Visualization of atomic-scale phenomena in superconductors

Andreas Kreisel, Brian Andersen

Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark

Peayush Choubey, Peter Hirschfeld

Department of Physics, University of Florida, Gainesville, FL 32611, USA

Tom Berlijn

Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Phys. Rev. B **90**, 134520 (2014)

Phys. Rev. Lett. 114, 217002 (2015)

Outline

- Motivation layered superconductors impurities as probe for electronic structure, order parameter
- Theoretical methods to investigate impurity physics in superconductors
- Using wavefunction information in layered superconductors
- Applications 1) FeSe (multiband SC, s-wave)
 2) BiSrCaCuO (single band, d-wave)

Layered superconductors

```
    Cuprates
```

Hg1Ba2Ca2Cu3O8

```
Tc = 135 K
under pressure: 153 K
```

Hg

Ba

Са

interstitial O

Layered superconductors

Iron based superconductors

Phase diagram

- some questions
 - Cuprates: pseudogap phase, charge ordering
 - FeSC: nematic phases: orbital ordering (no magnetic order), symmetry of SC order parameter

Gap symmetries: FeSC

Typical Fermi surface ³
 5 band model ²

• Possible order parameters s_{++} s_{\pm} c_{\pm} c_{\pm}

P J Hirschfeld, M M Korshunov and I I Mazin, Rep. Prog. Phys. 74 (2011) 124508

Mizukami, et al. Nat. Commun. 5, 5657 (2014)

Impurities as probe for superconductivity

 suppression of Tc with disorder multiband SC with sign change: non-magnetic impurity suppression according Abrikosov-Gorkov law for 1 band SC

Onari, Kontani Phys. Rev. Lett. 103, 177001 (2009)

 Ba_{0.5}K_{0.5}Fe_{2-2x}M_{2x}As₂ (M = Mn, Ru, Co, Ni, Cu, and Zn) slow suppression → s++ order parameter

Li, et al. Phys. Rev. B 85, 214509 (2012)

Tc suppression: closer look

Slowdown of suppression

unequal gaps on bands unequal intra- / interband scattering

Hoyer et al. Phys. Rev. B 91, 054501 (2015)

Wang, AK, et al., PRB 87, 094504 (2013)

Local probes of disorder: STM

Impurity resonances

density of states of FeSe T_c=8 K

Song et al., Science 332, 1410 (2011)

Topograph of Fe centered impurity in FeSe at V=6 mV

Can-Li Song, et al. PRL **109**, 137004 (2012)

LDOS and conductance map: Zn impurity in BiSCCO at V=-1.5 mV

Pan et al., Nature 403, 746 (2000)

Scanning tunnelling microscopy

J. Tersoff and D. R. Hamann, PRB **31**, 805 (1985)

Theory: State of the art methods **T-matrix**

- $H = H_0 + H_{\rm BCS} + H_{\rm imp}$ Hamiltonian impurity scatterer (non)magnetic potential / T₂ scatterer band structure kinetic energy $H_{\rm imp} = \sum V_{\rm imp} c^{\dagger}_{{\sf R} \ * \sigma} c_{{\sf R} \ * \sigma}$ $H_0 = \sum t_{\mathsf{R} \mathsf{R}'} c_{\mathsf{R} \sigma}^{\dagger} c_{\mathsf{R} \sigma} c_{\mathsf{R}' \sigma}$ superconductivity gap function / pairing $H_{\mathrm{BCS}} = -\sum_{\mathsf{R}} \Delta_{\mathsf{R}} \,_{\mathsf{R}} \,_{'} c^{\dagger}_{\mathsf{R}} \,_{\uparrow} c^{\dagger}_{\mathsf{R}' \downarrow} + H.c.,$ $-\mu_0 \sum_{\mathsf{R}} c^{\dagger}_{\mathsf{R} \sigma} c_{\mathsf{R} \sigma}$ Zn impurity in BSCCO "resolution": one pixel T-matrix calculations per elementary cell $T_0 = \frac{g_0(\omega)}{c^2 - g_0^2(\omega)}, \quad T_3 = \frac{c}{c^2 - g_0^2(\omega)}$
 - lattice Green function $\hat{G}(\mathbf{r},\mathbf{r}';\omega) = \hat{G}_0(\mathbf{r}-\mathbf{r}',\omega) + \hat{G}_0(\mathbf{r},\omega)\hat{T}(\omega)\hat{G}_0(\mathbf{r}',\omega)$
 - Local Density of States (LDOS) $N_{\rm imp}(\mathbf{r},\omega) = -\frac{1}{\pi} \operatorname{Im}[\hat{G}_0(\mathbf{r},\omega)\hat{T}(\omega)\hat{G}_0(\mathbf{r},\omega)]_{11}$

minimum on impurity, maximum at NN

T-matrix calculation + **Bi-O filter function** Martin et al., PRL 88, 097003 (2002)

Theory: State of the art methods Bogoliubov-de Gennes (BdG)

- Hamiltonian $H = H_0 + H_{BCS} + H_{imp}$
- self-consistent solution in real space (NxN grid, determine gaps) $\Delta_{R R'} = \Gamma_{R R'} \langle c_{R'\downarrow} c_{R\uparrow} \rangle$
- eigenvalues E_n, eigenvectors (u_n,v_n)
- lattice Green function

$$G_{\sigma}(\mathsf{R},\mathsf{R}';\omega) = \sum_{n} \left(\frac{u_{\mathsf{R}}^{n\sigma} u_{\mathsf{R}'}^{n\sigma*}}{\omega - E_{n\sigma} + i0^{+}} + \frac{v_{\mathsf{R}}^{n-\sigma} v_{\mathsf{R}'}^{n-\sigma*}}{\omega + E_{n-\sigma} + i0^{+}} \right)$$

BdG+Wannier method

first principles calculation

FeSe: simplest crystal structure

- Tc 8K, under pressure ~40K
- Medvedev, et al. Nat. Mater. 8, 630 (2009)

11 FeSe

- Tc 100K (single layer) Ge et al. Nat. Mater. 14, 285 (2015)
- nematic phase no magnetism
- Baek, et al. Nat. Mat. 14, 210 (2015)
- consequences: nodal gapstructure, anisotropy

Song et al. PRL 109, 137004 (2012)

Song et al. Science 332, 1410 (2011)

FeSe: spin-fluctuation pairing

- 10 orbital model: Fermi surface
- pairing interactions in real space

$$\Gamma_{\mathbf{R}\mathbf{R}'} = \frac{1}{2} \sum_{\mathbf{k}} [\Gamma_{\mu\nu\nu\mu}(\mathbf{k}, -\mathbf{k}) + \Gamma_{\mu\nu\nu\mu}(\mathbf{k}, \mathbf{k})] e^{-i\mathbf{k}\cdot\mathbf{k}}$$
$$\Gamma_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}}(\mathbf{k}, \mathbf{k}') = \left[\frac{3}{2}\bar{U}^{s}\chi_{1}^{\mathrm{RPA}}(\mathbf{k} - \mathbf{k}')\bar{U}^{s} + \frac{1}{2}\bar{U}^{s} - \frac{1}{2}\bar{U}^{c}\chi_{0}^{\mathrm{RPA}}(\mathbf{k} - \mathbf{k}')\bar{U}^{c} + \frac{1}{2}\bar{U}^{c}\right]_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}}$$

 self-consistent solution of the BCS equation

$$\Delta_{\mathbf{R}\mathbf{R}'}^{\mu\nu} = \Gamma_{\mathbf{R}\mathbf{R}'}^{\mu\nu} \langle c_{\mathbf{R}'\nu\downarrow} c_{\mathbf{R}\mu\uparrow} \rangle$$
$$H_{\mathrm{BCS}} = -\sum_{\mathbf{R},\mathbf{R}',\mu\nu} \Delta_{\mathbf{R}\mathbf{R}'}^{\mu\nu} c_{\mathbf{R}\mu\uparrow}^{\dagger} c_{\mathbf{R}'\nu\downarrow}^{\dagger} + \mathrm{H.c.},$$

xz=dvz

BdG+W: Application to FeSe

 homogeneous superconductor (spin-fluctuation pairing)

 lattice LDOS with impurity

> (conventional: 1 pixel per Fe atom)

FeSe: Results

$$I(V, x, y, z) = -\frac{4\pi e}{\hbar}\rho_t(0)|M|^2 \int_0^{eV} \rho(x, y, z, \epsilon)d\epsilon$$

continuum density of states

FeSe: Comparison to experiment

STM topography on FeSe with Fe-centered impurity

Cuprate superconductors: also layered

Bi-2212

LDOS and conductance map: Zn impurity in BiSCCO at V=-1.5 mV

Pan et al., Nature 403, 746 (2000)

BdG+W: Application to BSCCO

- first principles calculation (surface)
- 1 band tight binding model:
 - 1 Wannier function

Cu dxy

NN apical O tails

at surface: only contributions to NN

O Cu Bi

Sr Ca

Homogeneous superconductor

 phenomenological pairing interactions similar results from spin-fluctuation pairing

DOS of homogeneous superconductor

 spectra measured at the surface

$$G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mathbf{R}, \mathbf{R}'} G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^*(\mathbf{r}')$$

local density of states (LDOS)
$$\rho(\mathbf{r}, \omega) \equiv -\frac{1}{\pi} \operatorname{Im} G(\mathbf{r}, \mathbf{r}; \omega)$$

STM Spectra: homogeneous SC

• overdoped: U-shape, lower doping: V-shape

BSCCO: Results STM maps and spectra

x 10⁻⁶

- d-wave order parameter
- Zn impurity: V_{imp} =-5 eV resonance: -3.6 meV

resonance at NN

Zhu et al., PRB

continuum LDOS [eVbohr³]⁻

0 ω[eV]

diag GF full GF

se LDOS

0.05

67, 094508 (2003)-100 Sample bias (mV) (a) (c)high (b) 41 22 g low **BdG** BdG+W experiment resonance at impurity

• dependence on tip height

continuum LDOS in the Cu-plane

convolution with Gaussian blur of 1 pixel per elementary cell

Quasi Particle Interference (QPI)

 Fourier transform of differential conductance maps

Quasi Particle Interference (QPI)

- Fourier transform of conductance maps
- BSCCO: weak potential scatterer

Recapitulation: BdG+W

- simple: just a basis transformation of the Green's function $G(\mathbf{r}, \mathbf{r}'; \omega) = \sum G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^*(\mathbf{r}')$
- powerful tool for calculation of local density of states at the surface (STM tip position) of superconductors
- takes into account atomic scale information and symmetries of the elementary cell and the contained atoms
- shown to work in
 - FeSe: geometric dimer Choubey, et al. PRB 90, 134520 (2014)
 - BSCCO: Zn impurity resonance, QPI pattern

Summary

Kreisel et al. PRL 114, 217002 (2015)

BdG BdG+W experiment

Choubey, et al. PRB 90, 134520 (2014)

Acknowledgements

