Towards a realistic simulation of disorder in unconventional superconductors

Andreas Kreisel, Brian Andersen

Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark

Peayush Choubey, Peter Hirschfeld

Department of Physics, University of Florida, Gainesville, FL 32611, USA

Tom Berlijn

Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Wei Ku

Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA

Phys. Rev. B **90**, 134520 (2014) Phys. Rev. Lett. **114**, 217002 (2015) arXiv:1607.03192

Outline

- Motivation
 - STM: impurities as probe for electronic structure, order parameter
 - layered superconductors, complications
- Theoretical methods to investigate impurity physics in superconductors
- Using wavefunction information in layered superconductors
- Applications
 - BiSrCaCuO (single band, d-wave)
 - LiFeAs (multiband, s-wave)

Scanning tunnelling microscopy

Tunnelling current:

$$I(V, x, y, z) = -\frac{4\pi e}{\hbar} \rho_t(0) |M|^2 \int_0^{eV} \rho(x, y, z, \epsilon) d\epsilon$$

Local Density Of States (LDOS) of sample at given energy at the tip position

J. Tersoff and D. R. Hamann, PRB 31, 805 (1985)

Inelastic tunneling: coupling to bosonic mode

superconducting state

normal state

J. R. Kirtley and D. J. Scalapino, PRL 65, 798 (1990) J. R. Kirtley, PRB 47, 11379 (1993) Patrik Hlobil, et al., arXiv:1603.05288 (2016)

Layered superconductors

LDOS of sample at given energy at the tip position

Iron based superconductors

Layered superconductors

Cuprates

Hg1Ba2Ca2Cu3O8

Tc = 135 K under pressure: 153 K

Bi-2212

Bound states of nonmagnetic impurity

- d-wave superconductors
 - local LDOS: 4 fold pattern
 - low energy bound state

$$\Omega\equiv \Omega'+i\Omega''=\Delta_0rac{\pi c/2}{\ln(8/\pi c)}\left[1+rac{i\pi}{2}rac{1}{\ln(8/\pi c)}
ight]$$

J. M. Byers, M. E. Flatté, and D. J. Scalapino Phys. Rev. Lett. **71**, 3363 (1993)

A. V. Balatsky, M. I. Salkola, and A. Rosengren Phys. Rev. B **51**, 15547 (1995)

Stamp, Journal of Magnetism and Magnetic Materials, **63**, 429 - 431 (1987) (p-wave)

STM experiment on Bi-2212

- LDOS map at -1.5 meV
 ~20 Zn atoms in field of view
 - 4 fold pattern

comparison to theory

comparison to theory

Theories for spatial pattern

- extended impurity potentials (magnetic Ni impurity)
- Correlations: "Kondo screening" (magnetic impurity), "modifications of the theory for the case of a nonmagnetic impurity" \rightarrow consistent with experimental spatial dependence
- Bi-O filter function: STM probes neighbouring Cu states due to momentum dependent tunnelling matrix elements

0 10 nS

0.01 nS

Jian-Ming Tang and Michael E. Flatté PRB 66, 060504(R) (2002)

Anatoli Polkovnikov PRB 65, 064503 (2002)

Theory: State of the art methods

- T-matrix calculations
- self-consistent mean field theory (BdG)
- lattice Green function $\hat{G}(\mathbf{r},\mathbf{r}';\omega) = \hat{G}_0(\mathbf{r}-\mathbf{r}',\omega) + \hat{G}_0(\mathbf{r},\omega)\hat{T}(\omega)\hat{G}_0(\mathbf{r}',\omega)$
- Local Density of States (LDOS) $N_{\text{imp}}(\mathbf{r}, \omega) = -\frac{1}{\pi} \operatorname{Im}[\hat{G}_0(\mathbf{r}, \omega)\hat{T}(\omega)\hat{G}_0(\mathbf{r}, \omega)]_{11}$

Zn impurity in BiSrCaCuO

T-matrix calculation Bi-O filter function needed Martin *et al.*, PRL **88**, 097003 (2002)

Theory: State of the art methods Bogoliubov-de Gennes (BdG)

- Hamiltonian $H = H_0 + H_{BCS} + H_{imp}$
- self-consistent solution in real space (NxN grid, determine gaps) $\Delta_{R R'} = \Gamma_{R R'} \langle c_{R'\downarrow} c_{R\uparrow} \rangle$
- eigenvalues E_n, eigenvectors (u_n,v_n)
- lattice Green function

$$G_{\sigma}(\mathsf{R},\mathsf{R}';\omega) = \sum_{n} \left(\frac{u_{\mathsf{R}}^{n\sigma} u_{\mathsf{R}'}^{n\sigma*}}{\omega - E_{n\sigma} + i0^{+}} + \frac{v_{\mathsf{R}}^{n-\sigma} v_{\mathsf{R}'}^{n-\sigma*}}{\omega + E_{n-\sigma} + i0^{+}} \right)$$

Layered superconductors

2 examples: surface atoms ≠ superconducting layer
 Cuprates
 Iron based superconductors

Wannier method

- first principles calculation (surface)
- 1 band tight binding model:
 - 1 Wannier function

Cu dxy

NN apical O tails

at surface: only contributions to NN

Superconductivity

- superconducting order parameter (d-wave) (phenomenology or calculation fx. mean-field)
- continuum Green function

$$\psi_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}\;\mu} c_{\mathbf{R}\;\mu\sigma} w_{\mathbf{R}\;\mu}(\mathbf{r})$$

continuum position

$$G(\mathbf{r},\mathbf{r}';\omega) = \sum_{\mathbf{R},\mathbf{R}'} G(\mathbf{R},\mathbf{R}';\omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^* (\mathbf{r}') w_{\mathbf{R}''}^* (\mathbf{r}')$$

surface Wannier function with phases

OS [eV⁻¹]

-0.3

• Cu position relative to BSCCO unit cell

-0.2 -0.1

Normal state

02

0.1

InductionInductionInductionInonlocal contributionsInductionIncal density of states (LDOS) $\rho(\mathbf{r}, \omega) \equiv -\frac{1}{\pi} \operatorname{Im} G(\mathbf{r}, \mathbf{r}; \omega)$

•

•

•

BSCCO: Results STM maps and spectra

• dependence on tip height

continuum LDOS in the Cu-plane

convolution with Gaussian blur of 1 pixel per elementary cell

Quasiparticle Interference (QPI)

- STM on normal metal (Cu)
 - impurities
 - Friedel oscillations

L. Petersen, et al. PRB **57**, R6858(R) (1998)

- Fourier transform of conductance map
 - mapping of constant energy contour

QPI in superconductors

Fourier transform of differential conductance

Quasi Particle Interference (QPI)

- Fourier transform of conductance maps
- BSCCO: weak potential scatterer

K Fujita et al. Science 344, 612 (2014)

Homogeneous superconductor

 phenomenological pairing interactions similar results from spin-fluctuation pairing

DOS of homogeneous superconductor

 spectra measured at the surface

$$G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{\mathbf{R}, \mathbf{R}'} G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^* (\mathbf{r}')$$

local density of states (LDOS)
$$\rho(\mathbf{r}, \omega) \equiv -\frac{1}{\pi} \operatorname{Im} G(\mathbf{r}, \mathbf{r}; \omega)$$

STM Spectra: homogeneous SC

• overdoped: U-shape, lower doping: V-shape

BSCCO: Magnetic impurity

- Ni on BSCCO: weak magnetic scatterer
- double resonance

Ni impurity on BSCCO

- chemistry: Ni 3d8 configuration → magnetic moment with S=1
- Classical spin: additional magnetic potential $H_{\text{imp}}^{\text{mag}} = J(n_{\text{R}} * \uparrow - n_{\text{R}} * \downarrow)$
- resonances at +/- 2.4 meV (up) +/- 7.2 meV (down)

Results: spectra, maps

 $\Omega = -2.4 \text{ meV}$ $\Omega = 2.4 \text{ meV}$

Differences between materials?

Different tunnelling layers, same physics

Dy-Bi2212

Bi-O surface (Sr-O in between)

Na-CCOC

Ca-Cl surface

Wannier functions

Na-CCOC

Ca-Cl surface

Wavefunctions very similar due to symmetry constraints on downfolding to dx²-y² band in conjunction with crystal symmetry

Bi-O surface (Sr-O in between)

Conductance maps for a strong potential scatterer (in the SC state, d-wave)

Layered superconductors

LDOS of sample at given energy at the tip position

Iron based superconductors

Gap symmetries: FeSC

LiFeAs: 18K superconductor

proposed gap structures

Theory: T-matrix+Wannier

_v(k) (eV)

- ab-initio calculation for LiFeAs (surface)
 - tight-binding model (5 band)
 - Wannier functions (including glide plane symmetry) χ_{RPA} (1/eV)
- superconducting order parameter from spinfluctuation theory
- ab-initio impurity Ĝ(r,r';ω)
 potentials (Ni, Mn, Co) G(r, r')
 used in T-matrix calculation

 $\hat{G}(\mathbf{r},\mathbf{r}';\omega) = \hat{G}_{0}(\mathbf{r}-\mathbf{r}',\omega) + \hat{G}_{0}(\mathbf{r},\omega)\hat{T}(\omega)\hat{G}_{0}(\mathbf{r}',\omega)$ $G(\mathbf{r},\mathbf{r}';\omega) = \sum_{\mathsf{R},\mathsf{R}'} G(\mathsf{R},\mathsf{R}';\omega)w_{\mathsf{R}}(\mathbf{r})w_{\mathsf{R}'}^{*}(\mathbf{r}')$ $\hat{I}(\mathsf{O}\mathsf{O}) = -\frac{1}{\pi}\operatorname{Im} G(\mathsf{r},\mathsf{r};\omega)$

 π

 q_x

LiFeAs: spectra

 evidence for sign-changing order parameter by in-gap state with engineered impurity

LiFeAs: spectra

 sequence of impurity potentials from ab-initio calculation correct, but overall renormalization downwards required.

LiFeAs: other native impurities

C2

Schönflies classification of impurities

Schlegel et al., arXiv:1603.0777v1 (2016) Hanaguri, unpublished (KITP 2011)

Chiral defects

- from a symmetry perspective not compatible to impurities on any single site in LiFeAs
- multiple impurities?
- local order?
 - local orbital order + Wannier function \rightarrow chiral defect structure

 Δ_{xz}^S

Gastiasoro, Andersen, J. Supercond Nov. Magn., 26, 2651 (2013)

Inoue, Yamakawa, Kontani PRB 85, 224506 (2012)

z = 440 pm

0.5 nm

O Li 🗆 As

d xz Wannier

function on Fe(2)

low

Height and current dependence of topographs

• experiment: Li or As lattice?

Shun Chi, et al., PRL 109, 087002 (2012) T. Hanaguri, et al. PRB 85, 214505 (2012) S. Grothe, et al., PRB 86, 174503 (2012) J. -X. Yin, et al., arXiv, 1602.04949 (2016) height maxima at Li positions!? counter-intuitive from chemistry point of view

Schlegel et al., arXiv:1603.07777v1 (2016)

Further experimental evidences?

Ronny Schlegel, Dissertation, TU Dresden (thanks to C. Hess)

experiment (current maps)

Simulation of topographs

 switching of height maxima as a function of bias voltage

Simulation of topographs

 interplay of interference of wavefunctions and their spatial structure

Recapitulation: BdG/T-matrix+W

- simple: just a basis transformation of the Green's function $G(\mathbf{r}, \mathbf{r}'; \omega) = \sum G(\mathbf{R}, \mathbf{R}'; \omega) w_{\mathbf{R}}(\mathbf{r}) w_{\mathbf{R}'}^*(\mathbf{r}')$
- powerful tool for calculation of local density of states at the surface (STM tip position) of superconductors
- takes into account atomic scale information and symmetries of the elementary cell and the contained atoms
- shown to work
 - LiFeAs: metal ion impurities Shun Chi, (...), A. Kreisel, et al. arXiv:1607.03192
 - BiSrCaCuO: Zn impurity, QPI Kreisel *et al.* PRL **114**, 217002 (2015)

FeSe: simplest crystal structure

- Tc 8K, under pressure ~40K
 - Medvedev, et al. Nat. Mater. 8, 630 (2009)

11 FeSe

- Tc 100K (single layer) Ge et al. Nat. Mater. 14, 285 (2015)
- nematic phase no magnetism
- Baek, et al. Nat. Mat. 14, 210 (2015)
- consequences: nodal gapstructure, anisotropy

Song et al. PRL 109, 137004 (2012)

Song et al. Science 332, 1410 (2011)

BdG+Wannier method

first principles calculation

FeSe: BdG+W Results

$$I(V, x, y, z) = -\frac{4\pi e}{\hbar}\rho_t(0)|M|^2 \int_0^{eV} \rho(x, y, z, \epsilon)d\epsilon$$

continuum density of states

FeSe: Comparison to experiment

STM topography on (bulk) FeSe with Fe-centered impurity

LiFeAs: spectra

LiFeAs: spatial conductance

T-matrix

one pixel per Fe atom!

T-matrix+Wannier (T+W)

Ni impurity: C2 symmetric impurity state

experiment (Li \leftrightarrow As lattice ?)

engineered Ni defect

Shun Chi, et al., PRL 109, 087002 (2012) T. Hanaguri, et al. PRB 85, 214505 (2012) S. Grothe, et al., PRB 86, 174503 (2012) J. -X. Yin, et al., arXiv, 1602.04949 (2016) Fe centered defect

1		/								-							-	
٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•		•	٠	
٠																		
٠																		
٠																		
٠						0	0	0		0	0	0						
٠					•	0		۰	•	0		•						
٠					0	0	0	0	•	0	0	0	۰					
٠					0	0	8	0	0	0		0	•					
٠				0	0	0		0	0	0		0	٠					
٠						0	e	0	0	0		0	۰					
٠					•	0	0	0	•	0	0	0	۰					
٠						0		•		0		0						
٠						0	0	0		0	0	0						
٠																		
٠																		
٠																		
٠																		
٠																		
		_																
	Y	٦i	ir	٦										r	n	1	יב	v
		11														IC		^