

The discussion in the previous section has revealed that the DFT-type or “hy-
drodynamic” approach of the Landau–Ginzburg theory breaks down near the
critical point and in the physically interesting space dimensions below an upper
critical dimension (du = 4). It thereby pointed at the important role of fluc-
tuations for the critical behavior. Below the critical dimension, a critical region
develops, in which the fluctuations get so large as to invalidate Landau–Ginzburg
theory. A good strategy to gain further insight into the origin of the non-trivial
critical behavior inside the critical region, is to analyze toy models and try to
extract a general strategy for the study of critical behavior. An interesting simple
model is the so-called Ising chain. Unfortunately, it comes with two disadvantages
that make it non-generic. First, the Ising model has a discrete (not a continu-
ous) state space, so that its thermal excitations are not hydrodynamic Goldstone
modes (namely spin waves, as for most real magnets) but defects. This is sad,
but not too bad, because defects are interesting in their own right. Also, as a
consequence, the lower critical dimensions is dl = 1 instead of 2, which is nice,
since it allows to have a phase transition even for the simple one-dimensional
chain. The drawback is that a phase transition at the lower critical dimension is
a non-generic example. (It would be nicer to study the Ising model in two spatial
dimensions, which is however considerably more complicated to solve.)

Historically, Onsager’s 1944 solution of the two-dimensional Ising model with
nearest neighbor interactions settled debates about the possibility of non mean-
field values for critical exponents, and whether these can be deduced from a
partition sum, at all. In the 1950’s, the theory of Yang-Lee and Fisher zeros
finally elucidated the general mathematical mechanism how a singular free en-
ergy may emerge from a sum of infinitely many positive analytical Boltzmann
factors. A more general understanding of critical behavior and its universality
as a consequence of self-similar fluctuations emerged with the development of
the renormalization group theory in the 1970s by Fisher, Kadanoff, Wilson (who
received the Nobel prize in 1982) and others.
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The Ising model

The Ising model consists of a regular lattice of N binary “spin” variables si,
which can take the values si = ±1 (or si = ±1/2, si = 1, 0). Depending on
the application one has in mind, these variables can e.g. represent constrained
magnetic moments that can only point up or down, or the presence or absence of
atoms in a lattice model of a gas, fluid or solid, votes in an election, firing states
of neurons, etc. etc. Depending on the type and dimensionality of the lattice and
the spin interactions, the Ising model may thus serve as an idealized minimal
model for a large variety of complex physical, biological, or even social systems
encountered in the real world.

In presence of an external field h, the Hamiltonian reads

H({si}) = −J
∑

ip

sisj − h
∑
i

si (117)

Ferromagnetic and anti-ferromagnetic interactions can be realized by choosing
a positive or negative J , respectively. (More generally, one may consider a spin
glass with a non-thermal quenched distribution of interactions Jij, if one is after a
truly complex non-equilibrium model.) The interaction sum runs over all Nip in-
teracting pairs (“ip”). Two very useful idealizations are provided by the extreme
choices that the pair interactions are either (1) van-der-Waals type infinite-range
interactions (

∑
ip →

∑
i<j, Nip = N(N − 1)/2, with J → I/N to make H exten-

sive), which produces mean-field behavior, and (2) nearest-neighbor interactions
(
∑

ip →
∑
〈ij〉, Nip = Nq/2, with q being the coordination number, i.e. the

number of nearest neighbors per lattice site), which produces non-trivial critical
behavior below 4 dimensions. Writing si = σ + (si − σ) in terms of the mean
spin magnetization σ = 〈si〉 plus fluctuations si − σ around it, and neglecting
correlations of fluctuations according to

sisj = −σ2 + σ(si + sj) + (si − σ)(sj − σ) ≈ −σ2 + σ(si + sj) , (118)

amounts to treating the spins as independently exposed to the self-generated
mean field Jqσ, i.e. to the mean-field approximation, which becomes exact if the
number of neighbors q ' N − 1 (or equivalently the interaction range) becomes
extensive, which requires J → I/N with some fixed I to maintain an extensive
energy. If one calculates the magnetization σ = 〈si〉 with the mean-field Hamil-
tonian H = JNσ2 − Jσ

∑
si + sj, one recovers the usual self-consistency equa-

tion for the weakly-inhomogeneous density-functional theory, in random-phase
approximation (which is thereby also seen to be exact, in this case).

Defects and the low-temperature expansion

In the most interesting case of low dimensions and finite-range interactions, fluc-
tuations change the mean-field picture, substantially. A general strategy to ad-
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dress these effects is the low temperature expansion, which starts from the ho-
mogeneous ground state for T = 0 and counts the number of defects induced by
a slight temperature increase. Consider, for simplicity, the 1-dimensional Ising
spin chain with nearest-neighbor coupling, consisting of N spins with N −1 ≈ N
bonds. In the ground state all spins are aligned. Adding some thermal energy to
topple some spins, one creates so-called defects, namely “broken bonds” between
pairs of misaligned spins. The creation of a defect costs an energy 2J . An indi-
vidual bond between spins can either be satisfied or broken, corresponding to the
Boltzmann factors eβJ and e−βJ , and to the partition sum Z = eβJ+e−βJ for each
bond. The fraction of broken bonds in equilibrium is then simply26 (1 + e2βJ)−1.
In other words, to completely freeze out the defects, one has to cool to absolute
zero.

Arguing along these lines, one can even write down the full partition sum, by
ordering the its terms according to the the number Nb of broken bonds or defects
(or according to the associated excitation energy 2JNb):

Z(1d) = 2eNβJ
N∑

Nb=0

(
N
Nb

)
e−2NbβJ = 2eNβJ [1 +Ne−2βJ + (N/2)(N − 1)e−4βJ + . . . ]

The leading term is the Boltzmann factor of the twofold degenerate ground state
(all spins up or down), the other terms correspond to one defect, two defects, etc.,
which can occur anywhere along the chain, i.e. in Nb out of N places. This form
of the partition sum is particularly useful at low temperatures, where accurate
approximations are obtained by truncating the sum after a finite number of terms.
Note that the strategy behind this solution is that the attention is shifted from
spins with two configurations (up/down) that are mutually interacting to “bonds”
with two configurations (satisfied/broken) that are mutually independent.

Another way of looking at defects is the following. Single defects can wander
about along the chain at no cost like gas particles. Low temperatures, βJ � 1,
imply a small number Nb of broken bonds, corresponding to a defect fraction
φ ≡ Nb/N � 1. Hence the probability φ2 that two defects meet (and annihilate)
is very small, so that they can be treated as an ideal gas with entropy S =
kBNb ln(T 1/2/φ) and defect free energy27

F = U − TS = Nb

[
2J − kBT ln(T 1/2/φ)

]
. (119)

Whenever the term in brackets is negative, which is certainly the case for φ →
0 at T > 0, the free energy can be lowered by increasing the number Nb of
defects. That is, if you had prepared the system in a uniform phase (e.g. all spins

26With periodic boundary conditions, elementary defects correspond to pairs of broken bonds,
hence their fraction is 2(1 + e2βJ)−2.

27Unlike the kinetic energy, which is often dismissed as an irrelevant gauge term, the energetic
cost for defect creation matters (as does the rest mass in a relativistic gas).
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down), the chain would spontaneously split up into up- and down-domains by a
spontaneous creation of defects. For φ→ 0, the competition between energy and
entropy in the free energy is dominated by entropy. The opposite is expected in
phase separation or phase ordering processes, in which small domains grow and
coarsen until they occupy a macroscopic fraction of the sample homogeneously,
as favored by energy. This process reduces the number of defects. Note that the
limits T → 0 (βJ → ∞) and N → ∞ do not interchange: any finite chain is
ordered at T = 0, while an infinite chain is disordered at any finite T ). This is
indicative of a non-analytic structure at T = 0, N =∞, which is studied in some
detail further below.

In one dimension, defects thus proliferate at any finite temperature T > 0. In
higher dimensions, defects come as lines and (hyper-)surfaces separating domains
of spins with opposite orientation. Because of their energetic cost, these have the
tendency to contract and freeze out the enclosed minority orientation, at low tem-
peratures. As a consequence, spins of one orientation will start to dominate over
those with the other, thereby giving rise to a spontaneous magnetization, below
a finite critical temperature Tc > 0, consistent with a lower critical dimension
dl = 1, as first argued by R. Peierls in 1935.

Transfer matrix for the Ising chain

A nice way to solve the 1-dimensional Ising chain with nearest neighbor inter-
actions and periodic boundary conditions is the transfer matrix method. Its
starting point is the observation that the partition sum

Z =
∑
{si=±1}

e−βH =
∑
{si=±1}

eβ
∑
i Jsisi+1+hsi . (120)

decays into a product of structurally identical terms

Z =
∑
{si=±1}

∏
i

eβJsisi+1+βh(si+si+1)/2 . (121)

This can be rewritten using an operator T̂ with matrix elements

〈si|T̂ |si+1〉 = exp[βJsisi+1 + βh(si + si+1)/2] (122)

and matrix representation(
exp[β(J + h)] exp[−βJ ]

exp[−βJ ] exp[β(J − h)]

)
(“transfer matrix”) (123)

in the spin space with basis {|+〉, |−〉} for si = ±1:

Z =
∑
{si=±1}

〈s1|T̂ |s2〉〈s2|T̂ |s3〉 . . . 〈sN |T̂ |s1〉 . (124)
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Using the completeness of the spin basis, one has

Z =
∑
s1=±1

〈s1|T̂N |s1〉 = trT̂N = λN+ + λN− , (125)

where λ+ and λ− denote the transfer matrix eigenvalues

eβJ
[
cosh βh± (e−4βJ + sinh2βh)1/2

]
∼


eβJ ± e−βJ (βh = 0)

2 cosh βh , 0 (βJ = 0)

eβJ±β|h| (βJ →∞)

. (126)

Emergence of singularities in the double limit T → 0, N →∞

Observe that for finite βJ and βh the transfer matrix is symmetric and has posi-
tive finite entries, so there is a non-degenerate largest eigenvalue λ+ > λ−, which
is an analytical function of βJ and βh. This is the Frobenius–Perron theorem,
which is however potentially invalidated if matrix entries diverge or vanish in the
limits taken in Eq. (126). As long as the eigenvalues are non-degenerate, the
larger eigenvalue λ+ will dominate the partition sum in the thermodynamic limit
(N →∞), corresponding to the free energy per spin

βf = lim
N→∞

βF

N
= − lnλ+ =


− ln[2 cosh βJ ]− (βheβJ)2/2 (βh→ 0)

− ln[2 cosh βh] (βJ = 0)

−βJ − |βh| (βJ →∞)

.

The low-temperature limit βJ → ∞, in which matrix entries diverge or vanish,
that does indeed produce the anticipated non-analytical behavior characteristic
of a phase transition. Below, it is verified that the result stays valid if the order
of the limits is reversed. In the high-temperature limit without external field
(βJ → 0, h = 0), F reduces to −TS with S = kBN ln 2 the entropy of the
up-down degeneracy for each spin in a paramagnet. Further, taking derivatives
of f with respect to h, gives the site magnetization

σ ≡ 〈si〉 = −∂βhβf =
sinh βh√

sinh2βh+ e−4βJ
∼


βhe2βJ (βh→ 0)

tanh βh (βJ → 0)

sgn(βh) (βJ →∞)

(127)

and the susceptibility
χ = ∂h〈σ〉|h=0 = βe2βJ . (128)

The latter reduces to the well-known Curie law χ ' β (the constitutive equation
for a paramagnet) at high temperature (βJ → 0), but is enhanced compared to
the latter by a strange (non-powerlaw) divergent coefficient28 at low temperature

28This semiconductor-type “Schottky anomaly” is due to the finite energy gap between the
ground state (T = 0) and its excitations (no Goldstone modes with arbitrarily small energy).
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(βJ → ∞). It is suggestive of the unusual critical parameter t = e−βJ and the
critical exponent γ = 2, a point that is elaborated further, below.

Now, reversing the order of limits, i.e. keeping N finite and taking the limit
βJ →∞ first, and using (1 + x/N)N ∼ ex, Eqs. (125) & (126) give for small βh

Z = eNβJ
[
(1 + |βh|)N + (1− |βh|)N

]
= eNβJ2 cosh(Nβh) , (129)

hence

βf ≡ βF

N
= −βJ − 1

N
ln[2 cosh(Nβh)]

N→∞∼ −βJ − |βh| . (130)

While the ultimate result in the double limit βJ, N → ∞ is the same as found
above by taking the limit in the reverse order, it is interesting to see also the
sub-leading behavior and to analyze the non-extensive contributions for finite N .
The argument of the cosh is no longer the energy h of a single spin in an external
field, as in a paramagnet, but instead the energy Nh of N aligned spins in the
field h. This is reflected in the site magnetization

σ = −∂hf = tanhNβh ∼ sgn(βh) , (131)

and in the susceptibility

χ = −∂2
hf =

Nβ

cosh2Nβh
∼ 2βδ(βh) = 2δ(h) . (132)

They both clearly display how the singularity develops (for βJ → ∞) from
smooth functions as a consequence of spontaneous collective behavior, upon tak-
ing the thermodynamic limitN →∞. For T → 0 all spins align and are turned by
an infinitesimally small field like a single giant spin S = Nsi, hence χ = βN →∞,
for h = 0. In contrast, once the giant spin has been oriented by an infinitesimal
field, increasing h has no further effect, so that χ = 0 for h 6= 0.

The above discussion of the order of the two limits βJ → ∞ and N → ∞
corroborates the physical intuition that, for any finite J 6= 0, a finite chain will
order at T = 0, while an infinite chain will always be disordered at any T > 0. It
also provides a straightforward interpretation of Eq. (129), which is simply the
partition sum of a paramagnet consisting of a single spin of length N (shifted by
the ground state energy −JN), as could have been guessed without calculation.

The consequence of the formation of a giant spin can also be seen in the
behavior of the specific heat ch = −T∂2

Tf . Starting from Eq. (130), which cor-
responds to the taking the limit N → ∞ after βJ → ∞, reveals a tiny specific
heat

ch
kB

=
N(βh)2

cosh2Nβh
∼ π2

12N
[δ+
βh + δ−βh] . (133)

The symbolic notation δ± refers to a Kronecker−δ centered around slightly pos-
itive or negative arguments. As all spins align into a giant spin S = Nsi in the
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low-temperature limit, the free energy becomes simply the ground state energy
−J − |h|. The only remaining entropy is the non-extensive contribution kB ln 2,
as seen by setting h = 0 in Eq. (130) before taking the thermodynamic limit
N → ∞. It corresponds to the two-fold ground state degeneracy, i.e. to turning
the giant spin. For this to happen the field has to be switched off, since other-
wise S is firmly aligned along h. Accordingly, only a small, non-extensive amount
≈ kB of heat can be taken up, altogether, where the specific heat vanishes in the
thermodynamic limit. Yet, the limit in Eq. (133) is subtle and interesting. To
reveal the specific heat, the ergodicity of the ensemble has to be broken artificially
by an infinitesimally small field (|h| > 0) to single out the up or the down compo-
nent. (This is what typically would automatically happen in a real experiment.)
The giant spin can then explore the other half of the ensemble after the field is
weakened enough (h→ 0) and some heat is provided. This doubles the accessible
phase space volume, which manifests itself as a (tiny) specific heat. In contrast,
setting βh = 0 from the outset would have allowed both sub-components of the
phase-space to remain equally populated. This would have killed the specific heat
entirely, as it formally corresponds to T = ∞, meaning that the system cannot
be heated up.

Recovering the scaling hypothesis and finite-size scaling

To recover the scaling hypothesis from the above exact solution for the free energy
of the Ising chain, consider first again the logarithm of the largest eigenvalue
Eq. (126), keeping only the leading order terms in the critical parameters e−βJ

and βh for large βJ , to find

βf ∼ −βJ − e−2βJ
√

1 + (βhe2βJ)2 . (134)

The singular part fs of the free energy f per spin, which is up to a division
with the lattice constant the same as the free energy density f, is indeed of the
expected scaling form

βfs = βf + βJ ∼ −ξ̂−1ϕ(βhξ̂) = −tνϕ(βh/tν) = −t2−αϕ(βh/tγ+β) . (135)

Alternatively, starting from the expression for large (but finite) N , βJ and βh =
0, the free energy follows from Eq. (152) as

βfs ∼−
1

N
ln[(2 cosh(Ne−2βJ)]

)
∼− e−2βJ

[
Ne−2βJ −N3e−6βJ/6 + . . .

]
/2

∼− ξ̂−1φ(N/ξ̂) (βJ →∞ , N →∞)

(136)

where φ = O(1) should hold for large and small arguments, to reproduce the
critical behavior, and because the free energy density must be intensive. From
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the specific form of the free energy in Eq. (136), which is called a finite-size
scaling relation, one reads off that any finite chain already becomes fully critical
at a length-dependent finite distance from the critical point, namely as soon as
ξ̂ exceeds N , so that φ(N/ξ̂) ∼ φ(0) saturates. Or, turned the other way round,
one can find the exponent ν from comparing the free energy of finite chains of
different lengths N . By tuning the temperature such that the singular part of
the free energy density vanishes like fs ∝ 1/N , one knows that one has achieved
N/ξ̂ = constant, so that one can infer the divergence of the correlation length
with temperature. The method is not limited to the free energy, of course, and
is in fact a standard trick used in computer simulations to extract precise values
of critical exponents for systems of finite size.

4.3 Renormalization and Yang–Lee zeros

Remember that, according to the Ginzburg criterion, the critical region shrinks
to zero above the upper critical dimension, du = 4, where DFT theories remain
valid at the critical point. In that sense, a dimension d > du is as good as
infinitely many dimensions. A successful general strategy to gain access to the
true critical exponents in dimensions d < du exploits this by extrapolating the
predictions of the mean-field theory down from the upper critical dimension du

by an asymptotic expansion in the “small” parameter ε ≡ 4 − d, known as the
ε−expansion. This is how it is often done, technically.

The underlying intuitive picture, which is independent of the particular tech-
nical implementation, is the following. Above the upper critical dimension du,
there are enough neighbors to constrain the fluctuations to the molecular scale `,
so that the deterministic thermodynamic theory applies at all scales much larger
than `. Upon crossing du, fluctuations on all scales get coupled to each other and
to the microscopic scale ` in a subtle way. Simple dimensional analysis then fails
and exponents acquire complicated non-rational values, related to each other by
the scaling hypothesis and the ensuing exponent relations. The spatial struc-
ture of the order parameter fluctuations ψ(r) corresponds to a homogeneity —
in the statistical sense — of a strangely ramified self-similar or “fractal” pattern
of heterogeneities, and this is the physical origin of the mathematical structure
postulated in the scaling hyothesis.

The renormalization group (“RG”) targets and exploits precisely this non-
trivial spatial self-similarity of the order parameter fluctuations and attributes
this special symmetry (a statistical dilation symmetry) to a fixed point of a semi-
group transformation. A RG-transformation consists of two steps: an incremental
coarse graining and rescaling. Above and below the critical point (i.e. away from
the RG fixed point), the repeated application of the RG-transformation takes one
to the totally disordered and ordered states corresponding to T = 0 and T →∞,
respectively. Right at the fixed point, where the pattern of order-parameter
fluctuations is fully self-similar, the pattern remains unchanged in the statistical
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sense. In terms of the mathematical structure of the theory, this means that, in
the vicinity of the fixed point, the (generally unknown) “true” Landau–Ginzburg
functional would reproduce itself, up to some sub-leading terms, with rescaled
parameters under the RG-transformation. From the rescaling of the coefficients
of the Hamiltonian under renormalization one could then read off the critical
exponents just as one reads off the exponent γ in the ordinary Landau theory
from the coefficient of the quadratic term in L(ψ). Above du, the whole procedure
simply recovers the conventional homogeneity of the ordinary Landau functional,
with simple rational exponents, as familiar from van-der-Waals type models. But
for intermediate dimensions dl < d < du, the second, more interesting type of
self-similarity emerges, corresponding to a “non-trivial” new fixed point of the
RG-transformation and irrational numerical values of the exponents.

Decimation transformation

To see how the RG-idea works in practice, it is useful to consider a simple example,
where it is not masked by technicalities of the perturbation theory. The exactly
solvable Ising chain is a suitable toy model, although it suffers from two flaws,
namely its discrete state space and the associated Schottky anomaly, manifest
in the strange exponential form of the critical parameter t = e−βJ , and the fact
that Tc = 0, so that one cannot truly cross the critical point. The advantage is
that one can straightforwardly see how renormalization works on the level of the
Hamiltonian and the exact free energy, without perturbation calculations in the
couplings and in the space dimension.

The starting point is a new perspective onto Eq. (124). Instead of trying
to do the sum directly to obtain the free energy (which would be completely
out of reach for more interesting models), one asks the following question: how
does the partition sum evolve upon taking a partial trace? The partial trace
is the technical realization of the above mentioned incremental coarse-graining
or low-pass filtering. For the Ising chain with nearest-neighbor interactions, it
can be performed exactly and is particularly simple. Due to the completeness
of the basis, tracing out every second spin simply amounts to deleting all terms∑

s2i=±1 |s2i〉〈s2i| = 1 for integer i in Eq. (124):

ZN =
∑

{s2i−1=±1}

〈s1|T̂ 2|s3〉 . . . 〈sN−1|T̂ 2|s1〉 . (137)

This defines a new Ising chain with only half as many spins and twice the lattice
constant of the original chain. In other words, ZN can be interpreted as the par-
tition sum ZÑ of a chain with parameters that have been renormalized according
to the rule

N → Ñ = N/2 , `→ ˜̀= 2` , (138)
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and with a new transfer matrix T̃ ∝ T 2 instead of T . Specializing to the field
free case, h ≡ 0, and writing the original transfer matrix in the form

T =

(
t−1 t
t t−1

)
with t ≡ e−βJ , (139)

one observes the following transformation rule “under renormalization”:

T → T 2 =

(
t−2 + t2 2

2 t−2 + t2

)
= 2t̃−1

(
t̃−1 t̃
t̃ t̃−1

)
≡ 2t̃−1T̃ . (140)

Up to the overall factor 2t̃−1, we thus have

t→ t̃ with 2t̃−2 ≡ t−2 + t2 = 2 cosh 2βJ , (141)

for the matrix elements. This corresponds to

2K → 2K̃ = ln cosh 2K (142)

for the dimensionless coupling strengths K ≡ βJ , which shows that the renor-
malization steps can be thought of as causing a shift in temperature or inter-
action strength. In order to make the model exactly self-similar under the RG
transformation, the partition sum ZN and the corresponding free energy per
spin, f ≡ −(lnZN)/(βN), have to absorb the remaining overall factors 2t̃−1 in
Eq. (140) in each step. Their transformation rules thus read

ZN(K) = 2Ñ coshÑ/2(2K)ZÑ(K̃) , (143)

(N/Ñ)βf(K) = βf(K̃)− K̃ − ln 2 . (144)

Using 2K̃ ∼ 2K − ln 2 for large K from Eq. (142), this can be rewritten in the
form

(N/Ñ)[βf(K) +K] = βf(K̃) + K̃ (145)

which again, as in Eq. (135), identifies f(J) + J as the singular part of the free
energy. For a regular lattice with lattice unit ` in d = 1 space dimension, the
factor N/Ñ can, according to Eq. (138), be written as ˜̀d/`d, which diverges upon
repeated decimation, as does ξ̂d upon approaching the critical point, in agreement
with Eq. (152) and the discussion after Eq. (106).

The above recursion relations under decimation are called “renormalization
group equations”. They can be read as an equations of motion for the couplings
K and the free energy f under coarse-graining. By solving them, one obtains
the renormalization group flow. For example, for a ferromagnet with K > 0, any
finite coupling strength is driven towards the origin (K = 0), corresponding to
the high-temperature limit of a paramagnet, with the RG-flow given by Eq. (142)
(sketch). The limits K = ∞ and K = 0 thus correspond to the unstable and
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stable fixed point of the renormalization group equations, describing total order
and disorder of the spins, respectively. A typical chain conformation at low
temperature may have large aggregates of aligned adjacent spins, but these will
shrink in successive coarse-graining steps and eventually degenerate into single
spins pointing in arbitrary directions. After sufficiently many coarse-graining
steps, the system looks like a pure paramagnet. With a conformal mapping (in
the variable t2) to the new critical parameter

z ≡ 1− t2

1 + t2
= tanhK ≤ 1 , (146)

Eq. (142) takes the strikingly simple form

z̃ = z2 (147)

which makes the above statements most obvious (iteration clearly takes any z < 1
to zero). It moreover gives direct access to the critical exponent ν if one considers
ξ(z) near the unstable critical point (corresponding to the phase transition).
Since the decimation transformation, as a purely formal renaming exercise does
of course not change the physics of the system, it leaves the physical correlation
length invariant,

ξ ≡ ˜̀ξ̂(z̃) = `ξ̂(z) = const. , (148)

but shrinks the dimensionless correlation length ξ̂, measured in units of the lattice
constant ` that increases by ˜̀/` = 2 during each renormalization step:

ξ̂(z̃) = ξ̂(z2) = ξ̂(z)`/˜̀= ξ̂(z)/2 . (149)

The solution of ξ̂−1(z2) = 2ξ̂−1(z) is

ξ̂−1 ∝ − ln z = − ln tanhK ∼ 2e−2K ∝ t2 , (150)

where the final asymptotic result holds for large K = βJ (small t), corresponding
to the low-temperature limit. This suggests the value ν = 2 for the critical
exponent characterizing the divergence of the correlation length ξ at low T . Via
the hyperscaling relation dν = 2 − α, one concludes α = 0, consistent with a
vanishing (non-diverging) specific heat, which vindicates the choice t = e−βJ for
the critical parameter. Together with the result χ = βe2βJ for the susceptibility
from Eq. (128), which yields γ = 2, and the exponent relation γ = ν(2 − η)
deduced from Eq. (116), one finds a comparatively large anomalous dimension
η = 1. And 2−α = 2β+γ implies that the exponent β for the growth of the order
parameter below Tc vanishes, β = 0, in accord with the absence of a spontaneous
magnetization for any finite coupling strength.
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Yang–Lee and Fisher zeros and Julia sets

The above calculations have shown explicitly how thermodynamic quantities de-
velop non-analytic behavior as a function of the coupling strength and the particle
number. The same holds for the external field. It may still appear miraculous
how such singularities can come about by the apparently innocent operation of
adding positive and analytical Boltzmann factors. The explanation is provided
by the complex zeros of the partition sum that yield singularities if one takes
the logarithm to obtain the free energy. These zeros of the partition sum (in the
complex h or t plane) are known as Fisher and Yang–Lee zeros, respectively. For
the former, starting from the partition sum for finite N and βJ → ∞ at finite
field h > 0, corresponding to the free energy in Eq. (130), one has to find the
complex solutions of

Z = 2eNβJ coshNβh = 0 ⇒ βh = ±iπ(n− 1/2)/N n ∈ N . (151)

While these “Fisher zeros” lie on the imaginary βh-axis, they close up to the
origin for increasing N and eventually accumulate there in the limit N →∞ —
thereby destroying the analyticity at the origin by literally cutting the real axis
into two halves.

Similarly, starting from the partition sum for vanishing field (h = 0), and
using Ne−2βJ � 1 and (1 + x/N)N ∼ ex for large N , one finds

Z = (eβJ + e−βJ)N + (eβJ − e−βJ)N = eNβJ [(1 + e−2βJ)N + (1− e−2βJ)N ] (152)

and thus the zeros of Z in the complex “temperature” plane from

Z
N→∞∼ 2eNβJ cosh[Ne−2βJ ] = 0 ⇒ t2 = ±iπ(n− 1/2)/N n ∈ N . (153)

As for the complex h−plane, there is again an accumulation of zeros that move
in towards the real axis like scissors and eventually cut the complex t−plane into
pieces at the origin for N →∞. The zeros approach on the imaginary axis of the
complex t2−plane or along the diagonals in the complex t-plane, respectively.

While the general conclusion of the accumulation of zeros at the critical point
is correct, the problem with the above arguments is that they invoke the con-
ditions βh � 1 and Ne−βJ � 1, which, if extended to the complex plane, are
in conflict with the values of the larger zeros (which are thus not reliable). The
conformal mapping Eq. (146) is helpful in this respect, and moreover convenient
for establishing a connection between the zeros of the partition sum and so-called
Julia sets. It maps the imaginary axis of the complex t2−plane onto the unit
circle of the complex z−plane. Of the four special points t2 = ±i, 0,∞ the first
two are invariant under the conformal mapping (they go to z = ±i), the remain-
ing two (corresponding to the low temperature fixed points for the ferro- and
antiferromagnet, respectively) go to z = ±1. Equation (146) therefore also maps
the complex zeros of the partition sum in the complex t2−plane, which all lie on
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the imaginary axis, onto the unit circle in the complex z−plane. Starting with a
ring made of two spins,

Z2 = tr T̂ 2 = 2(t−2 + t2) = 0 ⇒ t2 = ±i ⇒ z = ±i , (154)

one easily finds the z−values corresponding to the partition-sum zeros of long
Ising chains (N = 2m) by applying the inverse of the decimation transformation,
Eq. (147). For this procedure, it is not necessary to require t to be small. By
repeatedly taking the square-root of z (i.e. simply dividing its phase angle by
two), one thus finds the exact complex “Yang–Lee” zeros

z = (±i)1, . . . , (±i)1/2m = e±iπ/2, . . . , e±iπ/2
m

. (155)

They accumulate densely on the real axis at the low-temperature fixed point at
z = 1 (corresponding to t → 0, K → ∞, T → 0, respectively), in the limit N ,
m → ∞. And it definitely matters whether you are on the left or right of the
point where the real axis is pinched, or, in other words, which limit is taken first,
N →∞ or T → 0.

The RG transformation maps all the zeros in Eq. (155) onto each other. They
cannot leave the unit circle in the complex z−plane, which is invariant under
the transformation. It represents the border between the points that iterate to
the trivial fixed point z = 0 (corresponding to the paramagnet with t2 = 1,
K = 0, T → ∞) under the renormalization transformation, Eq. (147), and
those iterating to infinity (which have no obvious physical interpretation for the
Ising chain). One can ask the general question, how such “border sets” or Julia
sets look like for more complicated transformation rules, e.g. for z → z2 + c.
This produces somewhat more impressive examples, which provide a nice and
intuitively appealing hint at the (hidden) complexity of generic interacting many-
body systems and their complicated but universal critical behavior. One will
naturally wonder for which values of c these sets are connected and thus cut the
real axis into analytically disjointed regions. This leads one to the study of the
famous Mandelbrot set (the complex numbers c for which the iteration does not
diverge when started from z = 0). Colorful illustrations and historical remarks
can e.g. be found in the book “The Beauty of Fractals” by H.-O. Peitgen and P.
H. Richter.

5 Stochastic Thermodynamics

The preceding chapter has demonstrated some procedures to get hold of the
critical fluctuations that elude the usual density functional theories. Another
way to approach the problem is to simply add the fluctuations by hand to the
hydrodynamic theories such as Landau–Ginzburg theory or other DFTs. This
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yields so-called fluctuating hydrodynamic theories. For example, starting from
the Euler–Lagrange equation

1

nckBTc

δLG
δψ
≡ ∇ ∂LG

∂∇ψ
− ∂LG

∂ψ
= `2∇2ψ − tψ − gψ3 + h = 0 (156)

for the GL free energy, Eq. (95), one can add a random force term (in addition to
or in place of h) that represents the thermal noise and drives the hydrodynamic
equation. Beyond critical phenomena, which are not pursued any further here,
such an approach is very useful for many things, in particular for describing the
mesoscopic dynamics of many-body systems, which is neither fully deterministic,
as the macroscopic behavior, nor quite as wild as the molecular chaos — and
therefore often quite interesting. It is also a good starting point for dealing
with fluctuations and dynamics very far from equilibrium and reveals the real
power of statistical mechanics, beyond its ability to provide thermodynamic state
equations. The paradigmatic case to be discussed below is a system near thermal
equilibrium, with a strong scale separation between the slow modes explicitly
resolved in the dynamic equation, and the fluctuating “microscopic” degrees of
freedom summarily represented by the thermal noise. Close to equilibrium, there
is no need to actually microscopically calculate the dynamics of the thermal
forces. Their statistical properties follow from fundamental symmetries and the
structure of the Gibbs ensembles. Einstein’s seminal paper on Brownian motion
provides a perfect illustration of this efficient and convenient approach.

5.1 Einstein 1905: Brownian motion in a nutshell

Einstein’s paper29 from 1905 nicely summarizes, in a nutshell, the various levels
of a statistical mechanics descriptions of a many-body system with a scale separa-
tion between microscopic and mesoscopic degrees of freedom, namely thermostat-
ics, thermodynamics, and stochastic thermodynamics. It exploits the “middle-
world”30 character of Brownian motion, intermediate between the molecular and
the macroscopic world, to arrive, in a few lines, at the simplest versions of the
corner stones of equilibrium stochastic thermodynamics.

Brownian motion, as Einstein puts it, is the thermal motion of particles sus-
pended in a solvent, which are small enough to jiggle perceptibly, but large enough
to be visible in the microscope. Einstein proposed to study this motion as a probe
of the atomistic structure of the (then) invisible molecular world, i.e. to exploit
that it provides a scaled-up and more tangible model of the invisible molecular
world. Indeed Perrin received the Nobel prize in 1926 “for proving atoms real”
on this basis, which eventually quieted protests by those calling themselves “En-
ergetiker” (Ostwald and some other anti-atom freaks in Leipzig). Paraphrasing

29Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in
ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, Leipzig 17 (1905) 549

30Mark Haw: Middle World, the restless heart of life and matter, MacMillan Science.
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Einstein, one could also say that Brownian motion is the thermal motion of dis-
persed particles small enough to jiggle perceptibly, but large enough to admit
some coarse-graining over the solvent degrees of freedom. In fact, Einstein actu-
ally describes the solvent in the simplest possible hydrodynamic approximation
(known today as the “Markov approximation”), which greatly simplifies his task.
This statement may justly prompt the question how this could ever lead to a
proof of the atomic structure of matter, and a proper historian would moreover
note that what is commonly called the Einstein relation, was first derived by
an Australian researcher named Sutherland. But then, you should of course not
mistake our common myths of scientific discovery for a proper history of science.

Step 1: thermostatic force balance

Einstein argues against the view — still common at the time — that suspended
particles may be dismissed in thermodynamics. He insists that N particles, each
of volume v◦, which are suspended in a solvent at small number density n� v−1

◦
represent an (almost) ideal gas and therefore give rise to an osmotic pressure31

p = nkBT , (157)

thereby exerting a finite, albeit small, thermodynamic force if spatially restricted.
In presence of a constant volume force K (e.g. gravity, K = −mgez) acting on
the particles one thus has the force balance

n(r)K = ∇p(r) , (158)

or, using Eq. (157) in Eq. (158), the barometer equation

p(r) = n(r)kBT ∝ eK·r/kBT = e−mgz/kBT (159)

in isothermal equilibrium (T = const.).

Step 2: detailed balance of thermodynamic fluxes

In a second step, Einstein suggests to reconsider this stationary balance of ther-
modynamic forces as a dynamic balance of the thermodynamic fluxes excited by
these forces, namely the diffusion and drift currents

−jdiff = jdrift ≡ nvdrift . (160)

He employs two (linear-response) constitutive equations that were well estab-
lished by 1905 to express the currents in terms of the forces: Fick’s first law of
diffusion32 (from 1855),

jdiff = −D∇n , (161)

31A truly thermostatic approach would use the gas constant and count matter in moles.
32Combining it with mass conservation, ∂tn+∇ · jdiff = 0, yields Fick’s 2nd law, Eq. (165).
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and Stokes’ law for the viscous drag on a suspended particle in uniform motion
(from 1851),

vdrift = K/ζ . (162)

The two response coefficients or susceptibilities, ζ and D, characterize the friction
and diffusivity of the Brownian particles, respectively. Eliminating K and n
between the force and flux balance equations (158) and (160), one infers the
Sutherland–Einstein relation33,

D = kBT/ζ . (163)

This is a relation between two transport coefficients appearing in two general-
ized hydrodynamic equations, namely the above equations by Stokes and Fick.
What made Eq. (163) historically remarkable, is the appearance of the Boltz-
mann constant kB (then still called Planck’s constant) originally written in the
form of the gas constant divided by Avogadro’s number (then called Loschmidt
number). The presence of this truly microscopic quantity in Eq. (163) meant that
it could be deduced from measurements of macroscopic (or at least mesoscopic)
quantities, alone. Intriguingly, Eq. (163) thereby indicated a relation of the ki-
netic coefficients D, ζ in the hydrodynamic equations by Fick and Stokes to the
microscopic, molecular world and its discrete atomistic structure (the ratio D/ζ
would vanish in the continuum limit of infinite Loschmidt number). In the joints
between some unsuspicious smooth continuum equations lurked, much to the dis-
may of Ostwald, the grotesque face of the atomic world. In this sense, Eq. (163)
is reminiscent of another famous relation put forward by Einstein at about the
same time, E = ~ω, and played an equally important role for establishing the
discrete atomistic structure of matter. In contrast to the latter, Eq. (163) was
not postulated but derived — namely from the (at the time neither new nor gen-
erally accepted) assumption that thermodynamics applies to suspended particles.
There was no reference, though, to the molecular structure of the solvent that
Einstein tacitly coarse-grained away.

Step 3: stochastic thermodynamics

The explicit link to the underlying thermal fluctuations is established at the
end of Einstein’s paper, which undertakes a probabilistic derivation of the dif-
fusion equation based on a particularly simple model for Brownian fluctuations,
nowadays called a random walk. A random walk is just a caricature of the real
physical Brownian motion. But Einstein appeals to the universality of the hydro-
/thermodynamic laws, anticipating that the simplest conceivable representative
of a huge universality class of microscopic systems will do as good a job as any
other for his purpose.

33“Stokes–Einstein” if ζ = 6πηa for a particle of radius a in a solvent of viscosity η is used.
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Einstein’s starting point is the interpretation of the particle concentration
n(x, t) as probability density to find a single Brownian particle (for simplicity in
one space dimension) at position x. Leaving its normalization for later, and using
common sense, he expresses its value at time t + τ as a function of its values at
time t,

n(x, t+ τ) =

∫
dy n(x+ y, t)ϕτ (y) . (164)

All information that is left about the solvent in this Master– or Chapman–
Kolmogorov -type equation, as it would be called today, is now hidden in ϕτ (y).
This auxiliary “jump probability” for the particle to move a distance y in time
τ should be sharply peaked around y = 0, normalized, and (for a homogeneous
space) symmetric. By imposing these natural conditions on ϕτ (y) and Taylor
expanding n(x, t) with respect to τ and y, Einstein circumvents the construction
of an explicit microscopic dynamical theory of the process. Matching the lead-
ing order terms on both sides (work it out as an easy exercise!), he recovers the
diffusion equation

∂tn(x, t) = D∇2n(x, t) (165)

along with a stochastic expression for the diffusion coefficient

2D =
1

τ

∫
dy y2ϕτ (y) =

〈∆x2〉
τ

=
〈∆r2〉
τ d

. (166)

Einstein understands the expressions for D (with d the spatial dimension) to be
independent of the time interval τ considered, as long as τ is large compared to
a molecular collision time34, despite the dubious limit “τ → 0”. As suggested
by Eq. (166), and as you will verify in greater detail in the exercises, a crucial
point is that the mean-square displacement (MSD) per time unit τ remains a
well defined quantity at least for a large range of values of τ , quite in contrast to
the velocity 〈|∆x|〉/τ , which some experimentalists had been trying to measure.
What they naturally expected to be a “good” variable on the basis of Newton’s
law of motion turned out to be meaningless, which reveals the crucial importance
of a good theory (or a good intuition) about what is worthwhile to be measured,
in particular for phenomena governed by strong fluctuations.

Coda: Langevin’s noisy hydrodynamics

Three years after Einstein’s paper appeared, Langevin wrote a paper where he
proposed another very elegant way of dealing with the fluctuations of Brownian
particles. He simply started from the equation of motion for a particle with fric-
tion and added a random force to it, in the simplest case (if inertia is negligible):

ζẋ = ξ (t > 0) . (167)

34Actually, τ even has to be larger than the (much longer) solvent relaxation time.
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This is exactly the strategy pursued in Eq. (156), above, however not for a field
equation (the GL Euler–Lagrange equation) but for Stokes’ equation for a particle
suspended in a solvent. Ornstein worked out the properties of the random “noise”
force ξ(t). Start, for example, from Einstein’s final results, Eqs. (163), (166),
which link the Brownian fluctuations to diffusivity, or temperature and friction:

2Dτ = 〈[x(τ)− x(0)]2〉 = 〈
(∫ τ

0

dt ẋ(t)

)2

〉 Eq. (167)
=

∫ τ

0

dt

∫ τ

0

dt′
〈ξ(t)ξ(t′)〉

ζ2
. (168)

For this to hold at all times τ , the noise needs to be δ−correlated according to

〈ξ(t)ξ(t′)〉 = 2kBTζδ(t− t′)
TTI
=⇒ 〈ξ(t)ξ(0)〉 = 2kBTζδ(t) . (169)

In the second line, the time-translation invariance (TTI) or “stationarity” of
equilibrium averages has been exploited to shift the origin of the time axis35 to
t′. The fact that the product of the friction coefficient and temperature quan-
tifies the strength of the thermal noise is general and goes under the name of
fluctuation-dissipation theorem (FDT) “of the second kind”. Note that it speci-
fies the statistical properties of the noise completely, if the latter is assumed to
have no systematic contribution (i.e., vanishing mean 〈ξ〉 = 0) and to be Gaus-
sian. The Gaussian distribution is not only a technically convenient assumption.
It may (loosely) be motivated by the fact that the noise represents the sum of
a large number of weakly correlated molecular collision events, as familiar from
the arguments put forward for justifying the canonical ensemble. Thereby, the
construction of an explicit dynamical model of the solvent degrees of freedom has
again (as in Einstein’s discussion) been avoided.

The resulting model defined by Eqs. (167), (169), rests on two major ideal-
izations, though, namely that memory can be neglected both in the friction and
in the thermal noise. The assumption that the thermal force fluctuates wildly
with no temporal correlations, and that Stokes’ law, originally derived for sta-
tionary forcing, can be applied to such unruly force protocols, amounts to the
so-called Markov approximation, which is also implicit in Einstein’s derivation.
It entails that the Fourier transform of Eq. (169), the so-called “power spectrum”
(sometimes symbolically written as 〈ξωξ−ω〉)∫ ∞

−∞
dt 〈ξ(t)ξ(0)〉eiωt = 2ζkBT (170)

is flat, i.e., it contains all frequencies with equal strength, and is therefore called
white noise. With this particular form of the noise correlations, the laws of
Brownian motion as discussed by Einstein may completely be recovered from
this intuitive model. (You may try to show this as an exercise.) In reality,
the plateau in the power spectrum will extend over a finite frequency range

35First write 〈ξ(t)ξ(t′)〉 = 〈ξ(t− t′)ξ(0)〉, then rename t− t′ as t.
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only, and the δ−function in Eq. (169) will have to be replaced by a symmet-
ric function with a finite width. Its time symmetry, or time-reversal invariance
(TRI), is guaranteed by the time-translation invariance of equilibrium averages,
which entails time-reversal invariant auto-correlations 〈ξ(t)ξ(0)〉 = 〈ξ(|t|)ξ(0)〉
via 〈a(t)b(0)〉 = 〈a(0)b(−t)〉 = 〈b(−t)a(0)〉 for a ≡ b ≡ ξ.

Fluctuation-Dissipation & Green-Kubo relations

Some further, equivalent formulations are easily derived from Eqs. (167), (169).
Integrating Eq. (169) over the whole time axis or, equivalently, taking ω → 0
in Eq. (170) one immediately gets the following integral representation for the
friction coefficient,

ζ =
1

2kBT

∫ ∞
−∞

dt 〈ξ(t)ξ(0)〉 TRI
=

1

kBT

∫ ∞
0

dt 〈ξ(t)ξ(0)〉 = lim
ω→0

〈ξωξ−ω〉
2kBT

(171)

and, using Eqs. (163), (167), the diffusion coefficient

D =

∫ ∞
0

dt 〈ẋ(t)ẋ(0)〉 . (172)

Here, the time-translation invariance of equilibrium averages has again been ex-
ploited to shift the origin of the time axis to t′, and the time symmetry of the
correlator to restrict the integration range to positive times. Such “Green–Kubo
relations”, expressing a transport coefficient as a time integral over correlation
functions of equilibrium fluctuations (or, equivalently, as the low frequency limit
of their power spectral density), are generally very useful for non-invasive mea-
surements of transport coefficients, i.e., without actually forcing a system, in
numerical simulations or experiments. Also notice the formal analogy of the last
expression in Eq. (171) with the so-called sum rule in Eq. (18), which expresses
a transport coefficient (the compressibility) in terms of a spatial “low-frequency”
limit of a correlation function (the structure factor).

Further, integrating Eq. (169) only from −t to t, and using Eq. (167), one
finds

2
kBT

ζ
=

∫ t

−t
dt′ 〈ẋ(t′)ẋ(0)〉 = 〈x(t)ẋ(0)〉 − 〈x(−t)ẋ(0)〉 , (173)

and with the time asymmetry of 〈x(t)ẋ(0)〉 = −〈x(−t)ẋ(0)〉

1

ζ
sgn(t− t′) =

1

kBT
∂t′〈x(t)x(t′)〉 . (174)

Rewriting this once more, using the causal response function or susceptibility
〈δx(t)/δf(t′)〉 (that vanishes for t < t′) and the integrated Stokes equation

x(t) =

∫ t

−∞
dτ f(τ)/ζ ⇒ δx(t)

δf(t′)
=

1

ζ
θ(t− t′) (175)
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yields the fluctuation-dissipation theorem (FDT) “of the first kind”

〈δx(t)/δf(t′)〉 =
θ(t− t′)
kBT

∂t′〈x(t)x(t′)〉 , (176)

which is a dynamic generalization of the fluctuation response relations discussed
earlier in the lecture.

There are a couple of interesting (and quite general) observations to be made,
here. First, the step function θ(t) reconciles the causality of the response function
with the time-reversal invariance (TRI) of the equilibrium correlation function
〈x(t)x(t′)〉 and the corresponding time asymmetry of its time derivative. Sec-
ondly, the signum function in Eq. (174) suggests a sign change of the friction term
in Eq. (167) upon time reversal, a property referred to as “passivity” (friction
sucks — always, you cannot escape it, not even by running backwards in time),
which is a reformulation of the second law. The discontinuous jump in the friction
function is clearly a consequence of the Markov approximation of a δ−correlated
thermal noise. In the more general non-Markovian case, where one takes into
account the persistence (or memory) of the thermal forces, the discontinuous
friction function ζ−1sgn(t− t′) is replaced by a continuous time-asymmetric fric-
tion function 2iχ′′(t) defined via 2iχ′′(t−t′)θ(t−t′) ≡ 〈δx(t)/δf(t′)〉. The FDT (in
particular in the frequency domain) is then often written in the form of Eq. (174),
in which case the the causal step function remains hidden in the definition of χ′′.

5.2 Langevin, Ornstein, Fokker–Planck, and all that

The above crash course in stochastic (Brownian) dynamics provides a broad
overview over the key results in the field, but may provoke a number of ques-
tions. The calculation of time-dependent correlation functions 〈a(t)b(0)〉 was
apparently achieved without ever explicitly implementing the equilibrium aver-
ages 〈. . . 〉. In fact, the symbol 〈. . . 〉 acquired a new meaning (averaging over all
possible realizations of the thermal noise force ξ) in the Langevin picture, and it
would be desirable to understand its precise relation with the canonical definition
in the Gibbs ensembles. Moreover, one would like to make the relation between
the Langevin picture and the diffusion equation more explicit and to see how
such equations emerge from a microscopic many-body description in terms of the
Liouville equation. All this is what the present section is about.

Irreversible Thermodynamics

When setting up a Langevin equation, one practically always has some “hydro-
dynamic” or “thermodynamic” phenomenon in mind that is subject to some
thermal noise if considered on a mesoscopic scale. The dynamics should be dis-
sipative, since dissipation provides the link to thermal noise. To illustrate the
point, one may retrace Einstein’s steps, once more. Step 1 is about thermostatic
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force balances, a topic that was formalized in the first two chapters of this lec-
ture. Step 2 enters dynamics in the sense of dissipative fluxes, but it simply takes
over the dynamic equations from Fick and Stokes. Stokes arrived at Eq. (162)
by solving the hydrodynamic equation of motion of a slowly flowing liquid (the
Stokes equation), which is essentially a mechanical-engineering problem. Also
Fick’s equation (161) and the diffusion equation (165) emanating from it with a
little help from the continuity equation,

∂tn(r, t) +∇ · jn(r, t) = 0 , (177)

are such hydrodynamic equations. So how does one arrive at these hydrodynamic
or thermodynamic (as opposed to thermostatic) equations, in the first place? As
it turns out, Fick’s first law may be obtained as an immediate consequence of
Stokes’ mechanical law v = K/ζ and the static force balance36 nK = −∇p
invoked by Einstein, which allows to write the particle flux in the form

jn = nv = −∇p
ζ

= −(∂np)T
ζ
∇n = − 1

κTnζ
∇n = −D∇n . (178)

Fick’s gradient diffusion coefficient can thus be expressed as

D =
1

κTnζ
=

D0

κTnkBT
. (179)

The second equality employs the Einstein relation for the diffusion coefficient
D0 = kBT/ζ of a single particle. Indeed, Fick’s D is seen to reduce to D0

(only) for a dilute suspension, for which the isothermal compressibility takes the
ideal-gas form κT = (nkBT )−1. Generally, the gradient diffusion coefficient D
in a dense suspension will thus differ from D0 as much as the compressibility is
affected by mutual particle interactions. (Actually, an improved version of this
discussion would additionally account for hydrodynamic interactions between the
particles, which are not contained in Stokes’ law.)

Another (“more thermodynamical”) way of looking at Fick’s first law is ob-
tained by the Gibbs–Duhem relation dµ)T = n−1dp, namely

jn = −∇p
ζ

= −D0n

kBT
∇µ , (180)

which suggests gradients of the chemical potential µ(r, t) in place of osmotic
pressure gradients as the driving force behind the phenomenon of diffusion. This
alternative perspective also naturally emerges from the free energy of an isother-
mal isochoric system, and betrays Fick’s law as a direct manifestation of the
second law of thermodynamics. Namely, normalizing the free energy to a fixed
volume V , and interpreting the total differential as a time derivative, one has

df)T,V = µ dn ⇒ ∂tf = µ ∂tn ⇒ ∂tf+∇·µ jn = jn ·∇µ . (181)

36Mind the minus sign: now the pressure is meant to cause (not balance) the particle flux.
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The last step again made use of the continuity equation (177) for the particle
density to recast the free energy balance into the form of a continuity equation
with a source term. Since the divergence vanishes when the equation is integrated
over the total volume of a closed system (it represents an outflux of free energy),
the change of the total free energy is entirely due to this source term:

Ḟ (t) =

∫
V

dr ∂tf(r, t) =

∫
V

dr jn · ∇µ . (182)

Using Eq. (180), this becomes

Ḟ (t) = −
∫
V

dr
D0n

kBT
(∇µ)2 ≤ 0 , (183)

which says that diffusion consumes free energy and is therefore a dissipative pro-
cess in the sense of the second law. Starting from a macrosopically inhomogeneous
initial state, in which the system is only in a local (or partial) equilibrium, it pro-
ceeds spontaneously to bring the system towards global equilibrium. Gradients
in the chemical potential or in the osmotic pressure can thus be identified as the
natural thermodynamic driving forces behind the diffusion flux jn. Also note that
the dynamic free energy F (t) owes its time dependence to the dynamics of the
relevant system variables, is bounded from below, and obeys Ḟ (t) ≤ 0. It thereby
guarantees global stability and thus qualifies as a so-called Ljapunov functional.

You may still wonder how it is possible at all that equilibrium thermodynam-
ics or equilibrium statistical mechanics admit and even describe time variations.
Above, the time dependence was smuggled in via the continuity equation. Ac-
cordingly, the dynamic free energy F (t) is a unique and immediate generalization
of the thermostatic free energy. And the irreversible thermodynamics thus ob-
tained is a theory for processes close to equilibrium, essentially for relaxations
into equilibrium. Such a straightforward procedure is not available for systems
far from equilibrium, which may never reach or not even approach equilibrium,
such as systems in non-equilibrium steady states (a persistently sheared fluid) or
aging systems (a fluid that vitrifies after a temperature quench).

The foregoing discussion explains the origin of the historical names “irre-
versible thermodynamics” or “nonequilibrium thermodynamics”. But one should
actually better speak of generalized hydrodynamics or more simply thermody-
namics if the latter notion had not been abused so much for something that
had better been called thermostatics. In any case, the theory describes ther-
modynamic processes by deterministic laws, driven by (free) energy differences,
as familiar from classical (continuum) mechanics. It is blind to the atomistic
thermal fluctuations that are the ultimate microscopic reason for the dynamic
relaxation to equilibrium and the second law. To bring them explicitly into the
game, one can proceed along various ways.
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Onsager regression

Within the Gibbs ensemble formalism, one may quite generally deal with time-
dependent equilibrium correlation functions in the same way as with spatially
varying equilibrium correlators that were introduced in the preceding chapters to
generalize the (originally homogeneous) thermostatic relations. If global equilib-
rium is relaxed and replaced by local (in time) equilibrium, this amounts to the
assumption of an adiabatic time-scale separation between the processes estab-
lishing the thermal equilibrium between the hydrodynamic variables at a certain
instant in time and the slow drift of their corresponding equilibrium values that
eventually establishes global equilibrium. Historically, the generalization from
spatially to temporally inhomogeneous systems is known as Onsager’s regression
hypothesis, which is essentially equivalent to the classical FDT. In words, it states
the dynamic equivalence of the relaxation of hydrodynamic variables (if not ex-
cited too far from their equilibrium values) with that of spontaneous thermal
fluctuations or equilibrium correlations. The intuitive idea is that a moderate
hydrodynamic excitation could have been caused by a spontaneous fluctuation,
so that it should decay in the same way. Consider a variable M̂ of vanishing
mean 〈M̂〉 = 0 and a weak constant external field h that couples to it via a small
perturbation term −M̂h in the Hamiltonian. The phase space density and aver-
age with and without the field are defined as ρh, 〈. . . 〉h and ρ, 〈. . . 〉, respectively.
With this notation, the static fluctuation-response theorem, see e.g. Eq. (67),
reads

〈M̂〉h = χh = 〈M̂M̂〉βh . (184)

The response is linear in the perturbing field with the linear susceptibility χ
given by the correlator 〈M̂M̂〉 over kBT . This result was originally derived by
expanding the Boltzmann factor for the perturbed density to leading order in the
perturbation Hamiltonian, namely

ρh ∼ ρ(1 + βhM̂) = ρ(1 + M̂〈M̂〉h/〈M̂M̂〉) . (185)

The funny rewriting in the last expression utilizes Eq. (184) and serves to upgrade
it to dynamic processes. The formal trick goes as follows. Assume that the field
h has been constant since t = −∞ but is switched off at t = 0, i.e., h→ hθ(−t).
Next, interpret all M̂ without arguments as M̂(t = 0) and note that 〈M̂(t)〉 = 0
can be dropped, while 〈M̂(0)〉h is a finite constant. Then, multiplication of
both sides of Eq. (185) by M̂(t) and a phase-space integration formally yields an
equality for t ≥ 0 that can be identified with the regression theorem:

〈M̂(t)〉h(t)

〈M̂〉h
=
〈M̂(t)M̂〉
〈M̂M̂〉

(t ≥ 0) (186)

The proper meaning of 〈M̂(t)〉h(t) is

〈M̂(t)〉h(t) = 〈M̂(t)〉|〈M̂(0)〉=〈M̂〉h , (187)
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i.e. it denotes the free decay of 〈M̂(t)〉 from its initial value 〈M̂(0)〉 = 〈M̂〉h to
zero. Hence, both sides of Eq. (186) are understood to decay from 1 to 0.

That this purely formal hocus-pocus makes sense is clarified by the explicit
discussion of the special case of an Ising spin, M̂ = s. The conditional expectation
value 〈s(t)〉s(0)=±1 of the spin at time t ≥ 0 is easily expressed in terms of its
possible values s(0) = ±1 at time t = 0, and so is the time-dependent two-point
correlation function of the two:

〈s(t)〉 = (1/2)〈s(t)〉s(0)=1 + (1/2)〈s(t)〉s(0)=−1

〈s(t)s(0)〉 = (1/2)〈s(t)〉s(0)=1 − (1/2)〈s(t)〉s(0)=−1 .
(188)

Here, the conditional probabilities are turned into absolute probabilities through
multiplication with the probabilities for the initial spin values. Without an ex-
ternal field, s(0) = ±1 both occur with probability 1/2. In presence of the weak
field hθ(−t), these probabilities change to e±βh/(eβh + e−βh) ∼ (1 ± βh)/2 to
leading order in h, hence

〈s(t)〉h(t) = 〈s(t)〉s(0)=1(1 + βh)/2 + 〈s(t)〉s(0)=−1(1− βh)/2 . (189)

The interpretation of the average on the left is the same as in Eq. (187). Using
〈s(t)〉 = 0 for the unconditioned spin in zero field, Eq. (189) can be written as

〈s(t)〉h(t) = 〈s(t)s(0)〉βh , (190)

which, with 〈s(0)〉h = βh and 〈s2〉 = 1, indeed corroborates Eq. (186).

Fluctuating hydrodynamics à la Ornstein–Uhlenbeck

The same conclusions may be reached in a somewhat more explicit way, along
the route pursued by Langevin and Ornstein, already outlined above. It starts
from the observation that hydrodynamic (thermodynamic) equations of motion
describe dissipative relaxations to equilibrium. One may quite generally blame
some sort of friction force for bringing all systematic motion to rest at late times,
so that the equations are all of the type “initial dynamics halted by friction” and
“initially provided energy dissipated to heat bath”. But things are not really
totally at rest, in thermal equilibrium, they fluctuate thermally, which is the
ultima ratio for speaking of temperature, entropy, and the second law. Friction,
as a systematic manifestation of the stochastic dynamics on the molecular scale,
is thus just one side of the medal. The thermal forces introduced in the Langevin
equation are its other side, namely its non-systematic, random side, which was
wiped under the carpet in the deterministic hydrodynamic description of the
preceding paragraph. The effect of the fast molecular dynamics onto the slow
(almost) deterministic thermodynamic or hydrodynamic variables can thus be
decomposed into a systematic part (friction) and a random part (noise), which
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are firmly tied to each other by the requirement of thermal equilibrium (in the
form of the FDT of the 2nd kind).

To see how these words can be turned into equations, consider a simple generic
example, i.e., one that is less singular (and therefore less pathological) than
Eq. (167). Let p be a hydrodynamic variable, which might in fact be the momen-
tum of the Brownian particle that moves according to Eq. (167) at late times.
The simplest possible hydrodynamic equation of motion ṗ = −γp has no other
systematic force than the mandatory friction −γp with γ = ζ/m. Its solution is
p(t) = p(0)e−γt. As usual, the macroscopic theory is meant to predict the future
from the past, corresponding to positive t. Now enter the noise ξ:

ṗ(t) = −γ p(t) + ξ(t) (t > 0) . (191)

Obviously, if all systematic parts of the thermal force are contained in the friction
term, the average of the remaining noise force must vanish,

〈ξ〉 = 0 (“noisy noise”) . (192)

Moreover, any systematic influence of the hydrodynamic past p(t < 0) onto the
present noise ξ(0) should be prohibited if no such memory of the past is showing
up in the systematic friction force in the first place,

〈ξ(t)p(0)〉 = 0 (t > 0) (“truly noisy noise”) . (193)

This is equivalent to saying that the energy and momentum supplied to the bath
are dissipated instantaneously — obviously an idealization for long time scales37.
Together with the instantaneous (local in time) form of the friction, this state-
ment constitutes the so-called Markov condition. It exploits the Brownian scale
separation for degrees of freedom pertaining to objects that are large and slow
compared to the atoms of the solvent or heat reservoir. At late times, the random
force represents the cumulative effect of a large number of essentially stochastic
(and only weakly correlated) sub-processes. One thus appeals to the central limit
theorem and stipulates that ξ(t) is, at any time t, a Gaussian distributed random
variable. This assumption is very convenient, as Gaussians are specified by their
first two moments and can always be integrated. It has proven to work very well
for a large number of applications close to equilibrium but failed spectacularly
for financial markets and other phenomena very far from equilibrium.

An important side effect of the introduction of the noise is the possibility
to reinterpret the averages 〈. . . 〉 in terms of the ensemble of realizations of the
stochastic process ξ(t). While this allows for generalizations of the averaging
procedure far beyond the one of standard equilibrium statistical mechanics (one
could for example include external driving forces or even some internal “activity”

37In reality, momentum is locally conserved in the solvent, so that it has to be dispersed by
(fast) propagating sound modes and (slow) diffusive shear modes, which takes some time.
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of the particles themselves, which would prevent the system from ever relaxing to
equilibrium), it is of course most interesting to find the conditions under which
the two are consistent. This is the next task.

The first requirement is that the known deterministic hydrodynamic equa-
tions should emerge on average. Note that this is an immediate consequence of
Eqs. (191), (192). The second requirement is more subtle. Equilibrium averages
must be time-translation invariant or stationary in the same way as spatial av-
erages are translation invariant in spatially homogeneous systems. This implies,
for example, 〈p(t)p(t′)〉 = 〈p(t− t′)p(0)〉 and

〈p(t)p(0)〉 = 〈p(0)p(−t)〉 = 〈p(−t)p(0)〉 = 〈p(|t|)p(0)〉 (TRI) , (194)

with the last expression clearly exposing time-reversal invariance or “time sym-
metry” of auto-correlation functions as an immediate consequence of stationarity.
The time symmetry of the auto-correlation 〈p(t)p(0)〉, in turn, implies the time-
asymmetry of its time derivative,

〈ṗ(t)p(0)〉 = −〈ṗ(−t)p(0)〉 = −〈p(t)ṗ(0)〉 . (195)

as promptly checked by renaming t → −t (hence ∂t → −∂t). Now, multiplying
the Langevin equation (191) by p(0) and averaging, one finds with Eq. (193)

〈ṗ(t)p(0)〉 = −γ〈p(t)p(0)〉 (t > 0) . (196)

The correlator obeys the deterministic hydrodynamic equation. Since the left side
is symmetric and the right side is asymmetric under time reversal, an extension
to negative times is only possible if one side is multiplied by the sign-function,

〈ṗ(t)p(0)〉 = −γ sgn t 〈p(t)p(0)〉 (∀t) . (197)

The obvious solution is 〈ṗ(t)p(0)〉 = 〈p2〉e−γ|t|, which is now perfectly acceptable
for an equilibrium correlation function and establishes the link between TTI and
the time asymmetry of the friction function. Take another time-derivative to find

〈ṗ(t)ṗ(0)〉 = 2γ δ(t)〈p2(0)〉+ γ sgn(t)〈ṗ(t)p(0)〉 . (198)

Hence, altogether, the proper extension of Eq. (191) to negative times must be38

ṗ(t) = −γ sgn(t)p(t) + ξ(t) ⇔ ∂|t|p = −γp+ ξ

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(0)〉 = 2γ 〈p2〉δ(t) = 2ζkBTδ(t) .
(199)

Assuming that p denotes the momentum of a Brownian particle, the equipar-
tition theorem and the definition γ = ζ/m were used, in the last step. Note

38To evaluate the noise correlation, use the equation of motion with Eq. (198) and TTI.
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that the friction function is now indeed found to be time asymmetric, as al-
ready anticipated above. For Gaussian noise, which is completely specified by
its first two moments (average and variance), the model definition is complete
and bears the name Ornstein–Uhlenbeck process. In the exercises you check that
the model reproduces the static averages of the canonical ensemble and moreover
allows for a quick and easy calculation of equilibrium time-dependent correlation
functions, and that even non-equilibrium averages and correlation functions can
be calculated by imposing non-equilibrium initial conditions. You discover that
the solutions of Eq. (199) are stationary for very long times (or for canonically
averaged initial data). In fact, up to trivial variations, the Ornstein–Uhlenbeck
process is the only stationary Gaussian Markov process, which makes it quite a
celebrity.

The last Eq. (199) is again a formulation of the FDT of the 2nd kind. Onsager
regression, which is a formulation of the FDT of the 1st kind, follows from it in
the same way as already illustrated for the overdamped limit (which amounts to
dropping the inertial contribution ṗ), in the preceding section. The comparison of
the preceding two paragraphs underscores again that, on the Markov level, fluc-
tuations may be described either explicitly by the Langevin formalism for some
stochastic variables, or implicitly by hydrodynamic equations for their correlation
functions. This link is considered in more detail in the next two paragraphs.

The Fokker–Planck equation

The Gaussian property of the noise distribution is not destroyed by a linear
coordinate transformation. It is therefore transmitted from the noise correlations
that drive the dynamics to the solutions of the linear Langevin equation (199).
Therefore, the conditional distribution ρ(p, t|p0) to find values of the variable p
at time t, given an initial condition p = p0 at time t = 0, must be Gaussian at all
times. One can thus immediately write down the general form of the solution:

ρ(p, t|p0) =
1

[2π∆(t)]1/2
e−[p−p̄(t)]2/2∆(t) . (200)

The explicit expressions for the dynamic first and second moments,

p̄(t) ≡ 〈p(t)〉p0 = p0e
−γ|t| (201)

∆(t) ≡ 〈[p(t)− p̄(t)]2〉p0 = 〈p2(t)〉p0 − p̄2(t) = mkBT (1− e−2γ|t|) , (202)

follow from Eq. (199). The deterministic initial condition is recovered at short
times but forgotten at late times, where the conventional canonical equilibrium
distribution is approached:

lim
t→0

ρ(p, t|p0) = δ(p− p0) ,

lim
t→∞

ρ(p, t|p0) = (2πmkBT )−1/2e−p
2/2mkBT .

(203)
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An average over the initial condition p0 would turn the conditional distribution
into the momentum distribution ρ(p, t). With a Maxwellian initial momentum
distribution, the latter is thus also Gaussian, otherwise it still becomes Gaussian
at late times.

It is an interesting question how to get the distribution function in cases when
it is not Gaussian and possibly a much richer object than suggested by its first two
moments, e.g., for a nonlinear Markov processes with a more general drift term
v(p) in place of −γp. The answer is provided by an equation of motion for the
distribution function that can be derived for any Markovian Langenvin equation,
the Fokker–Planck equation. The task is essentially to go from the “Heisenberg”
picture adopted in the Langevin equation to the corresponding “Liouville” or
“von Neumann” picture. For the very simple Eq. (167), Einstein’s derivation of
the diffusion equation (165) already achieves this task. If a (possibly nonlinear)
drift term v(p) is included in the Langevin equation, also the diffusion equation
acquires an extra drift term. The general derivation can be accomplished with
the help of the functional calculus, introduced earlier in the lecture. Here we take
a shortcut, instead, sticking to the above simple example of the linear Ornstein–
Uhlenbeck process, for which the Fokker–Planck equation for ρ(p, t|p0) is easily
reverse-engineered from its known solution, Eq. (200), by differentiation:

∂tρ = γ∂p(pρ) + ζkBT∂
2
pρ or ∂γtρ = ∂v(vρ) +

kBT

m
∂2
vρ . (204)

This structure survives in the case of vector variables p and nonlinear Markovian
Langevin equations,

∂tρ = −∂pv(p)ρ+ ζkBT∂
2
pρ . (205)

As a concrete example, consider a Brownian particle in an external force field
f(x) = −∂xU(x), with the vector (x, p) generalizing the momentum coordinate p
and v(p, x) = (p/m, f(x)−γp) generalizing the drift term −γp. For the harmonic
force f(x) = −kx, this is a Brownian harmonic oscillator. Its Fokker–Planck
equation for the density ρ(x, p, t) reads

∂tρ+ ∂x(pρ/m) + ∂p[f(x)− γp]ρ = ζkBT∂
2
pρ . (206)

One recognizes the Liouville structure of a continuity equation ∂tρ+ div(vρ) = 0
for the trajectories in phase space, streaming with velocity v = (p/m, f) albeit
with some of the momentum-space “velocity” f destroyed by friction −γp, and
the non-streaming but mass-conserving diffusion term representing the Langevin
noise, on the right. Its convex and concave regions act as sinks and sources for
the probabilty density, respectively, acting to erase any spatial modulations in
the distribution.

In summary, the dynamic evolution of the probability distribution of fluctu-
ating hydrodynamics variables (i.e., variables described by Markovian stochastic
equations) is itself governed by a deterministic hydrodynamic equation.
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The Smoluchowski equation

The Fokker–Planck operator is generally not self-adjoined, so that it is difficult to
say much about its solutions, in general. The situation is much better for its over-
damped version, which is obtained from the corresponding Langevin equation
after dropping the inertial term ṗ against the friction, i.e.,

��AȦp+ ζẋ = f(x) + ξ(t) . (207)

This matters so much that the corresponding Fokker–Planck equation for ρ(x, t),

∂tρ = ∂xD(∂x − βf)ρ or ζ∂tρ = ∂x(kBT∂x − f)ρ , (208)

deserves its own name and is called the Smoluchowski equation. For vanishing
force, f(x) ≡ 0, it reduces to the simple diffusion equation of a single particle. Its
straightforward extension to many (1014, say) mutually interacting colloidal par-
ticles — with inter-particle forces fi(x) = −∂iV({xj}) — is still a very challenging
equation, though. The variable x becomes a high-dimensional vector {xj}) con-
taining all particle coordinates and the diffusion coefficient turns into a matrix
Dij({xi}) that still depends on the mutual hydrodynamic interactions39 between
the particles and hence all their positions. The full equation for the N−particle
density ρ({xi}, t) then reads

∂tρ =
∑
ij

∂i ·Dij · [∂j − βfj]ρ . (209)

It is the standard microscopic description for a wealth of problems in colloid and
polymer physics.

Going back to the single-particle case with an external potential U(x), note
that the equation can be cast into the form of a continuity equation

∂tρ+ ∂xj = 0 (210)

for ρ(x, t), which is in then nothing but the ordinary 1-point particle density
n(x, t). The current

j(x, t) ≡ ρv = −ζ−1(kBT∂x − f)ρ (211)

of the conserved density flows with the velocity

v(x, t) ≡ −ζ−1∂x(kBT ln ρ+ U) = −ζ−1∂xµ(x, t) , (212)

and is seen to be driven by gradients of the generalized chemical potential

µ(x, t) = kBT ln ρ+ U = µig(x, t) + U(x) . (213)

39In the Markovian approximation, these are idealized as an instantaneous action at a distance
with a complicated spatial structure that follows from the stationary Stokes equation.
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The generalized chemical potential is thus (again) recognized as a neat way of
defining a thermodynamic force −∂xµ that can be treated on par with real (me-
chanical, electrical, . . . ) forces. Thanks to the mass (or probability) conserv-
ing property of the diffusive source term the thermal fluctuations can thereby
smoothly be integrated into a (continuum) mechanical formalism in the form of
the entropy −kB ln ρ, so that the Liouville structure of a streaming conserved
phase space density is restored.

Note that the generalized chemical potential has the form of a dynamic free
energy U−TS. More precisely, the chemical potential density µρ integrated over
the configuration space is the excess free energy over the equilibrium free energy
F0, which governs the relaxation from a non-equilibrium initial condition to the
global equilibrium state ρ0(x) = e−βU(x)+βF0 . Exactly as in the above discussion
of irreversible thermodynamics, it is the Ljapunov functional

∆F (t) = kBT

∫
dx ρ ln(ρ/ρ0) =

∫
dxµρ−F0 =

∫
dx (kBT ln ρ+U)ρ−F0 (214)

generalizing the equilibrium free energy that guarantees the global stability of
the equilibrium state. Because of the minimum condition for the equilibrium free
energy, ∆F (t) is non-negative, whereas its time derivative (at constant T and V )
cannot be positive,

∆Ḟ (t) =

∫
dxµ∂tρ = −

∫
dxµ∂xj =

∫
dx j∂xµ = −ζ−1

∫
dx (∂xµ)2ρ ≤ 0 . (215)

For the first equality, one makes use of the normalization of the density and of the
fact that the potential U(x) and the equilibrium free energy F0 are conservative
potentials, for the second and fourth of Eqs. (210), (212), respectively, and for
the third one of the fact that nothing flows across the system boundaries.

The Smoluchowski equation thus describes fully irreversible dynamics and
inherits its stability from Eq. (183). This special feature is not shared by a
general Fokker-Planck or Langevin equation, nor by a Smoluchowski equation
driven by an external (or internal) non-conservative dynamic field. Although they
can also still be recast in the form of a Liouville continuity equation for the phase
space density, they admit much richer dynamics than monotonic relaxations into
equilibrium, dynamics violating Eqs. (215). A particularly important example is
provided by so-called non-equilibrium stationary states (NESS), defined by the
vanishing of the time derivatives in the theory (i.e. ∂tρ ≡ 0), which implies that
the divergence of the current vanishes but not (necessarily) the current itself. A
colloidal suspension constantly sheared at fixed shear rate is an example.

Without non-conservative driving forces, Eqs. (214), (215) assert that the
long-time limit of solutions of the Smoluchowski equation is always the equilib-
rium state, where the current itself vanishes. In view of such perfect conduct
it should not come as a surprise that the Smoluchowski–operator LS with only
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conservative potential forces can be made self-adjoined. This is achieved by a
simple normalization of the distribution ρ with the square root of its equilibrium
form ρ0(x) ∝ e−βU(x) (the proportionality factor is irrelevant), namely

ψ(x, t) ≡ ρeβU/2 , (216)

as one might have guessed from the following rewriting of the Smoluchowski
equation

∂tρ ≡ LSρ = D∂x(∂x + βU ′)ρ = D∂xe
−βU∂xe

βUρ , (217)

which suggests to define the tilted derivative e−βU/2∂xe
βU/2. Indeed, the dynamics

for the normalized density ψ is straightforwardly shown to be given by

∂tψ = DeβU/2∂xe
−βU/2e−βU/2∂xe

βU/2ψ , (218)

with a manifestly self-adjoined dynamic operator. Moreover, with yet some
more rewriting, this equation can be recast into the form of a supersymmetric
Schrödinger equation in the imaginary time variable τ = −i~Dt,

i~∂τψ = (−∂2
x + Ususy)ψ , Ususy ≡ (βU ′/2)2 − βU ′′/2 . (219)

This establishes a 1:1 relation between solutions of the 1-particle Smoluchowski
equation and the Schrödinger equation for supersymmetric potentials Ususy. Since
the Schrödinger equation is a subject for another lecture, and the supersymmet-
ric form of the potential implies that every solution will find a supersymmetric
partner, this seems to be a suitable point for a happy end.
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