Spin fluctuation pairing and symmetry of order parameter in $K_x Fe_{2-y} Se_2$

Andreas Kreisel, Yan Wang [王彦], Peter Hirschfeld

Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA

Thomas Maier

Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6494, USA

Douglas Scalapino

Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

Phys. Rev. B 88, 094522 (2013)

A.1 Fe based superconductors: Materials

$B.1 K_x Fe_{2-y} Se_2$

- Experimentally
 - Different phases
 - 245 vacancy phase Ye et al. PRL (2011)
 - Pure SC phases $K_{0.6}Fe_2Se_2$, $K_{0.3}Fe_2Se_2$? Ying *et al.* JACS (2013)
 - Absence of hole pocket?
 - Evidence for fully gapped SC state
 - Specific heat Zeng et al. (2011)
 - ARPES Mou et al. (2011)
 - Spin-lattice relaxation in NMR Ma et al. (2011)

B.2 Model

k /π

K_{0.8}Fe_{1.7}Se₂

n=6.25

no hole

pocket

Fermi surface

- 10 orbital tight binding band structure
 - DFT: Wien2K with I4/mmm for K-122
 - fully localized Wannier functions

$$H_0 = \frac{1}{N} \sum_{ij} \sum_{\ell_1, \ell_2=1}^{10} t_{ij}^{\ell_1 \ell_2} c_{i\ell_1}^{\dagger} c_{i\ell_2}$$

Hubbard-Hund Hamiltonian

$$\begin{split} H_{\mathrm{int}} &= \bar{U} \sum_{i,\ell} n_{i\ell\uparrow} n_{i\ell\downarrow} + \bar{U}' \sum_{i,\ell' < \ell} n_{i\ell} n_{i\ell'} & \text{extended Hubbard model} \\ &+ \bar{J} \sum_{i,\ell' < \ell} \sum_{\sigma,\sigma'} c^{\dagger}_{i\ell\sigma} c^{\dagger}_{i\ell'\sigma'} c_{i\ell\sigma'} c_{i\ell'\sigma} + \bar{J}' \sum_{i,\ell' \neq \ell} c^{\dagger}_{i\ell\uparrow} c^{\dagger}_{i\ell\downarrow} c_{i\ell'\downarrow} c_{i\ell'\uparrow} \\ &\text{exchange} \quad I_{i,\ell' < \ell} \sum_{\sigma,\sigma'} c^{\dagger}_{i\ell\sigma} c^{\dagger}_{i\ell'\sigma'} c_{i\ell\sigma'} c_{i\ell'\sigma} + \bar{J}' \sum_{i,\ell' \neq \ell} c^{\dagger}_{i\ell\uparrow} c^{\dagger}_{i\ell\downarrow} c_{i\ell'\downarrow} c_{i\ell'\uparrow} \\ & \text{Kuroki et al. PRL (2008)} \end{split}$$

B.3 Fluctuation exchange mediated pair scattering

Susceptibility in normal state (orbital resolved)

B.4 Spin fluctuation mediated pair scattering

Scattering vertex in singlet channel

B.5 Gap equation

 Decompose gap function into magnitude and dimensionless symmetry function

- Pairing strength functional
- variation leads to eigenvalue equation

$$\lambda_{\alpha}g_{\alpha}(k) = -\sum_{i} \oint_{C_{j}} \frac{dk'}{(2\pi)^{2}v_{F}(k')} \Gamma_{ij}(k,k')g_{\alpha}(k')$$

B.5 Gap function (3D calculation)

leading instabilities (n=6.25)

C.1 Hybridization in K_xFe_{2-y}Se₂

- Origin of hybridization
 - DFT (blue, dash dotted): *I4/mmm* space group (tiny!)
 - DFT + spin-orbit coupling (red)
 - tight-binding + spin-orbit (black, dashed)

 $H_{\rm SO} = \lambda_{\rm Fe}^{3d} \sum_{i} \sum_{\alpha=x,y,z} L_i^{\alpha} S_i^{\alpha}$

Friedel ('64)

 $d_{z^2}\rangle$

approximate with atomic wave functions for spin-orbit coupling xxxy d_{xy} d_{xy} d_{xz} d_{yz} d_{yz} d_{yz} d_{yz} $d_{x^2-y^2}$

C.2 Gap function with spin-orbit coupling

 weakening of superconducting instability (all symmetries)

D Summary

- $K_x Fe_{2-v} Se_2$ different from other Fe based SC
- missing hole-pocket makes s-wave instability less likely (spin-fluctuation theory), dominant d_{x2-v2} wave symmetry
- quasinodes (vertical or horizontal)
- small hybridization regime also with spin-orbit coupling
- differences to experimental results
 - small effect of Z-centered hole pockets
 - quasinodal behavior makes detection difficult

- missing ingredients as correlations or deviations from normal-state properties due to doping / impurities
- acknowledgements

B.5 Gap function doping dependence

underdoped case (n=6.12)

overdoped case (n=6.25)

C.1 Hybridization effects

• Transition from d to s-wave Khodas, Chubukov PRL (2012)

