Visualization of atomic-scale phenomena in superconductors

Andreas Kreisel, Brian Andersen

Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark

Peayush Choubey, Peter Hirschfeld

Department of Physics, University of Florida, Gainesville, FL 32611, USA

Tom Berlijn

Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Choubey et al. PRB **90**, 134520 (2014) Kreisel et al. arXiv:1407.1846

Scanning tunnelling microscopy

J. Hoffman 2011 Rep. Prog. Phys. **74** 124513 (2011)

Tunnelling current:

 $I(V,x,y,z) = -\frac{4\pi e}{\hbar}\rho_t(0)|M|^2 \int_0^{eV} \rho(x,y,z,\epsilon)d\epsilon$

Local Density Of States (LDOS) of sample at tip position

J. Tersoff and D. R. Hamann, PRB 31, 805 (1985)

FeSe: STM spectra topograph of Fe centered impurity

Song et al., Science 332, 1410 (2011)

Can-Li Song, et al. PRL 109, 137004 (2012)

BSCCO Zn impurity: spectra and conductance map

Pan et al., Nature 403, 746 (2000)

BdG+Wannier method

- first principles calculation (BSCCO surface)
 - tight binding model

$$H_0 = \sum_{\mathsf{R} \mathsf{R}',\sigma} t_{\mathsf{R} \mathsf{R}'} c_{\mathsf{R} \sigma}^{\dagger} c_{\mathsf{R}' \sigma} - \mu_0 \sum_{\mathsf{R},\sigma} c_{\mathsf{R} \sigma}^{\dagger} c_{\mathsf{R} \sigma} c_{\mathsf{R} \sigma}$$

Wannier function

Cu d_{xy} Wannier function

Wannier function at tip position: mostly contributions to NN

- first principles calculation with impurity
 - impurity potential V_{imp}

BdG+Wannier method

impurity scatterer from DFT calculation)

• lattice BdG calculation $H = H_0 + H_{BCS} + H_{imp}$

$$H_{\rm BCS} = -\sum_{{\sf R}\,,{\sf R}\,'} \Delta_{{\sf R}\,{\sf R}\,'} c^{\dagger}_{{\sf R}\,\uparrow} c^{\dagger}_{{\sf R}\,'\downarrow} + H.c., \text{ superconductivity}$$

• eigenvalues E_n , eigenvectors (u_n, v_n) to construct $H_{imp} = \sum_{\sigma} V_{imp} c_{R*\sigma}^{\dagger} c_{R*\sigma} c_{R*\sigma}$ lattice Green function

$$G_{\sigma}(\mathsf{R},\mathsf{R}';\omega) = \sum_{n} \left(\frac{u_{\mathsf{R}}^{n\sigma} u_{\mathsf{R}'}^{n\sigma*}}{\omega - E_{n\sigma} + i0^{+}} + \frac{v_{\mathsf{R}}^{n-\sigma} v_{\mathsf{R}'}^{n-\sigma*}}{\omega + E_{n-\sigma} + i0^{+}} \right)$$

 \rightarrow local density of states in the active layer, not at tip

• continuum Green function at the tip position

contin

$$G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mathbf{R}, \mathbf{R}'} G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}} (\mathbf{r}) w_{\mathbf{R}'}^* (\mathbf{r}')^* \log (\mathbf{LDOS})$$
 at the STM tip local density of states (LDOS) at the STM tip $\rho(\mathbf{r}, \omega) \equiv -\frac{1}{\pi} \operatorname{Im} G(\mathbf{r}, \mathbf{r}; \omega)$

BSCCO: Results STM maps and spectra

- d-wave order parameter
- Zn impurity: V_{imp} =-5 eV resonance: -3.6 meV

Zhu et al., PRB

0 ω[eV]

diag GF full GF

ce LDOS

0.05

x 10

-0.05

resonance at NN **67**, 094508 (2003)ω [eV] Sample bias (mV) (a) (c)high (b) 41 22 g low **BdG** BdG+W experiment resonance at impurity

Comparison to experiment

relative conductance map, Fourier transformation

K. Fujita et al. Science 344, 612 (2014)

Recapitulation: BdG+W

- simple: just a basis transformation of the Green's function $G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mathbf{r}} G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^*(\mathbf{r}')$
- powerful tool for calculation of local density of states at the surface (STM tip position) of superconductors
- takes into account atomic scale information and symmetries of the elementary cell and the contained atoms
- shown to work in
 - FeSe: geometric dimer Choubey, et al. PRB 90, 134520 (2014)
 - BSCCO: Zn impurity resonance, QPI pattern

Summary

Kreisel et al. arXiv:1407.1846

multiband superconductor: Choubey, et al. PRB 90, 134520 (2014)

Talk: P. Choubey Y25.01 Fr. 8:00

Acknowledgements

BdG+W: Application to FeSe

 homogeneous superconductor

lattice LDOS

(conventional: 1 pixel per Fe atom)

BdG+W: Results FeSe

$$I(V, x, y, z) = -\frac{4\pi e}{\hbar} \rho_t(0) |M|^2 \int_0^{eV} \rho(x, y, z, \epsilon) d\epsilon$$

continuum density of states

FeSe: Comparison to experiment

STM topography on FeSe with Fe-centered impurity

STM Spectra: homogeneous SC

• overdoped: U-shape, lower doping: V-shape

