Visualization of atomic-scale phenomena in superconductors

Andreas Kreisel, Brian Andersen

Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark

Peayush Choubey, Peter Hirschfeld

Department of Physics, University of Florida, Gainesville, FL 32611, USA

Tom Berlijn

Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

arXiv:1401.7732 arXiv:1407.1846

Scanning tunnelling microscopy

J. Hoffman 2011 Rep. Prog. Phys. **74** 124513 (2011)

J. Tersoff and D. R. Hamann, PRB 31, 805 (1985)

Topograph of Fe centered impurity in FeSe at V=6 mV

Can-Li Song, et al. PRL 109, 137004 (2012)

LDOS and conductance map: Zn impurity in BiSCCO at V=-1.5 mV

Pan et al., Nature 403, 746 (2000)

Theory: State of the art methods T-matrix

Martin *et al.*, PRL **88**, 097003 (2002)

Theory: State of the art methods Bogoliubov-de Gennes (BdG)

- Hamiltonian $H = H_0 + H_{BCS} + H_{imp}$
- self-consistent solution in real space (NxN grid, determine gaps) $\Delta_{R R'} = \Gamma_{R R'} \langle c_{R'\downarrow} c_{R\uparrow} \rangle$
- eigenvalues E_n, eigenvectors (u_n,v_n)
- lattice Greens function

$$G_{\sigma}(\mathsf{R},\mathsf{R}';\omega) = \sum_{n} \left(\frac{u_{\mathsf{R}}^{n\sigma} u_{\mathsf{R}'}^{n\sigma*}}{\omega - E_{n\sigma} + i0^{+}} + \frac{v_{\mathsf{R}}^{n-\sigma} v_{\mathsf{R}'}^{n-\sigma*}}{\omega + E_{n-\sigma} + i0^{+}} \right)$$

BdG+Wannier method

first principles calculation

Application to FeSe

 homogeneous superconductor

lattice LDOS

(conventional: 1 pixel per Fe atom)

FeSe: Results

$$I(V, x, y, z) = -\frac{4\pi e}{\hbar} \rho_t(0) |M|^2 \int_0^{eV} \rho(x, y, z, \epsilon) d\epsilon$$

continuum density of states

FeSe: Comparison to experiment

STM topography on FeSe with Fe-centered impurity

Application to BSCCO

- first principles calculation (surface)
- 1 band tight binding model:
 - 1 Wannier function

Cu dxy

NN apical O tails

at surface: only contributions to NN

Ο

Cu Bi

BSCCO: Results

Zhu et al., PRB

41

22 3 -

67, 094508 (2003)

[1/eV]] sog 0 ω[eV] -0.05 0.05 d-wave order parameter DOS of homogeneous superconductor experiment • Zn impurity far away Pan et al., Nature 403, 746 (2000) - - - impurity NN resonance LDOS [1/eV] at -3.6 meV 3 resonance at NN -0.06 -0.04 -0.020.02 0.04 0.06 0 0.0 -200 -100 100 200 ω[eV] Sample bias (mV) (b) (c) high (a) low **BdG** BdG+W experiment

resonance at impurity

Quasi Particle Interference (QPI)

 Fourier transform of differential conductance maps

QPI simulation

Recapitulation: BdG+W

- simple: just a basis transformation of the Green's function $G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mathbf{R}, \mathbf{R}} G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^*(\mathbf{r}')$
- powerful tool for calculation of local density of states at the surface (STM tip position) of superconductors
- takes into account interunitcell information and symmetries of the elementary cell and the contained atoms
- shown to work in
 - FeSe: geometric dimer
 - BSCCO: Zn impurity resonance, QPI pattern

Summary

Kreisel et al. arXiv:1407.1846

Wannier FeSegeometric dimer $G(r, r'; \omega)$ $G(r, r'; \omega)$

Choubey et al. arXiv:1401.7732

Acknowledgements

