Introduction to Computer Simulation II Homework 6

Due: Monday, 26 May 2025

11. 2D XY model overview

Use your single-cluster program for the 2D XY model of problem 10 for the determination of the mean energy, specific heat and susceptibility in the range $\beta = 1/k_BT = 0, ..., 2$ in steps of $\Delta\beta = 0.05$. Compare the results for lattice sizes 8×8 , 24×24 (and may be also 60×60), each with periodic boundary conditions.

12. Mean cluster size and improved estimator for the susceptibility of the 2D XY model

For general O(n) spin models it can be shown that, when employing the embedded single-cluster algorithm, the magnetic susceptibility in the high-temperature phase, $\chi = \beta V \langle m^2 \rangle$ with $m = (1/V) \sum_{i=1}^V \vec{s_i}$, can be estimated by the improved estimator

$$\hat{\chi}/\beta = \frac{n}{|C|} \left(\sum_{i \in C} \vec{r} \cdot \vec{s}_i\right)^2.$$

Here |C| is the mean cluster size, which *only* for the Ising model with n = 1 is directly an improved estimator for χ/β (how does that follow from above formula?). Compare for the 2D XY model with n = 2 (24 × 24 square lattice, periodic boundary conditions) the two estimators for the susceptibility, that is the standard estimator $\propto m^2$ and the improved estimator, at three points of the high-temperature phase ($\beta = 1.0, 0.8, 0.6$) and verify that $\langle |C| \rangle \approx 0.81\chi/\beta$.