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1 Introduction

Polymers are long threadlike molecules assembled from a very large number of
identical units, the so-called monomers. In the 1920’s, Hermann Staudinger first
conjectured such a chain structure for very massive molecules that he termed
“macromolecules”—against the prevailing view of a chemically less ordered,
globular aggregate structure. Some classical examples are e.g. polyethylene,
polybuthadine and polystyrene, which are industrially synthesized with their
degree of polymerization N ranging up to millions of monomers per polymer,
but countless other everyday materials from food and beauty products to plastics
and synthetic tissues are just variations of the same basic theme.

Polymer physics has traditionally focussed on very flexible polymers that ad-
mit a highly coarse-grained description in terms of effective bead-spring models
and exhibit universal physical behavior that can be explained using methods
from statistical mechanics such as the renormalization group and scaling argu-
ments [?]. Flexible polymers are characterized by small energetic barriers for
rotations of their backbone bonds compared to the thermal energy kBT , and
entropy obliges them to attain a highly coiled equilibrium conformation if im-
mersed in a solvent. The typical spatial extension of such a coil, estimated by
the mean-square fluctuations 〈R2〉 of the end-to-end vector R, is about

R ≡ bNν � L , (1)

much smaller than its contour (or “chemical”) length L = bN . Most interest-
ingly, in the thermodynamic limit (N → ∞) only three universal values of the
exponent ν occur (ν ≈ 3/5 “swollen”, ν = 1/2 “ideal”, ν = 1/3 “collapsed”),
depending on the solubility of the polymer, or the “solvent quality”. Here, we
encounter a first example of a profound statement that may be substantiated by
a physical reasoning along the lines of thought pursued in these lecture notes,
while being hard to grasp from—since essentially independent of—the chem-
istry of the sequence. In contrast to the universal exponent ν, the number N
of effectively independent backbone sections of (“Kuhn”) length b depends on
chemistry; notably on the backbone stiffness. The scaling in Eq. (1) suggests a
universal self-similar, or fractal spatial mass distribution on intermediate scales
between the “microscopic” scale b and the “phenomenological” overall coil size

1



R. Experimentally, this property is most naturally portrayed in reciprocal space
as an intermediate asymptotic power-law form Iq ∝ q−1/ν of the scattering in-
tensity Iq as a function of (the modulus q of) the scattering vector q.

Recently, there is increasing interest into problems for which the success-
ful but highly coarse-grained approach developed for flexible polymers fails,
either because the polymers of interest are too stiff or because they are stud-
ied under conditions where they reveal structural properties not represented in
the classical models. Many of these instances appear in applications involv-
ing biopolymers. Notorious examples are the nonlinear mechanical response of
DNA, which has turned out to both participate in and allow to probe certain
protein-DNA interactions [?]; or force transduction through the cellular scaffold
structure known as the cytoskeleton, which is a major mechanism by which liv-
ing cells explore their environment and react to external mechanical stimuli [?].
Biopolymers are, as a rule, substantially stouter than synthetic polymers. For
example, with a mass of 43 kDa, the actin monomer is certainly of macro-
molecular size by itself, and under physiological conditions tens of thousands of
these globular proteins can self-assemble into a plait rope of several nanometers
thickness, the actin filament (“F-actin”). This model semiflexible polymer is
the main building block of muscles and of the cytoskeleton of most animal and
plant cells, contributing vitally to their remarkable passive and active elastic
response. Microtubules have similar dimensions, while their bending stiffness
is even higher, comparable to that of a human hair. They serve as stiff tracks
for intermolecular transport by motor proteins and play a crucial role in cell
division.

Yet, at finite temperature, none of these polymers should be imagined as a
rigid rod. Even a very stiff polymer such as a microtubule exhibits small self-
affine thermal contour fluctuations: if one end is clamped along a fixed spatial
direction, the transverse excursions R⊥ of the other end have a typcial range

R⊥ ≡ L3/2`−1/2p � L . (2)

A proper definition of the persistence length `p that controls this range, can be
found in Section 2.2. An intuitive characterization is provided by recklessly eval-
uating Eq. (2) for L ' `p. It then tells us that `p is on the order of the contour
length that thermal fluctuations will typically bend into a roughly half-circular
shape. The “thermal roughness” of the polymer contour implied by Eq. (2) is
what distinguishes a stiff polymer from an infinitely rigid rod, i.e. a purely me-
chanical object. This equation plays a similarly important role for the physics of
stiff polymers as Eq. (1) does for flexible polymers, despite its trivial rational ex-
ponent 3/2. The large persistence length keeps the amplitude of the transverse
fluctuations extremely small compared to L for a microtubule and often smaller
than the subsection of the contour that matters for actin and even for DNA. The
detection of the anisotropic self-affine conformational correlations predicted by
Eq. (2) is therefore somewhat less straightforward than for those implied by
Eq. (1). They do not give rise to a very pronounced deviation of the end-to-end
distance or the scattering function Iq from their stiff-rod limits. On the other
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hand, dynamic scattering experiments and real-space tracking techniques (e.g.
using small attached tracer beads) reveal a characteristic sub-diffusive power-
law growth δR2

⊥(t) ∝ t3/4, directly related1 to Eq. (2). Moreover, in semidilute
F-actin solutions, the same self-affine fluctuation spectrum has been identified
as the origin of the scaling G0 ∝ c7/5 of the rubber plateau in the frequency de-
pendent shear modulus with actin concentration c. This relation ought to hold
even better for the osmotic pressure—for concentrations at which both ideal
rigid rods and flexible coils of identical backbone dimensions would behave as
an ideal gas! In this way, cells might optimize their elasticity and osmotic re-
sistance using a minimum amount of scaffold material compared to what would
be required with either flexible chains or completely rigid rods. Additionally, by
exploiting the highly anisotropic mechanical compliance of stiff polymers, which
will be deduced from Eq. (2) in Section 2.3, the cytoskeleton can be strong and
soft at the same time. Via a robust and redundant regulation of specific (actin
binding/severing proteins) and unspecific (charge, hydrophobicity,. . . ) molec-
ular interactions, reversible polymer association and structural changes (such
as local concentration fluctuations and bundling) can relatively quickly be in-
duced in order to vary the mechanical strength by several orders of magnitude,
whenever needed [?].

In summary, what makes polymers interesting to physicists in the first place,
is their dull chemical structure, which gives rise to universal static and dy-
namic conformational correlations. The relations deemed most significant and
beautiful are those that would naturally appear to be the most useless to an
experimental chemist. In particular, these lecture notes emphasize intermediate
asymptotic scaling laws—such as those of Eqs. (1) and Eq. (2)—characteristic of
whole classes of molecules of possibly very different microscopic chemical com-
positions. They act as a guiding theme in an attempt to provide an accessible
first introduction to some basic elements of polymer physics that bridges over
from the “classical” models for flexible chains [?] to more recent work concerned
with stiff polymers. The classical models made polymer physics fashionable in
the 1970’s by linking it to the fascinating field of critical phenomena. They have
since developed into both powerful practical tools for material scientists [?] and
a formidable playground for sophisticated methods of theoretical physics [?].
The emerging theory of stiff polymers, which is the focus of these notes, has
only just provided the first steps towards explaining the structure and mechan-
ics of some of the most remarkable soft and biological materials, including our
own bodies. In Sec. ??, it is for example demonstrated, how a surprisingly rich
bouquet of intermediate asymptotic power laws can be derived for the nonlinear
dynamic response of a single polymer. Apart from the restriction to polymers
with a (locally) rodlike structure, these laws are no less universal than those of
classical polymer physics. They can moreover be derived in a very direct way,
usually including exact prefactors by controlled approximations. And they can
be tested directly and with unprecedented accuracy using some recently devel-

1Just consider that the relaxation time of bendig modes scales with the fourth power of
their wavelength and put this into Eq. (2) to see how the self-affine conformational correlations
of Eq. (2) reveal themselves in the dynamic exponent 3/4.
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oped biophysical methods collectively known as single-molecule spectroscopy.
The lecture notes are organized in three sections: 1. Basics, which provides

some basic notions and insights mostly from a back-door-entrance perspective
before some general statistical-mechanics machinery is introduced that allows for
a more systematic formulation of the theory in sections 2. Statics and 3. Dynam-
ics, where the most salient predictions by the standard models for fluctuations
and response of flexible and stiff polymers are reviewed. The mutual interde-
pendence of thermal fluctuations and mechanical response serves as a unifying
principle of the presentation. Knowing one of them immediately allows one to
approximately (and sometimes exactly) deduce the other.

Exercise: The DNA packing problem

Each of your cells contains in its nucleus, which has a diameter of some microns
about 2 meter of DNA. Estimate the swollen coil size of a polymer of length
L = 2 m and Kuhn length b = 0.1 µm in good solution. (Result: 2 mm, which
compares to the size of the nucleus like a football to a grain of sand.)

2 Basics

2.1 Polymer models

2.1.1 “Microscopic” toy models and parametrizations

Depending on the microscopic structure, either discrete or continuous coarse-
grained “microscopic” parametrizations of a polymer may be more appropriate.
A discrete parametrization would consist in either the monomer positions rn
with n = 1 . . . N or alternatively the bond vectors bn ≡ rn+1−rn or normalized
tangent vectors tn ≡ bn/|bn| with n = 1 . . . N (in wich case the degree of poly-
merization is strictly speaking N + 1, which we will not bother to distinguish).
The natural continuous parametrization is the arc-length parameterization rs
of a continuous space curve with s ∈ [0, L] and a tangent ts ≡ r′s ≡ drs/ds of
unit length. Following the prescription

b n↔ s, b

N∑
n=1

↔
∫ L

0

ds (3)

one may switch between these notations if needed. Fig. ?? illustrates the nota-
tion. To isolate the universal physical features from the specific chemical details,
it is useful to introduce some simplistic polymer models. A caricature of a very
flexible polymer is the so called freely jointed chain (FJC), a discrete chain of
independently and freely rotating bonds. As far as its static conformation is
concerned, it is formally equivalent to a finite one-dimensional classical param-
agnet or to a discrete random walk, the bonds being identified with the spins
or steps, respectively. As a natural extension, a minimalistic model of a semi-
flexible chain (SFC) is the freely rotating chain (FRC), where bonds are subject
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to steric constraints or an interaction energy favoring (small) prescribed angles
between adjacent bonds. A particularly simple example is provided by a model
that energetically favors aligned neighboring bonds, like e.g. in a ferromagnetic
spin chain, which is known as the wormlike chain (WLC). An important spe-
cial case of the general semiflexible chain and the wormlike chain occurs in the
weakly bending rod (WBR) geomtry, where the tangent correlations persist over
the whole length of the polymer, i.e., L� `p. In this limit, where the polymer
is almost straight, it is advantageous to parametrize the polymer in terms of
small quantities t⊥ and t‖ by writing

r ≡ (r⊥, s− r‖)T , t ≡ r′ = (t⊥, 1− t‖)T (4)

in a coordinate system that has its third axis aligned with the average orientation
of the polymer as illustrated in Fig. ??. In the continuum limit of vanishing
bond length and diverging bond number, this model can be understood as the
idealization of a stiff slender rod as an inextensible weakly bending space curve.
For many biopolymers, this is indeed a very reasonable model to start with.

2.1.2 Self-avoidance and solvent effects

Since the above toy models allow the polymer to cross through itself, which is
not possible in the real world, they are often called “phantom models”. Self-
avoidance as well as the resulting topological constraints are notoriously hard
to formalize, though, even on the computer. They become relevant for very
flexible polymers with L� `p. The so called self-avoiding random walk (SAW)
problem has been studied in considerable detail as a challenging mathematical
problem [?]. A seemingly crude physicist’s approach is to replace the topological
condition of self avoidance by a merely geometric excluded-volume penalty for
self-intersections [?]2. This captures the fact that self-contacts are entropically
unfavorable and therefore somewhat suppressed in the equilibrium conforma-
tion, except if the polymer is too “sticky”. This approach allows for a Hamil-
tonian description and has been very successful in the theoretical modelling of
polymer melts and solutions. With some effort one can get from it the exponent

ν ≈ νF = 3/(d+ 2) (5)

for the fractal mass distribution of flexible polymers in a d−dimensional embed-
ding space. The approximation νF , called the Flory exponent, follows immedi-
ately from the Hamiltonian, see Eq. (40) below, by simple dimensional analysis.
It turns out to be exact for d = 1, 2, 4 and an excellent approximation for d = 3.
To obtain truely quantitative results is generally somewhat tricky even in this
effective excluded volume approach [?,?], while all the qualitative information
(including phase behavior, scaling and exponent relations) is easily obtained by

2Theoretical physicists are not the only cheaters in the game. Nature has provided a special
class of proteins called topoisomerases that can apparently very successfully release compli-
cated non-local topological constraints in DNA by cutting and resealing the DNA backbone in
the right places. Some classical anti-cancer drugs were designed to interfere with this action.
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simple scaling arguments [?]; an odd discrepancy that has made scaling concepts
very popular among polymer physicists.

In the following, the focus is on polymers that are immersed in a simple
(i.e. low molecular weight) solvent. The fact that other cases, such as polymer
melts and polymer blends will not be given much attention here, does however
not imply that they are less important or less interesting. The solvent mainly
affects flexible polymers in two ways. First, by its chemical composition, one
can control the “solvent quality”, or the solubility of the polymer. This allows
one to tune the exponent ν to either of the three values 1/3, 1/2, and ν ≈ 0.59
(in d = 3 space dimensions). To achieve ideal behavior (ν = 1/2) requires some
fine-tuning to the so-called θ−point, where the effective self-repulsion and self-
attraction of the monomers in the solvent just balance, or “screen” each other
(on the pair-interaction level). Secondly, the physical presence of the solvent
affects the dynamics of the polymer via hydrodynamic interactions (HI). If one
part of the polymer is set into motion, a diffusively spreading flow patern is
induced in the solvent that acts back onto other parts of the polymer. The
diffusing quantity is vorticity ∇×v, since the velocity field in an incompressible
solvent is divergence free. If the monomers or other relevant portions of the
polymer are considerably larger than the solvent particles, they move slowly
compared to the vorticity in equilibrium, and the dynamics of the latter can be
integrated out. In this common approximation, HI “simply” provides another
(quasi-static) long-ranged self-interaction of the polymer. To leading order in
the reciprocal distance it takes the form of an anisotropic reciprocal distance
law for the velocity vi =

∑
jHijf j of monomer i in terms of the forces f j

acting on all (other) monomers, with the Oseen tensor H given by

8πηHi6=j = 1 +
rijrij
r3ij

, rij ≡ ri − rj , 6πηHii = 1 . (6)

Similarly as the above mentioned long-ranged excluded volume interactions, it
gives rise to serious complications in any attempt to honestly model flexible
polymers, while stiff polymers are again much less affected. The results calcu-
lated for a weakly bending rod in the so called free-draining approximation, in
which HI are dismissed, only acquire logarithmic corrections from HI.

2.2 Fluctuations: correlation functions

2.2.1 The persistence length `p

As empasized in the introduction, thermal fluctuations are a crucial ingredient if
one wants to understand the static and dynamic conformational and mechanical
properties of polymers3. A useful characterization of fluctuating quantities and
their statistical correlations is provided by their thermal averages and correlation

3Some aspects of stiff polymers are, however, well captured by mechanics alone. For
example, some DNA-protein interactions involve electrostatic and mechanical energies on the
order of many kBT , so that conformational fluctuations play a negligible role and classical
beam mechanics applies.
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Table 1: Classification of polymers according their stiffness in terms of the three
parameters a (microscopic scale, e.g. the monomer size), L (contour/chemical
length), and `p (persistence length).

flexible `p/a ' 1 and L/`p � 1 `p “microscopic”
semiflexible `p/a� 1 and L/`p & 1 `p “mesoscopic”

stiff, weakly-bending `p/a� 1 and L/`p � 1 `p “macroscopic”
rigid rod L/`p = 0 `p “infinite”

functions. The simplest example is the canonical ensemble average of a variable,
say the bond vector bn or tangent tn, ts of a polymer, or of its end-to-end vector

R ≡ rN − r0 ≡ b
∑
n

tn or R ≡ rL − r0 =

∫
ds ts (7)

Obviously, 〈tn〉 = 〈R〉 = 0 for any free polymer, because of rotational symmetry,
while 〈t2〉 = 1 and 〈R2〉 = b2

∑
nm〈tn · tm〉 6= 0. The last example naturally

leads one to consider the somewhat richer construction of a thermal average of
the scalar product of two tangents at chemical positions n and m, the static
correlation function 〈tn · tm〉. The latter is already sufficient for quantifying the
important concept of stiffness (or flexibility) by the following reasonably general
convention. The bending stiffness of a polymer is measured by comparing its
total length L or any other relevant backbone subsection of interest with its
persistence length `p defined as the correlation length of its tangent orientations
via4

〈ts · ts′〉 = exp(−|s− s′|/`p) = exp(−|n−m|a/`p) . (8)

This enables us to propose a classification of polymers and polymer models
into the four classes, “flexible”, “semiflexible”, “stiff” and “rigid” in terms of
the three characteristic parameters a, L � a, and `p, see Tab. 1. Particularly
important are the extreme cases “flexible” and “stiff”, where we can expect
simple intermediate asymptotic scaling laws to emerge as a consequence of dila-
tion invariance between a lower and upper cutoff-wavelength. We reserved the
notion “semiflexible” to the more complicated general situation, where one has
to account for the crossover from a rod-like to a coiled conformation.

In the remainder of this section, we want to exemplify the notions of flexibil-
ity, stiffness, fractal and self-affine scaling by considering what can be deduced

4This definition makes sense for distances |s − s′| over which the exponential law applies
(and if you wish you may maintain your personal little VIP lounge for the exceptions). Of
course, not everybody can agree on the same definition. Some people prefer to define `p via
〈ts · ts+`p 〉 = 1/2 or even 1−〈θ2〉/2 = 1/2, where θ is the angle between two tangents ts and
ts+`p , and the like. This seems to be of tremendous help in communicating the concept to
people who have never heard of e, scalar products, or cosines, but makes any effort to agree
on absolute values of `p for particular polymers a nightmare. Once you have grasped the basic
idea, you will certainly be able to invent your own definition to prove your originality and to
add some sophistication to this otherwise somewhat banal subject.
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from the phenomenological characterization in terms of the tangent correla-
tions for stiff and flexible polymers. Only the later sections will introduce some
machinery of statistical mechanics in order to give a more comprehensive quan-
titative characterization of the statistical mechanics and stochastic dynamics of
polymers.

2.2.2 Ideal flexible chain (IFC)

According to our definitions, a flexible polymer is characterized by effectively
independent bond orientations for “Kuhn” segments of length b on the order of
the monomer size a, obtained after some moderate coarse-graining over some
microscopically close correlated monomers n ≈ m. This property is idealized in
the FJC, which can formally be characterized by the property 〈tn · tm〉 = δnm.
Its mean-square end-to-end distance is then easily computed as

〈R2〉 = b2
∑
nm

〈tn · tm〉 = b2N = b L ≡ R2
0 , (9)

which is a special case of Eq. (1) with ν = 1/2. Eq. (9) exemplifies what was said
in the introduction about the fundamental self-similarity of the conformation.
The power law 〈R2〉 ∝ N2ν , which identifies 1/ν as the fractal dimension of a
typical chain conformation, is the result of embedding the featureless (scale-free)
chemical structure into an empty space. It is independent of the microscopic
details and survives any local, finite-ranged modifictations of the model, which
will only affect the value of the microscopic parameter b in Eq. (1). The latter
is thus in practice to be understood as an effective scale, different from the
microscopic chemical bond length, and is also known as the “Kuhn length”.
On the other hand, as already mentioned above, the condition of self-avoidance
induces correlations between chemically very distant parts of the chain, and
therefore gives rise to a different ν.

2.2.3 Semiflexible chain (SFC)

With slightly more effort but along the same lines as for the FJC, you can as a
useful exercise evaluate 〈R2〉 for a semiflexible polymer of persistence length `p
by using the exponentially decaying tangent correlations Eq. (8),

〈R2〉 = 2`2p

(
e−L/`p − 1 + L/`p

)
∼

{
L2(1− L/3`p) (L� `p)

2`pL(1− `p/L) (L� `p)
. (10)

The notation ∼ stands for “asymptotically equal to”. The SFC captures the
crossover from a flexible phantom chain of Kuhn length 2`p on large scales to a
stiff rod on short scales.

2.2.4 Weakly-bending rod (WBR)

A major simplifaction occurs if the polymer has a weakly bending rod (WBR)
conformation. In contrast to a general SFC, the WBR it can be parametrized
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by the small transverse excursions r⊥ alone to leading order in ε ≡ L/`p � 1.
This is readily observed by rewriting the normalization condition for the tangent
using the WBR parametrization Eq. (4) in terms of the small quantities t⊥ and
t‖,

t2 ≡ 1 ⇒ t‖ = 1−
√

1− t2⊥ = t2⊥/2 +O(t4⊥) . (11)

Hence, the density t‖ of the contour length “stored” in transverse thermal undu-
lations is of second order in the small transverse deflections t⊥ from the straight
“ground state”. Using a corresponding WBR-decomposition for the end-to-end
vector

R ≡ (R⊥, R‖)
T with R‖ ≡ L− δR‖ ≡ L−

∫ L

0

ds t‖ , (12)

one deduces from Eq. (10) the leading order of the longitudinal thermal con-
traction δR‖ of a polymer with

hinged ends, R⊥ = 0: 〈δR‖〉 ∼ L2/6`p . (13)

(It is also customary to call δR‖ the “stored length”, meaning the excess length
needed to introduce undulations into a straight contour.) Similarly, for a so-
called “grafted polymer” with one end clamped along the third axis, say, we
have5

grafted, t0 = (0, 1)T : 〈δR‖〉 ∼ L2/2`p , 〈R2
⊥〉 ∼ 2L3/3`p . (14)

This establishes Eq. (2) as well as

δR‖/L , t‖L = O(ε) and R⊥/L , t⊥L = O(
√
ε) , (15)

which will become of some importance in the following.
In summary, starting from a characterization of polymers by their tangent

correlations we have without much effort already derived the two fundamental
equations Eqs. (1) and (2) worth displaying in the introduction. The remainder
should help to elucidate, why we put so much emphasis on them. Table ??
collects some structural information about a few common synthetic and natural
polymers plus some common natural and artificial slender micro-rods (polyethy-
lene, polystyrene, sugar, DNA, actin, microtubule, nanotube, fd-virus remark).
It seems difficult to obtain accurate values for the persistence lengts of biopoly-
mers. This might partly be related to the problem mentioned in the footnote to
Eq. (8), partly it is due to the sometimes complex interactions with molecules
in the “buffer” and the sometimes considerable number of available mutants or
types of these molecules.

Exercise

Derive Eq. (10).

5Asymptotically from Eq. (8), 1 − 〈t‖s〉 = 〈ts · t0〉 ∼ 1 − s/`p, i.e. 〈t‖s〉 ∼ s/`p in the

clamped case. The average contraction 〈δR‖〉 follows by integration and 〈R2
⊥〉 from Eq. (10).
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2.3 Response: linear response and low moments

2.3.1 The fluctuation dissipation theorem

To linear order in an external perturbation f , the response 〈∆r〉f ≡ 〈r〉f − 〈r〉
of its conjugate variable r is proportional to the strength of its own equilib-
rium fluctuations. This is the content of the so-called fluctuation-response or
fluctuation-dissipation theorem (FDT). Given that the response coefficient it-
self must be independent of the external perturbation, this result is certainly
expected. On the other hand, given that the generally highly nonlinear mi-
croscopic dynamics of typcical systems of intererst in statistical mechanics is
extremely sensitive to perturbations, the practical usefullness of this connection
is far from self-evident, and in this sense the FDT is rather to be understood
as a phenomenological (not a mathematical) fact. The link between response
coefficients (such as the compressibility or specific heat) to the strength of ther-
mal fluctuations may be familiar to you from introductory text books, and the
FDT is the generalization of this relation to dynamics. An early and elementary
formulation of the dynamic FDT can be found in Einstein’s paper on Brownian
motion [?] published a century before the present lecture notes were written.
There, he considers a colloidal sphere of radius a and position r subject to a
stationary force f ≡ f̂f . By an elegant argument, the Stokes friction coefficient
ζ = 6πηa, which controls the (average) velocity via f = ζ〈∂tx〉f , is related to

the thermal fluctuations of the coordinate x = r · f̂ . This is accomplished in two
steps. First, Einstein uses a macroscopic thermodynamic reasoning to establish
the relation D = kBT/ζ between the kinetic coefficients for the friction and
for the diffusion of the particle density, respectively, which are phenomenolog-
ically defined via “macroscopic” hydrodynamic or thermodynamic relations6.
More importantly, in the second step, he appeals to the great universality of
these phenomenological laws, which hold irrespective of the specific realizations
of the underlying microscopic details. As a consequence, so the idea, pertinent
insights may be gained by studying a “toy model”, i.e. a most simple representa-
tive of all those many microscopic processes that give rise to the same ubiquitous
phenomenology. Thereby, he relates the phenomenological coefficients D and ζ
to the microscopic stochastic (long-time) dynamics of his toy-model Brownian
particle starting at x ≡ x(t = 0) by

〈[x(t)− x]2〉/2t ∼ D = kBT/ζ . (Einstein relation) (16)

Slightly rephrased with help of a functional derivative (see appendix A for some
technicalities), this takes the form of the very general result

θ(t)∂t〈x(t)x〉 = −kBT
δ〈∆x(t)〉f

δf
, (FDT) (17)

called the fluctuation-dissipation theorem. It epresses the relation of the equi-
librium fluctuations on the left to the response function on the right hand side as

6Historically, it was very significant that it (surprisingly) involves the microscopic quantity
kB . If you do not yet know the derivation, you are urged to look up Einstein’s original paper.
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summarized at the beginning of this subsection. The step function θ(t) mediates
between the fundamental time reversal symmetry of the equilibrium correlation
function and the causality of the response. The physical content of the FDT was
further explored by Onsager, Callen and Welton, Kubo, and others, who also
generalized its derivation. In the same way as we are exploiting the featureless
structure of polymers to arrive with the help of the law of large numbers at sim-
ple universal laws characterizing their macroscopic conformations, these devel-
opments exploited the presumed featureless structure of fluctuations in general
thermodynamic systems. As long as the self-similar nature of the fluctuations
is not substantially disturbed, forced deviations from equilibrium should relax
in the same way as spontaneous equilibrium fluctuations: they could as well
have been the result of an accidential equilibrium fluctuation. Further below,
detailed examples shall illustrate this idea, known as Onsager’s regression hy-
pothesis, but for the time being we are simply exploiting Eq. (17) to derive
the linear response of a polymer from the equilibrium moments obtained in
Section 2.2.

2.3.2 Flexible versus stiff polymers; Janus-faced entropy

For a stationary force f(t) ≡ f pulling onto the end-to-end vector R of a
polymer, the relation corresponding to Eq. (17) is readily integrated over time
to yield the linear force-extension relation

〈∆R〉f ≡ 〈R〉f − 〈R〉 =
f

kBT

[
〈(R · f̂)2〉 − 〈R · f̂〉2

]
. (18)

Here it has been used that Eq. (17) holds for the coordinate direction f̂ along
which the force is acting, and it is understood that the stationary force is
switched on “near the beginning” of the infinite time domain of integration.

For a flexible polymer, R is equally likely to point into any of the d = 3
space directions in equilibrium, so that 〈R〉 = 0 and

〈R〉f = 〈∆R〉f =
〈R2〉
3kBT

f =
R2

3kBT
f , (19)

where R = bNν was introduced in Eq. (1). Note that this is a general, model-
independent result.

For a stiff polymer (i.e. a WBR) clamped at one end, the response of the
other end is highly anisotropic; just as its fluctuations, which we found to be
smaller by a factor of ε along the direction of the grafted end than perpendicular
to it. Perpendicular to the graft, Eq. (18) becomes

〈R⊥〉f = 〈∆R⊥〉f =
〈R2
⊥〉

2kBT
f =

R2
⊥

3kBT
f =

L3

3kBT`p
f , (20)

which is again a general identity. Comparing the two results in Eqs. (19), (20),
we observe that the response coefficient of the flexible polymer, Eq. (19), is
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determined solely by the (phenomenological) coil size and the temperature T .
For the FJC, b and thus R = R0 = bN1/2 are temperature independent, which
is what one typically expects for a flexible polymer. In other words, the spring
stiffness is proportional to temperature: pulling on a flexible chain, we restrict
its ability to attain all possible conformations, i.e., we work against its internal
entropy. The same holds for a FRC, whereas one would naturally expect an
enthalpic bending response of a slender rod. Hence, if one wants to recover
the well-known force-law for mechanical beam bending via this thermodynamic
detour, one might prefer to regard

κ ≡ kBT`p in d = 3 (21)

as a (rather temperature-insensitive) material property of the rod. The limit
T → 0 (`p → ∞) can then be identified as the “mechanical limit”, in which
thermal fluctuations become negligible.

What about the stretching response? From our above experience with the
equilibrium averages of R‖, we may expect a sensitive dependence on the bound-
ary conditions. Possible examples include a polymer with hinged ends where
the force acts onto the distance of the hinges, or a grafted polymer where the
external force is oriented along the graft direction. For a free polymer, one can
imagine a pulling force with a fixed space direction, whereas a compressing force
has to act precisely along the end-to-end distance to avoid rotations, which is
then equivalent to the situation with hinged ends. One infers from Sec. 2.2.4
that what survives of the second term in the brackets in Eq. (18) evaluates to
〈R‖〉2 ∼ L4/36`2p or 〈R‖〉2 ∼ L4/4`2p for the hinged and the grafted case, re-
spectively. However, since we have so far specified only a two-point correlation
function of t in Eq. (8), we cannot evaluate the function 〈t‖st‖s′〉 required for the
first term, as this would require the four-point correlation function 〈t2⊥st2⊥s′〉.
(This indicates a shortcoming of our backdoor-entrance approach to polymer
physics and may be taken as an incentive for swallowing some formalism to be
introduced in the following section.) From our estimates of the orders of the
various averages at the end of Section 2.2.4, we can merely infer that in the stiff
limit 〈δR2

‖〉 ∝ 〈δR‖〉
2 ∝ L4/`2p, hence, as long as the force acts along the average

end-to-end distance,

〈∆R‖〉f =
〈δR2

‖〉
kBT

f ∝ εR2
⊥

kBT
f ∝ L4

κ`p
f . (22)

The longitudinal response and fluctuations of a WBR are by a factor of ε = L/`p
smaller than the transverse response and fluctuations, respectively. If one sticks
to the mechanical interpretation and assumes that κ = kBT`p is an essentially
temperature independent material constant, the longitudinal response turns out
to be propotional to temperature T . In contrast to the “typical” flexible poly-
mer, where according to Eq. (19) the force coefficient is proportional to T , it is
now inversely proportional to T . Again, one can interprete this as a sign that
the linear response is ruled by entropy. However, in Eq. (22) the deformation
is not restrained but facilitated by entropy, or more precisely, it is solely due to
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thermal fluctuations, since it vanishes in the mechanical limit. The vanishing of
the longitudinal linear response of an inextensible rigid rod with finite bending
stiffness (hence finite transverse linear response) is due to the Euler buckling
instability : longitudinal forces less than a critical force called the

Euler buckling force fc ∝ κ/L2 (23)

do not deform the rod at all, for f ≥ fc the response is undetermined in linear
elasticity. The critical force fc provides a natural scale for the expected domain
of validity of linear response. Its absolute value is sensitive to the boundary
conditions [?]. So is the omitted prefactor in Eq. (22), which may be interpreted
intuitively as weighing the equilibrium thermal contraction δR‖ ∝ L2/`p of the
chain with the ratio f/fc of the applied force to the critical Euler force fc.

Exercise

Derive Eq. (18).

3 Statics

In this section we introduce some concepts from statistical mechanics that allow
(at least formally) for a complete statistical characterization of the polymer
conformation in terms of a conformational distrubution function ψ

(
{rn}

)
. The

latter is a function of all degrees of freedom of the chain, i.e. a function of all
joint positions {rn} in the case of a discrete chain or a functional of the whole
conformation rs for a continuous chain. This dependence is usually expressed
in canonical form as an exponential of a Hamiltonian H

(
{rn}

)
. In practice, one

is rarley interested in this complete microscopic information. As common in
statistical mechanics, reduced distribution functions and propagators, in which
all but a few pertinent (collective, mesoscopic) degrees of freedom have been
integrated out via a so called constrained partition sum, are more practical.
In these functions only the information of interest—for example the probability
distribution Z(R) ∝ e−βF (R) of the end-to-end vector R of a polymer (with β =
1/kBT )—is retained. In these reduced distribution functions free energys such
as F (R) play the role of the Hamiltonian. Free energies or reduced distribution
functions of some pertinent and easily observable “phenomenological” variables
thus give the most complete macroscopic or phenomenological characterization
of the polymer, generalizing and extending the preliminary characterization in
terms of low moments or correlation functions of such variables in the previous
section.

3.1 Polymers: Hamiltonians and distribution functions

3.1.1 “Two-parameter” models (FJC, WLC)

Starting with the distribution function ψ1(r) = δ(|r| − b)/4πb2 for the tip of a
freely rotating rod, it is easy to write down the microscopic distribution function
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ψN ({bn}) of a FJC in terms of its bond vectors bn

ψN ({bn}) =
∏
n

ψ1(bn) . (24)

This can be rewritten in terms of the monomer positions by using bn = rn −
rn−1. An additional prefactor V −1 then serves as normalization for the center
of mass of the polymer, which is assumed to be located somewhere in a pre-
scribed region of volume V . (It may be omitted if one considers a conditional
distribution function instead, e.g. if it is understood that the first monomer
is fixed at the origin.) If the model is not (entirely) described by steric con-
straints but involves energetics, it is more convenient to specify a Hamiltonian
H, from which the canonical distribution function in thermal equilibrium is (up
to possible steric restrictions) obtained as

ψ ∝ e−βH . (25)

One advantage of H over ψ is antropomorphic (most physicists find an energy
more intuitive than a distribution function), another that the omitted normal-
ization in Eq. (25) may be formally divergent in the case of infinitely many
degrees of freedom.

As an example, consider the particularly simple realization of a SFC by a
classical Heisenberg chain (freely rotating joints with some resistance to bend-
ing),

H = −J
N∑
n

tn · tn+1 . (26)

Thermal fluctuations excite conformational undulations around the straight
(“fully magnetized”) ground state, so that the bond orientations decorrelate ex-
ponentially along the contour at any finite temperature as familiar from other
one-dimensional systems with short ranged interactions.

The standard model of a polymer that is rod-like on the monomer scale is
the wormlike chain (WLC), which is obtained from a chain with Hamiltonian
Eq. (26) and segments bn = b tn upon taking the continuum limit

N →∞, b→ 0 with L = bN and κ ≡ b J both finite, (27)

which yields the continuum WLC Hamiltonian

H =
κ

2

∫ L

0

ds
(
r′′s
)2
,

∣∣r′s∣∣ = 1 (28)

Via this renormalization of the model the microstructure is wiped out and the
specific content is reduced to the two phenomenological parameters κ and L. By
comparison of Eq. (8) with the textbook result for the magnetization fluctua-
tions of a (classical) ferromagnetic Heisenberg chain one can immediately check
that our new definition of κ is consistent with Eq. (21), while the relation

2κ = (d− 1)`p kBT (29)
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for general space dimension d may be rationalzed by a physical reasoning: `p
must diverge for d = 1 (no space for turning) and decrease as d−1 with the
space dimensions to turn into for d → ∞. Note that the spin coupling J has
to diverge proportional to N in the WLC continuum limit to keep the bending
rigidity κ and the persistence length `p finite. In the magnetic language: the
Heisenberg chain with finite J does not exhibit a spontaneous magnetization in
the thermodynamic limit. Alternatively, starting from the continuum mechani-
cal description of an elastic rod, the WLC Hamiltonian is obtained (disregarding
torsion) by idealizing the low resistance of the backbone to bending as compared
to stretching in taking the limit of an “infinitely slender rod”. Indeed, Eq. (28)
is easily recognized as the total bending energy of a slender rod, expressed as
an integral over the square of the local curvature.

Exercise: WLC continuum limit

Derive Eqs. (8), (21) by taking the continuum limit of the corresponding results
for a Heisenberg chain.

3.1.2 One-parameter models (CGC, WBR)

So far, we have introduced what one might call two- (FJC, WLC) and three-
parameter (FRC) models, since in the (dynamically relevant) parametrization
in terms of monomer positions they are uniquely characterized by two or three
of the material parameters b, κ/kBT and L, respectively. These names are
somewhat euphemistic, however, since these models involve rigid contraints that
fix a very large or even continuously infinite number of bond or tangent lengths,
respectively. Although one may still derive some useful analytical results such as
an infinite series representation of the radial distribution function of the FJC [?]
or the linear response of a grafted WLC of arbitrary stiffness [?], remark: 2d-
t,r-propagator, the constraints make any more ambitious calculations quite
tedious in general. It goes without saying that the clear-cut fractal and self-affine
scaling limits already mentioned in the introduction require extreme parameter
ratios, for which one can effectively describe the polymer by much simpler one-
parameter models.

Continuous Gaussian chain (CGC)

For example, the FJC and the Heisenberg chain with a fixed finite interaction
energy J are both plausible coarse-grained models of a flexible polymer, and
they both reduce to the same one-parameter model in the self-similar or fractal
scaling limit, which is the continuum limit

N ,L→∞, b→ 0 with b2N = b L ≡ R2
0 finite. (30)

For flexible polymers, κ = bJ → 0 is thus treated as a microscopic parameter
on the same footing with b, and the renormalization in Eq. (30) wipes out the
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whole structural information except for the single macroscopic phenomenolog-
ical parameter R0. This may sound a bit bold but makes perfect sense, given
that the whole business relies on the major physical properties being indepen-
dent of microscopic details, which are only very schematically represented in
the toy models, anyway. In the continuum limit, Eq. (30), any one-dimensional
chain with finite interactions reduces to the same universal phenomenology. The
resulting one-parameter model, which is representative of the whole class of flex-
ible polymers, is called the continuous Gaussian chain (CGC). Its Hamiltonian
in d = 3 space dimensions reads

βH =
3

2b

∫ L

0

ds
(
r′s
)2

=
3

2R2
0

∫ 1

0

dη
(
r′η
)2
, (31)

where the derivative is understood to be taken with respect to s in the first
expression and to η, which is a dimensionless contour parameter, in the sec-
ond expression, respectively. As apparent from the second expression, the CGC
has only a single phenomenological mesoscale parameter R2

0, and not two mi-
croscopic paramters b, L, as one might be mislead to believe by the first ex-
pression, which is more commonly found in text books. The CGC exhibits so
called “fractal” self-similar or scale-free spatial correlations for distances less
than R0. Because of this somewhat unintuitive property, it is often visualized
by its closest relative among the two-parameter models, the discrete Gaussian
chain (DGC),

βH =
3

2b2

N∑
n

b2n =
3

2b2

N∑
n

(
rn+1 − rn

)2
. (32)

which is nothing but the CGC–Hamiltonian discretized according to the rule in
Eq. (3).

The DGC–Hamiltonian is indeed quite helpful in illustrating the physical
content of the CGC by physical analogies. The Boltzmann factor e−βH corre-
sponding to this Hamiltonian may (after normalization) be recognized as the
factorized joint probability density for a Brownian particle starting at r = r0 at
time t = 0 to diffuse to rN in time t = L = bN via the intermediate positions
rn reached at times t = bn,

G({rn, bn}|r0, t = 0) =
∏
n

(
e3(rn+1−rn)2/2b22πb2/3

)−3/2
. (33)

One easily checks that each term in this product is a solution to the diffusion
equation,

∂tG(r, t|0, 0)−D∇2G(r, t|0, 0) = δ(r)δ(t) , D = b/6 (34)

for time t = b. Hence, by the identification of arclength s with time t, the
CGC–Hamiltonian in Eq. (31) can be read as the free energy functional for a
particle diffusing along the path rt.

Alternatively, the DGC can be interpreted as the “elastic” energy of a col-
lection of N entropic springs of spring stiffness 3kBT/b

2. According to the
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equipartition theorem each spring has a thermal mean-square end-to-end dis-
tance 〈(rn+1 − rn)2〉 = b2. With regard to Eq. (19), each of these springs may
thus be understood as a coarse-grained representation (valid in linear response)
of any mesoscopic subsection of an arbitrary7 flexible polymer chain with a mean
square end-to-end distance b2. The DGC therefore provides a universal coarse-
grained description for all possible microscopic flexible polymer models, valid
unless the polymer is more than mildly deformed. Therefore, the DGC Hamil-
tonian should be understood as a phenomenological effective free energy rather
than a Hamiltonian corresponding to any particular microscopic model. It has
the pleasant property of self-similarity on scales larger than b, as revealed by the
invariance of the Hamiltonian under a decimation followed by a scale transfor-
mation (see the following exercise). Upon taking the continuum limit (DGC →
CGC), the large-scale universality and self-similarity are artificially extrapolated
to arbitrarily short scales. Thereby, one obtains a so-called phenomenological
model, a model of ultimate simplicity consistent with the mesoscopic properties
of all flexible polymers without any reference to the (often elusive) microscopic
scale.

Exercise: Establish the self-similarity of the DGC via decimation

Trace out every second monomer position in the distribution function for the
DGC, i.e. compute ∫ N+1

2∏
n=1

dr2ne
−βH ∝ e−βH̃ . (35)

Show that the effective free energy H̃ of the coarse-grained chain thus obtained
takes the form of the original Hamiltonian H after the scale transformation
N + 1→ 2(Ñ + 1), b→ b̃/

√
2.

Weakly bending rod (WBR)

In contrast, the self-affine scaling limit of a stiff polymer corresponds to the stiff
limit or weakly-bending rod (WBR) limit of an infinitely stiff infinite polymer
(by the infinite length one avoids ending up with a rigid rod),

ε ≡ L/`p → 0 with R2
⊥ ≡ ε L2 finite. (36)

Taking advantage of the parametrization Eq. (4) in terms of small quantities,
a consistent asymptotic theory can be formulated in the transverse fluctuations
alone. The WBR Hamiltonian (in d = 3 space dimensions),

βH =
`p
2

∫ L

0

dη
(
r′′⊥s

)2
=

1

2R2
⊥

∫ 1

0

dη
(
r′′⊥η

)2
, (37)

which follows from Eq. (28) by dropping terms of O(ε2) and keeping only the
leading order terms, is a close relative of Eq. (31). Again, the second expression

7Note that it need not even be a phantom chain by itself.
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reveals that the WBR is a one-parameter model: since the small quantity t‖ does
not appear in the Hamiltonian, there is no external constraint to be imposed
onto the Hamiltonian, which is moreover Gaussian. Make sure you understand
that this represents a dramatic simplification with respect to the wormlike chain
Hamiltonian Eq. (28). The single parameter R2

⊥ = L3/`p plays in Eqs. (36),
(37) exactly the same role as the parameter R2 = bL in Eqs. (30), (31) for the
CGC. As a side remark, we should add for later reference that the WBR limit
may be realized in different ways that not necessarily require Eq. (36); e.g. one
may apply a strong external force of magnitude f � fc ' κ/L2 that pulls the
ends of a semiflexible polymer with L � `p apart to guarantee the condition

r′
2
⊥ � 1 and thus r‖ ∼ r′

2
⊥ /2. Such a force is represented in the Hamiltonian,

Eq. (37), by adding the work

fL− f ·R = f

∫ L

0

ds t‖s ∼
f

2

∫ L

0

ds t2⊥s (38)

performed by the polymer against the force (z-coordinate chosen along the
force). Finally, it may be noted in passing that the opposite limit ε→∞ of the
WLC leads back to the CGC, so that the two complementary single-parameter
polymer caricatures, CGC and WBR are (in principle) both contained as ex-
treme cases in the WLC model.

In summary, compared to the two- and three-parameter models, the one-
parameter models CGC and WBR bring about a major technical simplification.
The rigid constraints related to the fixed bond or tangent length are in some
sense “automatically” obeyed by the equilibrium fluctuations, as suggested by
the absence (divergence) of the length parameter L. Moreover, the approxima-
tions already inherent in the more complicated “microscopic” parametrizations
(FJC, WLC) are often only justified in the limits of the reduced models; for
example, the dynamics of a semiflexible polymer gets sensitive to its torsional
stiffness and to corresponding dynamical modes not accounted for by the WLC
model beyond the WBR limit. In this sense, the simple one-parameter models
are the Platonic idols against which we may judge the usually more riddled
reality.

3.1.3 Excluded volume effects (SAW)

To introduce excluded-volume effects, which seriously affect the physics of very
flexible polymers, it seems desirable to start from the most simple flexible poly-
mer model, the CGC, and add an interaction term. This is not entirely straight-
forward, though. It turns out that the interaction potential complicates the
continuum limit (b → 0), which can no longer be taken in a simple explicit
manner. The problem arises from the diverging number of self-intersections of
an ideal polymer in the continuum limit. It implies that self-intersections have
to be largely avoided by a profound structural change once a finite penalty is
assigned to them. The corresponding interacting CGC model Hamiltonian (in
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d spatial dimensions) is known as the Edwards Hamiltonian

HE =
d

2b2

∫ N

0

dn
(
∂nrn

)2
+
v

2

∫ N

0

dn

∫ N

0

dn′ δ(rn − rn′) . (39)

The (hard-core) excluded volume interaction is already written in the form
appropriate in the continuum limit of diverging backbone length L and vanishing
segment size b. The coupling parameter v should be on the order of the monomer
volume b3 (or rather the second virial coefficient of the “monomer gas”). Now,
the problem is that the Hamiltonian is still formulated in terms of diverging or
vanishing quantities. In an attempt to either get rid of the problem or at least
localize it, it is natural to try and rewrite Eq. (39) in terms of phenomenological
parameters, chiefly the coil size 〈R2〉. In the regularized Edwards Hamiltonian
(proposed by de Gennes)

HE =
d

2R2
0

∫ 1

0

dη
(
∂ηrη

)2
+ g

R4
0

2b4−d

∫ 1

0

dη

∫ 1

0

dµ δ(rη − rµ) . (40)

the divergence is (apparently) isolated in the prefactor of the interaction term.
Though writing the Hamiltonian in this form may not seem very intuitive at
first sight, it has the further advantage that it contains no spurious parameters
and that the dimensionless coupling constant g is a number on the order of 1.
It also makes the identification of dc = 4 as the upper critical dimension for the
self-avoiding walk (SAW) problem straightforward, as the divergence is immedi-
ately seen to be absent in space dimensions d > 4. In higher dimensions d > dc
self-avoidance is not a problem, simply because self-intersections of a random
walk become so improbable that their effect is negligible. In lower dimensions,
however, the excluded volume causes the coil to expand substantially such that
R/R0 → ∞ in the continuum limit N → ∞ and ν is no longer equal to 1/2.
This is why the strategy to hide the divergent parameters in R0 did not work
out: R0 is not a phenomenological quantity, but turns out to be a vanishing
parameter combination itself for finite coupling parameters g. Therefore, the
rewriting of the Hamiltonian in the form Eq. (40) is by no means a solution of
the original problem. To rewrite the Hamiltonian without divergent terms would
require to know the right parameter combinations entering the phenomenolog-
ical quantities (in our case R2 = 〈R2〉 ∝ N2ν , i.e. the exponent ν of a SAW)
beforehand—a vicious circle.

A very plausible strategy for making sense out of the divergent Hamiltonian
and calculating the fractal exponent ν for the SAW exploits that the divergences
vanish in d ≥ dc = 4 dimensions and extrapolates down from the upper critical
dimension, where ν = 1/2. The basic idea is as follows. In departing from d = dc
to d < dc for small but finite b, the interaction term blows up. The excluded
volume obliges the polymer to swell so that its typical end-to-end distance R
increases beyond the value R0 without self-interactions. In other words, the
“bare” parameter R0 shrinks relative to the (relevant) phenomenological scale.
This helps to calm down the divergence of the second term in the Hamiltonian,
but, in return, it causes the first term to blow up. Within a dimensional estimate
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as performed here, the Hamiltonian may be identified with the free energy F (R)
of the chain as a function of its the end-to-end vector R, and e−βF (R) is up to
normalization and measure factors the radial distribution function8. For the
optimum conformation that minimizes the overall free energy, one thus expects
both terms to be of similar magnitude. Anticipating no more than a single
characteristic length scale, one estimates their contributions by dimensional
analysis, i.e.

βHE '
R2

R2
0

+
gR4

0

Rdbε
(ε ≡ 4− d) , (41)

and hence
R2

R2
0

' R4
0

Rdbε
⇒ R̄ ' R6/(2+d)

0 b−ε/(2+d) . (42)

The position R̄ of the minimum of the free energy F (R) will dominate in the
calculation of moments of R. For the moment 〈R2〉 one hence expects 〈R2〉 '
R̄2. The jargon is that

√
〈R2〉, which has physical units of length and hence

must be proportional to the elementary physical length scale b on dimensional
grounds, has thereupon acquired an anomalous dimension −ε/(2 + d). The
apparent contradiction is of course immediately resolved by inserting Eq. (9)
for R0, which yields9.

〈R2〉 ' R̄2 ' R2 ≡ b2N2νF , νF ≡
3

2 + d
. (43)

In the proper continuum limit, the phenomenological (observed) size of the
polymer should of course remain constant. Assuming the latter to be given by
Eq. (43), the prefactors R−20 and R4

0b
−ε in the Hamiltonian, and therefore the

whole “bare” Hamiltonian HE ∝ b−ε/(2+d), must be divergent—albeit some-
what less than naively expected from Eq. (40) (which gives plausibility to the
argument that the moments of R will be dominated by the minimum in the free
energy).

A more sophisticated (and in principle controlled) version of the foregoing
argument is the so-called ε−expansion in the “small” parameter ε = 4− d. On
a qualitative level, it is easy to see that the double perturbation expansion in
ε and in the interaction term helps to calm down the divergencies that would
occur in a naive perturbation expansion of e−βHE , so that they no longer spoil
the calculation of exponents. To this end, one rewrites the singular factor b−ε

in HE in the form

b−ε = e−ε ln b =

∞∑
l=0

(− ln b)l

l!
εl (44)

so that to each order in ε only logarithmic divergencies remain, which do not
affect power-law exponents. In practice, since one is interested in ε = 1 (at

8After ν has been estimated in this crude way, a much better approximation to F (R) and
to the radial distribution function is easily derived by simple arguments, as demonstrated in
Sec. 3.3.2.

9For a more satisfactory derivation of the Flory exponent see Ref. [?].
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least), one has to push the expansion to high powers in ε and afterwards apply
resummation techniques to get useful quantitative results via this otherwise very
appealing strategy. The same techniques may also be applied directly to the
strongly divergent naive perturbation expansion of HE in the (bare) interaction
term. In any case, one has to work hard to beat the Flory approximation νF for
the exponent ν. To arrive at a detailed quantitative understanding and charac-
terization beyond the level of mere exponents requires even more sophisticated
tricks [?].

This ends the introduction of the models required for the remainder of the
lecture. It is thus the right point to clearly state that there exist other use-
ful coarse-grained models not discussed in this lecture, such as the finitely ex-
tensible, nonlinear elastic (FENE) dumbbell model or the bead-rod model [?]
commonly used in molecular dynamics simulations of flexible and semiflexible
polymers, respectively.

3.2 Response: nonlinear deformations

Equipped with the complete Hamiltonian characterizations of our toy models
introduced in the preceding section, the problems encountered in the course of
our preliminary calculations of the longitudinal response of a stiff polymer at
the end of Sec. 2.3 can now be overcome.

3.2.1 Force-extension relation of a WBR

Consider again a stiff polymer as introduced in Secs 2.1, 2.2.4, and 3.1.2 subject
to a stationary pulling force f applied between the ends. The appropriate
Hamiltonian is the sum of the energies in Eqs. (37) and (38)

βHf =
`p
2

∫ L

0

ds
(
r′′⊥s

)2
+
βf

2

∫ L

0

ds
(
r′⊥s
)2

=
1

2R2
⊥

∫ 1

0

dη
(
r′′⊥η

)2
+

1

2R2
⊥f

∫ 1

0

dη
(
r′⊥η
)2

=
1

2R2
⊥

∫ 1

0

dη
[(
r′′⊥η

)2
+N2

b

(
r′⊥η
)2]

(45)

with R2
⊥ = L3/`p as defined in Eq. (2) and

R2
⊥f ≡ kBTL/f Nb ≡ R⊥/R⊥f = L/`f =

√
f/fc `f ≡

√
κ/f . (46)

The second line in Eq. (45) makes explicit, what was already announced above,
namely that the WBR limit can be realized even for quite flexible polymers (i.e.,
ε = L/`p can be any finite number) if the chain is stretched by a sufficiently
strong force so that

f, L, R⊥, Nb →∞ with R2
⊥f = kBTL/f finite. (47)
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It also immediately suggests a crossover phenomenon on the characteristic scale
`f , called the “blob” scale, a notion originally introduced by Pincus and de
Gennes for flexible polymers. On shorter lengths, the bending energy dominates
and one expects an (essentially) undisturbed WBR conformation of the wormlike
chain characterized by the usual self-affine correlations as discussed above. As
already noted above, `f � `p is required to guarantee weak bending; which
determines the minimum stretching force f = kBT/`p to maintain the WBR
geometry. Consequently, one can say that the WBR correlations extend along
the whole contour for Nb � 1. For large Nb � 1, on the other hand, the tension
term dominates on scales larger than the blob scale `f , where the Hamiltonian
effectively reduces to a diffusion Hamiltonian with transverse diffusion coefficient
D⊥ = R2

⊥f/2L = kBT/2f . It encodes a random walk of “duration” L and mean
square transverse excursions

〈R2
⊥〉f = 4D⊥L = 2R2

⊥f (48)

(with the force f playing the role of the friction coefficient in Brownian motion).
Physically speaking, the limiting Hamiltonian describes a “taut string” with
weak excursions from the ground state or, equivalently, a transverse random

walk of Nb blobs, each contributing a random transverse step of length `
3/2
f `

−1/2
p

summing up to a transverse mean-square displacement `3f/`pNb, which is, of
course, again kBTL/f .

The smart way: blobs

The intuitive notion of blobs is often a very useful practical tool to estimate
the conformational change in presence of strong disturbances without actually
calculating. As an example, we estimate the nonlinear force-extension relation
of the WLC via the blob picture. The main idea is to exploit the analysis of
the Hamiltonian in the preceding paragraph, and to regard a chain of length
L � `f as an effective FJC consisting of Nb blobs, which are simply segments
of virtually undisturbed stiff WLCs of length `f , as illustrated in Fig. ??. The
contraction of the end-to-end distance with respect to full stretching is simply
Nb times the length contraction caused by a single segment of length `f . The
latter involves two equivalent contributions—as commonly the case for that sort
of crossover arguments. Coming from the large scale description of the chain as
a transverse random walk of blobs, we obtain from the orientation fluctuation
of the segment a length reduction of about kBT/f per blob. Exploiting the
analogy with a taut FJC of blobs this can directly be taken over from Eq. (60)
below, or from the equivalent textbook result for the magnetization of a clas-
sical paramagnet in a strong field10. From the complementary perspective of
regarding a segment of length `f as an unperturbed weakly bending WLC, a
second contribution is equal to the equilibrium contraction of a WLC segment

10Alternatively, consider that the contour length required for making transverse excursions
is “stolen” from the longitudinal extension. For a chain consisting of one virtually straight
segment of length L ' `f , (L− δR‖)2 +R2

⊥ = L2, hence 〈δR‖`f 〉 ' kBT/f from Eq. (48).
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itself, which, according to Eqs. (13), (14) is given by 〈δR‖`f 〉 ' `2f/`p ' kBT/f .
Either way (or altogether) one thus estimates the total equilibrium contraction
of the chain against the force f as

〈δR‖〉f ' NbkBT/f ' L`f/`p ' kBTL/
√
κf . (49)

Note that via the second route, the blob picture miraculously yields the non-
linear response of a WLC to strong tension (up to a numerical prefactor, which
turns out to be 1/2) from nothing more than the knowledge of low equilibrium
moments of the end-to-end distance of a WLC-segment of a certain length `f .
This is generally the case for problems that exhibit crossover scaling: knowing
from the Hamiltonian or from some physical intuition one (often trivial) limiting
case of the law and the crossover scale, one gets the non-trivial limit for free via
a scaling argument. The whole argument can be simplified a lot (once properly
understood). Namely, if we want to write the longitudinal contraction 〈δR‖〉
in a crossover scaling form with a dimensionless scaling function φ(L/`f ), the
prefactor is set by the limit of a very stiff polymer, for which the known linear
response result, Eq. (22), must be recovered. This requires φ(x → 0) ∼ x2,
hence

〈δR‖〉 = (L2/`p)φ(L/`f ) . (50)

The blob picture requires the contraction to be extensive in L in the limit of
strong stretching, hence φ(x → ∞) ∼ x−1, so that 〈δR‖〉 ∼ L`f/`p, as found
above. A further variant of the same argument is given in Sec. 3.2.3, below.

The precise way: calculate

The problem of an almost completely strechted polymer is simple enough to be
accessible to direct quantitative calculations [?, ?, ?]. The present paragraph
may please readers who either dislike the foregoing discussion for its lack of
explicit calculations or browse these notes for prefactors. Otherwise it may be
skipped.

For computational convenience, we require a force of magnitude f that pulls
exactly along the end-to-end distance R such that the average deviations from
the straight conformation are small11. Decomposing the undulations r⊥s into
the appropriate eigenmodes for hinged ends (R⊥ = 0),

r⊥s =
√

2/L
∑
n

an sin pns , pn ≡ nπ/L , (51)

the Hamiltonian in Eq. (45) is diagonalized into a sum of terms that are quadratic
in the statistically independent mode amplitudes an,

βHf =
`p
2

∑
n

(p4n + p2n`
−2
f )a2

n . (52)

11Such a force is difficult (if not impossible) to realize experimentally. Results for more
relevant cases are summarized further below.
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Noting that an is a two-component vector, equipartition implies

〈a2
n〉f =

2kBT

κ p2n(p2n + `−2f )
. (53)

The average contraction 〈δR‖〉 of the chain with respect to the fully stretched
state follows by integrating over 〈t‖s〉f ∼ 〈(r′⊥s)2〉f/2:

〈δR‖〉f =
1

2

∑
n

p2n〈a2
n〉f =

kBT

f

∑
n

1

1 + (pn`f )2
. (54)

To evaluate this result one may proceed perturbatively. The occurence of
(pn`f )2 = π2n2fc/f with the Euler force fc = κ/L2 of the lowest hinged bending
mode in the denominator suggests to consider forces f that are either weak or
strong with respect to fc. Alternatively, one may apply methods from complex
analysis to show that the infinite sum in Eq. (54) has an exact representation
in terms of the Langevin function L(x) ≡ coth(x)− 1/x = 2x

∑
(x2 + π2n2)−1,

namely

〈δR‖〉f =
`fL

2`p
L(Nb) ∼

{
L
√
kBT/4`pf (f � fc)

L2/6`p − fL4/90κ`p (f � fc) .
(55)

The upper asymptotics, which (in contrast to the lower) does not require L/`p �
1 but only `f/`p � 1, has been quite successful in applications involving the
nonlinear mechanical response of DNA molecules [?]. The negative inverse of
the coefficient multiplying the force f in the last expression is—for the particular
boundary condition of hinged ends—the effective longitudinal spring constant
of a weakly undulating polymer12, which was elusive within the backdoor en-
trance approach of Section 2.3; see Eq. (22). Also note that the asymptotic
approximation for strong forces only holds for pulling forces f > 0. For a push-
ing force, `2f ∝ f−1 < 0, so that `f becomes imaginary. As a consequence, the
lowest mode amplitude in Eq. (53) and the coth in the Langevin function (which
becomes a cot) diverge as f approaches −fc. Physically it is quite obvious that
the weakly bending rod assumption must break down when the pushing force
approaches the critical force. In summary, the range of validity of Eq. (55) ex-
tends to f →∞ if the chain is stretched, while it is limited by |f | � fc (i.e. to
linear response) under compression.

Exercise

Repeat the above derivation for a WBR confined to a plane (e.g. for a biopoly-
mer trapped at a liquid-gas or liquid-liquid interface or on fluid membrane),
considering the reduced degrees of freedom and Eq. (29).

12The leading terms given in Eq. (55) are insensitive to the difference between the WLC-
and WBR-Hamiltonian.
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3.2.2 Force-extension relation of the FJC

Exercise

Show that
〈∆R〉f = LL(f b/kBT ) (56)

for the FJC consisting of N = L/b segments of length b and discuss its asymp-
totic behavior for large and small forces f . (Hinged ends are not advisable,
here.) What about a FJC confined to a plane?

3.2.3 Force-extension relation of the SAW

For flexible polymers there is an intermediate scaling regime between the ulti-
mate model-specific response near complete stretching—which may obey Eq. (55),
Eq. (56) or yet some other relation depending on the microscopic structure of
the polymer—and the universal linear response of Eq. (19). This intermedi-
ate regime is a nonlinear regime, yet completely universal and model indepen-
dent. It is dominated by the non-trivial fractal correlations resulting from the
comptetition of conformational entropy and self-avoidance. Since only elaborate
perturbation techniques but no exact analytical solution is available, the blob
picture really pays in this case. For pedagogic reasons it shall be rephrased in
a slightly different way, in the form of a standard crossover scaling argument.
To this end, one first estimates the crossover scale from the linear response re-
lation, Eq. (19), as the force for which Eq. (19) predicts a deformation of the
same order of magnitude as the equilibrium fluctuations13, i.e. fc ' dkBT/R.
Accordingly, one may rewrite Eq. (19) in the scaling form

〈R〉f = RΦ
(
f/fc

)
Φ(x� 1) = x . (57)

For intermediate forces, the polymer will again have the large-scale conformation
of a string of blobs. The deformation will thus be proportional to the total length
L of the chain. In case of unease, imagine how a chain twice as long can be
realized by linking two identical blob chains together. (The crucial property
underlying this intuition is of course the absence of non-trivial conformational
correlations beyond the blob scale.) Since R ∝ Lν from Eq. (1),

f � fc ⇒ 〈R〉f ∝ L ⇒ Φ(x� 1) ∝ x1/ν−1

⇒ 〈R〉f ' R(f/fc)
1/ν−1 .

(58)

The miraculous thing about this derivation of a non-linear force-extension re-
lation does not even require the knowledge of a Hamiltonian (let alone any
calculations) but only phenomenological information about the equilibrium coil
size and its scaling with polymer mass. Accordingly, one should not be surprised
by the following

13This natural phenomenological rule for defining the crossover scale is supported by the
above results for the WBR.
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Exercise

Reassure yourself that by a force-extension experiment information about the
microstructure (e.g. FJC or WLC, or anything beyond) of a long flexible polymer
can only be gained with forces on the order of (kBT/R)Nν . (A polymer 105

Kuhn lengths long will reveal details upon a hundred-fold stretching of the coil.)
In particular, there is nothing to be learned about the specific polymer at hand
from a force-extension experiment in the above SAW-regime.

3.2.4 Force-extension summary

Summarizing, the force-extension relations for the weakly bending WLC (with
hinged ends) and the FJC (with free ends) can be cast into a simple scaling form
with the scaling function given by the Langevin function L(x) = cothx− 1/x,

〈∆R〉f '


LL(f/fc) , fc ≡ kBT/b (FJC)

(L2/6`p)
[
1− 3

√
fc/fL

(√
f/fc

)]
, fc ≡ κ/L2 (WBR)

R(f/fc)
1/ν−1 , fc ≡ dkBT/R (SAW)

(59)

The SAW result is restricted to R � 〈R〉f � L, i.e. to forces that considerably
deform the coil but leave at least part of the SAW correlations undisturbed. The
characteristic difference between the force-extension relations of a flexible WLC
with persistence length `p � L and a FJC is best appreciated if both have the
contour length L and the FJC has the bond length b = 2`p (so that they have
the same equilibrium coil size and linear response). In the strong force limit

〈δR‖〉f ∼

{
f−1 (FJC)

(2f)−1/2 (WBR)
f ≡ 2`pf

kBT
� 1 . (60)

Mind the different definitions of the quantities 〈∆R〉f and 〈δR‖〉f given in
Eqs. (12) and Eq. (18), respectively.

In deriving the above force-extension relations, we have always assumed
the most convenient boundary conditions, which should not matter for those
results that pertain to infinite chains (SAW, leading order results for the WBR).
However, as already emphasized in Sec. (2.2), absolute values and prefactors
are generally sensitive to the boundary conditions for finite chains (FJC, SFC),
and so are higher order corrections to the asymptotic results for the WBR.
Moreover, also the “ensembles” matter. The force-extension relations measured
with devices that fix the extension or the force, respectively, will generally not
be the same. A more quantitative disussion of this issue is provided in the
following subsection.

3.3 Fluctuations: radial distribution functions and prop-
agators

Can one somehow reverse the line of arguments that gave the linear response
from the free fluctuations, to make use of the nonlinear response results from the
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preceding subsection for gaining a deeper understanding of fluctuations? This is
indeed a fruitful direction to pursue, as it gives a quick and dirty access to some
functions containing a more comprehensive characterizations of fluctuations as
the low moments obtained so far. The most important ones are the radial
distribution functions P (r) that provide the probability that a certain polymer
will be found with end-to-end distance R = r. For a better understanding of the
idea behind this “upgrade” of the nonlinear response laws it is useful, to first
recall the relationships between distribution functions, generating functions and
their respective generalized free energies.

3.3.1 Ensembles, free energies and reduced distribution functions

The usual partition sum Z and free energy F are related to the Hamiltonian
via

Z =
∑
{rn}

e−βH({rn}) = e−βF , (61)

so that Z and βF can both be interpreted as functions of the model parame-
ters `p and L. It is useful to also consider incomplete or constrained partition
sums and corresponding free energy functions, for example if instead of the full
microscopic information characterizing a polymer conformation only a reduced
parametrization is of interest. In particular, the distribution function Z(r) of
the end-to-end vector R and its corresponding free energy F (r) are defined by

Z(r) ≡ 〈δ(rN − r0 − r)〉 ≡ 1

Z

∑
{rn}

δ(rN − r0 − r)e−βH({rn}) ≡ e−βF (r)

Z
. (62)

The reduced free energy F (R) represents an effective thermodynamic potential
which gives you the average force

〈f〉R = 〈−∂(rN−r0)H〉
∣∣
rN−r0=R

= −∂RF (R) (63)

excerted by a polymer on a device that fixes its end-to-end vector to R. The
functions Z(r) and F (R) are for a free polymer independent of the direction
of the end-to-end vector R and only dependent on the end-to-end distance R.
To emphasize that they are only depend on a single additional scalar parameter
(or variable) R, it is useful to define the radial distribution function,

P (r) ≡ 4πr2Z(r) ,

∫ ∞
0

dr P (r) = 1 , (64)

which explicitly refers to the isotropy. Another useful definition is the charac-
teristic function or force distribution function

Z(f) ≡〈eβf ·R〉 ≡ e−βG(f)

≡
∫

dr Z(r)eβf ·r ≡ 1

Z

∫
dr e−βF (r)+βf ·r (65)
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as the (multi-dimensional) Laplace transform of Z(r). In thermodynamics,
G(f) is called the Gibbs free energy, which is the appropriate convex Lyapunov
function for the prescribed-force ensemble, as opposed to the Helmholtz free
energy F (R), which is the corresponding quantity in case of prescribed spatial
constraints. Since taking the n′th derivative of Z(f) with respect to βf at f = 0
produces the n′th moment of R, it is also known as the moment generating func-
tion. Its knowledge is equivalent to the knowledge of infinitely many moments,
which suggests that it is in general considerably more difficult to calculate than
the low moments obtained so far. Similarly, upon taking the derivative of the
logarithm of the generating function, one generates the so-called cumulants, e.g.

− ∂fG(f)|f=0 = 〈R eβf ·R〉/〈eβf ·R〉
∣∣
f=0
≡ 〈R〉 (66)

−kBT ∂2fG(f)
∣∣
f=0

=〈R2〉 − 〈R〉2 etc. (67)

In fact, before taking the limit f → 0, the first equation is the force-ensemble
twin of Eq. (63),

〈R〉f = −∂fG(f) . (68)

Propagators . . .

3.3.2 “Inverse Langevin approximation”

There is a quick way of getting qualitatively useful simple results for the radial
distribution function if the static force-extension is known. It is sometimes
called the inverse Langevin approximation, since it was first proposed for the
FJC, where it involves the inversion of Eq. (56). Starting point is Eq. (68) and
Eq. (63). After integration, they read

G(f) = −
∫ f

0

df ′ · 〈R〉f ′ , F (R) =

∫ R

0

dR′ · 〈f〉R′ . (69)

Now, since we are looking for F (R) while we know 〈R〉f ′ , the idea is to invert
〈R〉f ′ and use it as an approximation for 〈f〉R′ in the second Eq. (69). This
approximation is expected to work well if the fluctuations are not too large,
particularly if the distributions Z(R) and Z(f) are nicely peaked around their
maxima. Technically, it amounts to replacing the Laplace transform Eq. (65)
relating Z(R) and Z(f) by a Legendre transform between F (R) and G(f),
which is up to a logarithmic correction a saddle point approximation (see ap-
pendix B). Inversion of the asymptotic WLC force-extension relation Eq. (60)
(for hinged ends) yields

f(R‖ → L) ∼ kBTL
2

4`pδR2
‖
. (70)

Integration gives

F (R‖ → L) = −
∫

dr f(R‖) =
kBTL

4`pδR‖
. (71)
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These results, just as the WBR calculation leading to Eq. (60), break down for
large δR‖, i.e. small R‖ = L − δR‖ � L due to the buckling instability. They
accurately reflect the statistical mechanics of the thermal undulations that have
to be straightened out when a stiff polymer is stretched, but they fail to capture
the highly nonlinear mechanics of elastic rod buckling. Now, while the contour
roughness due to thermal fluctuations is essential when the polymer is stretched,
it does not matter much under strong buckling, e.g. if the ends are brought into
close contact to form a loop. This suggests to approximate the free energy for
small R‖ by the purely mechanical buckling energy,

F (R‖ � L) ∼ fhingedc δR‖ (72)

with the critical Euler buckling force fhingedc ≡ π2κ/L2 of the lowest bending
mode with hinged ends. Altogether, one thus arrives at the free energy of a stiff
polymer (`p/L� 1)

βF (ξ) = π2ξ +
1

4ξ
+

3

2
ln ξ , ξ ≡ `p

L2
δR‖ , (73)

where the logarithmic correction from Appendix B has been smuggled in. Ex-
cept for this minor correction, the free energy, depicted in Fig. 1 has a very
intuitive interpretation. It is a sum of the cost for buckling and the cost for
straightening out the thermal undulations, the former increasing for small R,
the latter diverging at full stretching R → L. Exponentiation of F gives up to
a measure factor 4πr2 (remember that for the calculation of the force-extension
relation the end-to-end vector was constrained to be parallel to the force, which
can of course point in any arbitrary direction) and normalization the radial
distribution function,

Z(ξ) ∝ ξ−3/2e−π
2ξ−1/4ξ , ξ ≡ `p

L2
δR‖ . (74)

The results for F (R) and P (R) are depicted for various `p/L in Fig. 1, and
match the exact WBR result (an infinite series with contributions from all Euler
modes) [?] relatively well. The comparison with exact (Monte Carlo) data for
the WLC show that the simple inverse Langevin trick fails for intermediate
values of L/`p, where the minimum of F (R) becomes flat and ceases to be
strongly peaked. The failure is primarily due to the breakdown of the WBR/FJC
approximations, though, as more elaborate approaches such as the exact FJC
calculation Ref. [?], the exact WBR calculation [?], and even the leading order
WLC correction to the CGC [?, ?], turn out to fail in this region. See [?] for
further technicalities.

From Eq. (74) one can readily calculate the probability for the ends to collide
accidentally, the so-called loop-closure probability, in the WBR approximation.
It is found to vanish for both small and large L/`p, with an intermediate maxi-
mum that becomes quite pronounced, if the calculation is repeated numerically
with the WLC model, and which is thought to be of relevance for DNA cycliza-
tion and protein folding [?,?].
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Figure 1: Approximate free energy F2d(R) and radial distribution function
P2d(R) ∝ R e−βF2d(R) of a WLC in two dimensions, the latter in compari-
son with exact (Monte Carlo) data for `p/L = 5−2, 5−1, 1, 5. Black solid lines
correspond to the saddle-point approximation of the WBR, Eq. (74); grey lines
depict the FJC-inverse-Langevin (solid) and Gaussian (dashed) approximations
adjusted for the exact 〈R2〉 from Eq. (10). For intermediate persistence lengths,
such as `p = L/5, where the inverse Langevin trick fails as F (R) becomes flat
near its minimum, and both FJC and WBR cease to be appropriate idealiza-
tions, the data happen to resemble their linear superposition (dotted-grey).
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Some of the charm of the inverse Langevin approximation derives from the
fact that it is readily applicable also to the FJC (see Fig. 1) and SAW. In
particular in the latter case the back-of-the-envelope calculation turns out to
be qualitatively superior to quite laborious Hartree calculations reviewed in
Ref. [?]. Starting from Eq. (58), inverting it and integrating over the extension,
one obtains

F (R) ≈ fc
∫

dR (R/R)ν/(1−ν) = d(1− ν)kBT (R/R)1/(1−ν) . (75)

Exponentiating and adding again the logarithmic correction from the saddle-
point approximation (appendix B) then yields

Z(R) ∝ R
ν−1/2
1−ν e−d(1−ν)(R/R)1/(1−ν) ≈ R

4−d
2(d−1) e−d

d−1
d+2 (R/R)(d+2)/(d−1)

. (76)

This result has essential qualitative features predicted by renormalization group
calculations, in particular the proper exponent 1/(1 − ν) for the compressed
exponential decay at large R, and it reduces to the appropriate Gaussian (δ-
function) in d = 4 (d = 1) dimensional embedding space, respectively. It fails to
capture the quantitative change of the exponent of the pre-exponential factor
(as familiar e.g. from Ornstein-Zernicke theory) between the limits R � R
(roughly 1/(3ν), 1/(6ν)) and R � R (roughly 2/3, 2/6) for d = 2, 3, which in
fact involve another critical exponent besides ν [?,?].

A Linear Response

A general linear response relation may be expressed either in integral form or
with help of a functional derivative,

〈∆x(t)〉f ≡
∫ ∞
−∞

dt′ χ(t, t′)f(t′) ,
δ〈∆x(t)〉f
δf(t′)

= χ(t, t′) . (77)

Under stationary conditions the susceptibility χ(t, t′) ≡ χ(t, t′) is a function of
the time difference t − t′ only; i.e. it does not matter, whether the experiment
is performed today or tomorrow. What matters is the difference between the
time t when the response is measured and the time t′ when the force f(t′)
was applied. Moreover, a macroscopic physical response is causal (or retarded)
with respect to a macroscopic cause, there is no response to the future force
history, so that the susceptibility vanishes for negative arguments. Using the
step function θ(t) and introducing a function14 2i χ′′(t) that coincides with χ(t)
for positive arguments, one can thus write

χ(t− t′) = 2i χ′′(t− t′)θ(t− t′) . (78)

14The factor of 2i is convention. Given the time inversion invariance of equilibrium corre-
lation functions, the FDT suggests to continue the (real) function 2i χ′′(t) to negative times
such that it changes sign under time reversal. Hence, its Fourier transform is imaginary and
the Fourier transform χ′′

ω of χ′′(t) is real. The factor of 2 makes χ′′
ω the imaginary part of the

Fourier transform of χ(t).
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In Einstein’s historical discussion of Brownian motion presented in the main
text, 2i χ′′(t) = ζ−1sgn t. It is not a coincidence of the simple example that
the function χ′′, which is directly related to the correlation function according
to the FDT, plays the role of a friction responsible for energy dissipation (and
therefore changes sign under time reversal). This is generally true and is the
origin of the name “fluctuation-dissipation theorem”. For the given example,
the FDT is checked directly by noting that the equilibrium average 〈x2(t)〉 is
time independent, so that the time derivative of the mean-square fluctuations
〈[x(t) − x]2〉 in Eq. (16) is (after expanding the square) found to be solely due
to that of the (time inversion invariant) cross-term 2〈x(t)x〉 appearing on the
left hand side of Eq. (17).

B Legendre transformation, saddle-point & in-
verse Langevin approximation

For simplicity consider again the (somewhat artificial) case of a WLC with a
force acting strictly along to the end-to-end vector, f‖R. Or in other words,
if f has to be regarded as a fixed quantity, as appropriate for the integration
in Eq. (65), assume for the moment that the polymer ends are constrained to
slide freely along the axis of the force (corresponding to hinged ends). Then one
only has to deal with scalar quantities R, f and integrals in Eqs. (65-69), and
the orientational degrees of freedom may later be restored through the measure
factor 4πr2. Expanding the exponent of the corresponding scalar version of last
expression in Eq. (65) around its maximum at R(f) (which gives the leading
contribution) one has

e−βG(f) ≈ e−βF (R)+βfR 1

Z

∫ ∞
−∞

dr e−βF
′′(R)(r−R)2/2 . (79)

The Gaussian integration yields up to some uninteresting terms

F (R) ≈ G(f) + fR− kBT

2
lnF ′′(R) . (80)

The explicit form of G(f) is obtained from the integration Eq. (69) using the
asymptotic WLC force-extension relation, Eq. (60),

G(f) ≈ −L
∫ f

0

df ′
[
1− (4β`pf)−1/2

]
= −Lf + L

√
kBTf/`p . (81)

One has still to get rid of the f ’s. Neglecting the logarithmic term in Eq. (80) for
a moment, F (r) is seen to be the Legendre transform of G(f), which implies that
〈f(R)〉 = ∂fG is the inverse function (not the reciprocal) of 〈R(f)〉 = ∂RF (R),
so that one recovers the approximation Eq. (71) for F (R) obtained by integrating
the inverted force-extension directly. As a check, one may easily verify the saddle
point condition, namely that the maximum of F (R) − fR is indeed at R(f).
With Eq. (80), the approximation in Eq. (71) can now be improved by adding
the logarithmic correction, as done in Eq. (73).
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