Soft Matter Theory 3. Übungsblatt

Abgabetermin: Donnerstag, 24. November 2011, bis 11:00, Briefkasten

5. Dichtefunktionaltheorie

(4 Punkte + 4 Zusatzpunkte)

a) Direkte Korrelationsfunktion Leiten Sie aus der Definition

$$c(\mathbf{r}, \mathbf{r}') = \frac{1}{n(\mathbf{r})} \delta(\mathbf{r} - \mathbf{r}') - \beta \frac{\delta \mu(\mathbf{r})}{\delta n(\mathbf{r}')}$$

für die direkte Korrelationsfunktion die Ornstein-Zernicke Gleichung ab. *Hinweis:* Benutzen Sie $G(\mathbf{r}, \mathbf{r}') = n(\mathbf{r})h(\mathbf{r}, \mathbf{r}')n(\mathbf{r}') + n(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}')$, die Verallgemeinerung des bekannten Zusammenhangs g(r) = h(r) + 1 der entsprechenden Größen in homogenen Fluiden.

- b) Barometrische Höhenformel
 - Berechnen Sie für die Randbedingung $n(0) = n_0$ das chemische Potential μ und die ortsabhängige Dichte $n(\mathbf{r})$ eines inhomogenen thermostatierten idealen Gases im Einteilchenpotential $\mu(\mathbf{r}) = \mu u(\mathbf{r})$ mit u(0) = 0. Gehen Sie dazu vom bekannten Dichtefunktional für die freie Energie eines inhomogenen idealen Gases und der Minimalbedingung an das großkanonische Potential aus.
- c*) Mikrophasenseparation in "Random Phase Approximation" (RPA) In der sogenannten RPA–Näherung ergänzt man die freie Energie $F^{(0)}$ des den kurzreichweitigen Anteil ($r \simeq \sigma$) der Wechselwirkung beinhaltenden Referenzsystems um einen Term

$$F_{\rm ex}[\delta n(\mathbf{r})] = \frac{1}{2} \int d^3r \ d^3r' \ \nu_1(\mathbf{r} - \mathbf{r}') \delta n(\mathbf{r}) \delta n(\mathbf{r}')$$

mit dem als Störung behandelten schwachen langreichweitigen Anteil ν_1 des Paarpotentials.

- i) Zeigen Sie für ein homogenes Fluid, dass $S_q^{-1}=S_q^{(0)-1}+n\beta\nu_{1q}$ gilt. *Hinweis:* $c({\bf r},{\bf r}')$ über Funktionalableitung von F ausdrücken
- ii) Zeigen Sie mittels i) außerdem, dass für das Störpotential

$$\nu_1(r) = u_1 e^{-\varkappa_1 r} - u_2 e^{-\varkappa_2 r}$$
 $(\varkappa_1 < \varkappa_2 \ll \sigma^{-1}, \ 0 < \beta u_1 < \beta u_2 \ll 1)$

der Strukturfaktor einen Kleinwinkelpeak

$$S_{q\to 0}^{-1} = a + b(q^2/q_0^2 - 1)^2$$

entwickelt (*Hinweis*: Fourier-Transformation von $\nu_1(r)$ und Entwicklung für $q \to 0$). Diskutieren Sie dessen physikalische Bedeutung, sowie die der Parameter a, b, q_0 und den Beitrag der langreichweitigen Wechselwirkung zur isothermen Kompressibilität als Funktion der Potentialparameter. Wann ist die RPA für dieses System asymptotisch exakt?

gesamt: 4+4 Punkte