Theory of STM on Unconventional Superconductors

Andreas Kreisel

Institut für Theoretische Physik, Universität Leipzig, Germany

P. Choubey

Indian Institute of Science, Bengaluru 560012, India

T. Berlijn

CNMS, Oak Ridge Nat. Lab., USA

Dept. of Phys. and Astr., Shanghai Jiao Tong U., China

W. Ku

P.J. Hirschfeld Dept. of Physics, U. Florida, USA

B.M. Andersen

Niels Bohr Institute, U. Copenhagen, Denmark

UNIVERSITÄT LEIPZIG

P. Choubey, *et al.*, Phys. Rev. B **90**, 134520 (2014) **A. Kreisel**, *et al.*, Phys. Rev. Lett. **114**, 217002 (2015) **A. Kreisel**, *et al.*, Phys. Rev. B **94**, 224518 (2016)
P. Choubey, *et al.*, Phys. Rev. B **96**, 174523 (2017)

Outline

- Motivation
 - STM: impurities as probe for electronic structure, order parameter and more

- layered superconductors, complications
- Theoretical methods to investigate impurity physics in superconductors
 - using wavefunction information in layered superconductors: Wannier method
 - Applications
 - LiFeAs (multiband, s-wave)
 - Cuprates: $Bi_2Sr_2CaCu_2O_8$, $Ca_2CuO_2Cl_2$
- Inelastic tunneling

Scanning tunneling microscopy

Tunneling current:

$$I(V, x, y, z) = -\frac{4\pi e}{\hbar} \rho_t(0) |M|^2 \int_0^{eV} \rho(x, y, z, \epsilon) d\epsilon$$

Local Density Of States (LDOS) of sample at given energy at the tip position

J. Tersoff and D. R. Hamann, PRB 31, 805 (1985)

STM: examples

• Cuprates: Zn impurity in BSCCO

spectra and conductance map

Pan et al., Nature 403, 746 (2000)

• Fe-SC

FeSe: topograph of Fe centered impurity

Can-Li Song, et al. PRL **109**, 137004 (2012)

LiFeAs: Fe centered impurity

S. Grothe, et al., PRB **86**, 174503 (2012)

Layered superconductors

2 examples: surface atoms ≠ superconducting layer
 Cuprates
 Iron based superconductors

Theoretical approaches: Cuprates

- LDOS: impurity in d-wave superconductor
 - local LDOS: 4 fold pattern
 - low energy bound state

$$\Omega\equiv \Omega'+i\Omega''=\Delta_0rac{\pi c/2}{\ln(8/\pi c)}\left[1+rac{i\pi}{2}rac{1}{\ln(8/\pi c)}
ight]$$

J. M. Byers, M. E. Flatté, and D. J. Scalapino Phys. Rev. Lett. **71**, 3363 (1993)

A. V. Balatsky, M. I. Salkola, and A. Rosengren Phys. Rev. B **51**, 15547 (1995)

Stamp, Journal of Magnetism and Magnetic Materials, **63**, 429 - 431 (1987) (p-wave)

Comparison to experiment

Theoretical approaches: Cuprates

- LDOS: impurity in d-wave superconductor
 - local LDOS: 4 fold pattern
 - low energy bound state

$$\Omega\equiv \Omega'+i\Omega''=\Delta_0rac{\pi c/2}{\ln(8/\pi c)}\left[1+rac{i\pi}{2}rac{1}{\ln(8/\pi c)}
ight]$$

J. M. Byers, M. E. Flatté, and D. J. Scalapino Phys. Rev. Lett. **71**, 3363 (1993)

A. V. Balatsky, M. I. Salkola, and A. Rosengren Phys. Rev. B **51**, 15547 (1995)

Stamp, Journal of Magnetism and Magnetic Materials, **63**, 429 - 431 (1987) (p-wave)

Comparison to experiment

Theoretical approaches: Cuprates

- extended impurity potentials (magnetic Ni impurity) Jian-Ming Tang and Michael E. Flatté PRB **66**, 060504(R) (2002)
- Correlations: "Kondo screening" (magnetic impurity) Anatoli Polkovnikov PRB 65, 064503 (2002)
- "Filter function": STM tip probes states in the superconducting layer by tunneling matrix elements Martin *et al.*, PRL **88**, 097003 (2002)
- Large tight binding basis set of orbitals + Greens function method to calculate tunneling matrix elements

J. Nieminen, et al., PRB 80, 134509 (2009)

Theoretical approaches: Fe-SC

 Identification of nature of impurities in FeSe monolayer (non-SC) by ab-initio calculations

Dennis Huang et al., Nano Lett., 16 (7), 4224 (2016)

- Inelastic tunneling
 - coupling to bosonic mode
 - signatures of spin fluctuations (real space)

S. Chi, et al., Nat. Commun. 8, 15996 (2017)

• Wannier method (this talk)

See also: "holographic maps" Dalla Torre, He, Demler Nat. Phys., **12**, 1052 (2016)

$$h_{G}(q, V) = g(q, V)g^{*}(q+G, V)$$

Wannier method: example LiFeAs

- Ab-initio calculation
 - band structure5 band model

$$H_0 = \sum_{\mathbf{RR}',\sigma} t_{\mathbf{RR}'} c^{\dagger}_{\mathbf{R}\sigma} c_{\mathbf{R}'\sigma}$$
$$- \mu_0 \sum c^{\dagger}_{\mathbf{R}\sigma} c_{\mathbf{R}\sigma}$$

 $\mathbf{R}.\sigma$

Superconductivity

 superconducting order parameter from spin- fluctuation theory

$$H_{\rm BCS} = -\sum_{\mathbf{R},\mathbf{R}'} \Delta_{\mathbf{R}\mathbf{R}'} c^{\dagger}_{\mathbf{R}\uparrow} c^{\dagger}_{\mathbf{R}'\downarrow} + H.c.,$$

 calculate Green's function in superconducting state

$$H_{\text{Nambu}} = \begin{pmatrix} H_k & \Delta_k \\ \Delta_k^{\dagger} & -H_{-k} \end{pmatrix}$$

$$G_0(\mathbf{k},\omega) = [\omega - H_{\text{Nambu}} + i0^+]^{-1}$$

Impurity \rightarrow engineered

 ab-initio calculation of impurity potential for Co, Ni, Mn in LiFeAs (engineered impurity)

 $H = H_0 + H_{\rm BCS} + H_{\rm imp}$

$$H_{\rm imp} = \sum_{\sigma} V_{\rm imp} c^{\dagger}_{\mathbf{R}^* \sigma} c_{\mathbf{R}^* \sigma}$$

- T-matrix approach to obtain Green's function other methods also possible
 - BdG
 - Gutzwiller mean field

Kreisel et al., Phys. Rev. Lett. **114**, 217002 (2015) Choubey et al., New J. Phys. **19**, 013028 (2017)

$$\underline{\hat{G}}_{\mathbf{R},\mathbf{R}'}(\omega) = \underline{\hat{G}}_{\mathbf{R}-\mathbf{R}'}^{0}(\omega) + \underline{\hat{G}}_{\mathbf{R}}^{0}(\omega)\underline{\hat{T}}(\omega)\underline{\hat{G}}_{-\mathbf{R}'}^{0}(\omega)$$

$$\underline{\hat{T}}(\omega) = [1 - \underline{\hat{V}}_{imp} \underline{\hat{G}}(\omega)]^{-1} \underline{\hat{V}}_{imp}$$

lattice Green function (state of the art)

of sample at given energy at the tip position

LiFeAs: Questions

• Properties of the order parameter (sign-change)

conventional s_±

Y. Wang, A. Kreisel, et al., Phys. Rev. B **88**, 174516 (2013) A. Kreisel, et al., Phys. Rev. B **95**, 174504 (2017)

antiphase s_{\pm}

Z. P. Yin, K. Haule, G. Kotliar Nature Physics **10**, 845 (2014)

novel s_{\pm}

F. Ahn, et al., Phys. Rev. B 89, 144513 (2014)

conventional s++

T. Saito, et al. Phys. Rev. B **90**, 035104 (2014)

LiFeAs: Questions

- Interpretation of
 - impurity shapes

R. Schlegel, et al., Phys. Status Solidi B, **254**: 1600159 (2017)

Hanaguri, unpublished (KITP 2011)

"Dumbbell"

- registered "surface lattice" in STM

LiFeAs: Li or As lattice?

Shun Chi, et al., PRL **109**, 087002 (2012) T. Hanaguri, et al. PRB **85**, 214505 (2012) S. Grothe, et al., PRB **86**, 174503 (2012) J. -X. Yin, et al., arXiv, 1602.04949 (2016)

LiFeAs: spectra

 evidence for sign-changing order parameter by in-gap state with engineered impurity

LiFeAs: spectra

 sequence of impurity potentials from ab-initio calculation correct, but overall renormalization downwards required [correlation effects]

P. O. Sprau, ..., A. Kreisel, et al., Science, **357**, 75 (2017)
A. Kreisel, et al., Phys. Rev. B **95**, 174504 (2017)
A. Kostin, et al., arXiv:1802.02266

Height and current dependence of topographs

• experiment: Li or As lattice?

Shun Chi, et al., PRL 109, 087002 (2012) T. Hanaguri, et al. PRB 85, 214505 (2012) S. Grothe, et al., PRB 86, 174503 (2012) J. -X. Yin, et al., arXiv, 1602.04949 (2016) height maxima at Li positions!? counter-intuitive from chemistry point of view

R. Schlegel, et al., Phys. Status Solidi B, **254**: 1600159 (2017)

Further experimental evidences?

Ronny Schlegel, Dissertation, TU Dresden (thanks to C. Hess)

Further experimental evidences?

Ronny Schlegel, Dissertation, TU Dresden (thanks to C. Hess)

Simulation of topographs

• solve for z(x,y)

$$I_0 = \frac{4\pi e}{\hbar} \rho_t(0) |M|^2 \int_0^{eV} d\omega \ \rho(x, y, z(x, y), \omega)$$

 switching of height maxima as a function of bias voltage

Results registered surface lattice in STM

- tunneling into states described by Wannier functions $G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mu,\nu,\mathbf{R},\mathbf{R}'} G(\mathbf{R}, \mu, \mathbf{R}', \nu; \omega) w_{\mathbf{R},\mu}(\mathbf{r}) w_{\mathbf{R}',\nu}^*(\mathbf{r}') \qquad 33$
- registered lattice switches as function of bias and current

Inelastic tunneling

Inelastic tunneling in FeSC: coupling to spin fluctuations

Imaging spin fluctuations in real space

• real space structure $g_{\text{inel}}(\mathbf{r}, V) \propto \int_{0}^{eV} \int \rho(\mathbf{r}', eV - \omega) \chi(\mathbf{r}, \mathbf{r}', \omega) d\mathbf{r}' d\omega$

S. Chi, (...) AK, et al., Nat. Commun. 8, 15996 (2017)

• in presence of impurity

Fe-C₂

a

δg_s(r,V) (a.u.

Fast spatial decay of impurity resonance, slow decay of dip-hump \rightarrow spin fluctuations (real space)

Cuprates: Questions

signatures of strong impurity in d-wave SC

universalities across materials

same properties for tunneling!

Wannier method: Cuprates

Superconductivity

- superconducting order parameter (d-wave) (phenomenology or calculation fx. mean-field)
- continuum Green function

$$\psi_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}\mu} c_{\mathbf{R}\mu\sigma} w_{\mathbf{R}\mu}(\mathbf{r})$$

$$\begin{aligned} & \text{continuum Green function} \\ & \psi_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}\mu} c_{\mathbf{R}\mu\sigma} w_{\mathbf{R}\mu}(\mathbf{r}) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

IOS [eV⁻¹]

-0.2

nnier tunction w phases

Normal stat SC etate

 $\overline{\mathbf{R},\mathbf{R}'}$ lattice Green function local density of states (LDOS) $\rho(\mathbf{r}, \omega) \equiv -\frac{1}{\pi} \operatorname{Im} G(\mathbf{r}, \mathbf{r}; \omega)$ continuum position nonlocal contributions

BSCCO: Results STM maps and spectra

STM Spectra: homogeneous SC

• overdoped: U-shape, lower doping: V-shape

- Analytical result
 - Spectral function
 - Wannier transformation
 - $d_{x^2-y^2}$ Wannier function
 - only cubic contribution

P. Choubey, et al.. Phys. Rev. B 96, 174523 (2017)

$$A_{\sigma}(\mathbf{k},\omega) = |u_{\mathbf{k}}|^2 \delta(\omega - E_{\mathbf{k}}) + |v_{\mathbf{k}}|^2 \delta(\omega + E_{\mathbf{k}})$$

 $\rho_{\sigma}(\mathbf{r},\omega) = \sum_{\mathbf{k}} A_{\sigma}(\mathbf{k},\omega) |W_{\mathbf{k}}(\mathbf{r})|^2$ $W_{\mathbf{k}}(\mathbf{r}_0) \approx w_0 + 2w_1(\cos k_x - \cos k_y)$ $w_0 = 0$ $\rho_{\sigma} = w_1^2 \frac{4\sin^2(k_x^0)}{\pi^3 v_F v_A^3} \omega^3$

•	•	•	•	•	•	٠
•	•	•	•	•	•	٠
•	•	•	•	•	•	•
•	•	•		•	•	•
•	•	•		•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•

$Bi_{2}Sr_{2}CaCu_{2}O_{8} \leftrightarrow Ca_{2}CuO_{2}Cl_{2}$

- superconductivity: d-wave order parameter
- T-matrix calculation+ Wannier method

 $G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mu, \nu, \mathbf{R}, \mathbf{R}'} G(\mathbf{R}, \mu, \mathbf{R}', \nu; \omega) w_{\mathbf{R}, \mu}(\mathbf{r}) w_{\mathbf{R}', \nu}^*(\mathbf{r}')$

 strong impurity spectra + conductance map

 $Bi_2Sr_2CaCu_2O_8$ $Ca_2CuO_2Cl_2$

Kreisel et al., Phys. Rev. Lett. **114**, 217002 (2015) Choubey et al., New J. Phys. **19**, 013028 (2017) P. Choubey, *et al.*. Phys. Rev. B **96**, 174523 (2017)

Summary

- Wannier method: basis transformation of the lattice Green function
- Qualitative correct (symmetry) and quantitative predictive results
- Impurities and homogeneous lattice in LiFeAs
- inelastic tunneling

S. Chi, (...) AK, et al., Nat. Commun. **8**, 15996 (2017)

- Universality in cuprates
- method to detect sign change of order parameter in STM

Martiny, Kreisel, Hirschfeld, Andersen Phys. Rev. B **95**, 184507 (2017) Sprau, et al. Science, **357**, 75 (2017)

Nematicity in Fe-based SC

A. Kostin, et al., arXiv:1802.02266

S. Chi, (...) , **A. Kreisel**, *et al.* Phys. Rev. B **94**, 134515 (2016) **A. Kreisel**, *et al.* Phys. Rev. B **94**, 224518 (2016)

Gutzwiller Gutzwiller+W Exp.

Kreisel et al., Phys. Rev. Lett. **114**, 217002 (2015) Choubey et al., New J. Phys. **19**, 013028 (2017) Choubey, *et al.*. Phys. Rev. B **96**, 174523 (2017)

Acknowledgments

