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Monte Carlo Methods in Classical

Statistical Physics

Assignments

1. Exact enumeration and density of states

Compute the partition function of the one-dimensional Ising model
with periodic boundary conditions by exact enumeration of all states
for L = 20 spins (2L = 220 ≈ 106 states) at βJ = 1 (resp. T = J/kB).
Compare with the exact solution from a transfer-matrix calculation.

How can the program be modified to obtain exact results for all tem-
peratures? With a further small modification this can be generalized to
all magnetic fields as well by counting the density of states Ω(E,M).
Test your code again by comparing with exact results.

2. Pseudo-random number generators

The generation of uniformly distributed pseudo-random numbers with
a Linear Congruential Generator (LCG) uses the following rule:

Xi+1 = (aXi + c) mod m,

where their “quality” depends crucially on the choice of the parameters
a, c, and m. Choose in the following the purposely non-optimal values
a = 5, c = 0, m = 211 = 2048, X0 = 1.

a) Implement this LCG with a normalization such that Xi ∈ [0, 1).

b) Plot the
”
time series “ Xi of 104 random numbers and determine

their period t0.

c) Measure the mean X =
∑N

i=1 Xi/N and variance σ̂2
X = X2 − X

2

using N = t0, 10 t0, and 100 t0 random numbers.



d) Plot the so-called running average X(n) =
∑n

i=1 Xi/n as function
of n in the interval n ∈ [30 000, 40 000].

e) Create a two-dimensional xy plot with x = Xi and y = Xi+1 for
i = 1, 3, 5, . . ..

Use a more realistic LCG with larger period (e.g. drand48) to estimate
the areas of a circle and ellipse by simple sampling (circle of radius
r = 1 centered at (1, 1) and analogously for the ellipse).

One method to generate Gaussian pseudo-random numbers is to first
drawn two independent uniform pseudo-random numbers r1 and r2,
and then to compute

x1 =
√

−2 ln r1 cos(2πr2),

x2 =
√

−2 ln r1 sin(2πr2),

which will be a pair of independent normal random deviates with mean
zero and unit variance. Test this method by explicit simulation.

3. Monte Carlo simulations of the 1D Ising model

Write a Monte Carlo program for the simulation of the 1D Ising mo-
del with L = 20, 100, 1000 and 10000 spins and periodic boundary
conditions using one of the local update algorithms:

a) Metropolis

b) Heat-bath

c) Glauber

Measure the energy, specific heat, magnetization and susceptibility for
different temperatures (kBT/J = 0, . . . , 1) and compare with the enu-
meration results of assigment 1 and exact analytical results.

4. Analyses of autocorrelations

Write a computer program for the analysis of autocorrelations (auto-
correlation function, integrated and exponential autocorrelation time).
Test your program by means of the exact results given in the lecture
for the bivariate Gaussian time series.

Compare your results with the binning method.



5. Monte Carlo simulations of the 2D Ising model

Generalize your computer code of assignment 3 to the simulation of the
2D Ising model with periodic boundary conditions. Use square lattices
of linear size L = 4, 8, 16, 32, 64, and 128 and compare for vanishing
magnetic field in the range kBT/J = 0, . . . , 1 the energy and specific
heat with exact results from the Kaufman solution [a useful reference
is P.D. Beale, Phys. Rev. Lett. 76, 78 (1996), which discusses a method
for obtaining the density of states in 2D].

Study the “finite-size scaling” behaviour close to the second-order phase
transition at Kc = Jβc = ln(1+

√
2)/2 ≈ 0.44 and determine the critical

exponent ratios α/ν, β/ν, and γ/ν from fits to the respective power
laws.

Study the growth of autocorrelations with system size using the me-
thods of assignment 4.

6. Single-cluster algorithm for the 2D Ising model

Implement the (non-local) Wolff single-cluster algorithm for the 2D
Ising model. Test your program by comparison with the numerical re-
sults of assigment 5 and the exact analytical solution. Estimate close
to criticality the performance by measuring the autocorrelation time.

Verify that the average (Fortuin-Kasteleyn) cluster size is an estimator
for the (reduced) susceptibility χ′ = L2〈m2〉 ∝ Lγ/ν .

What do you find for the finite-size scaling of the average geometric

cluster size (which can be easily recorded in the same simulation run)?

7. Single-histogram reweighting

Perform one simulation of the 2D Ising model (with periodic boundary
conditions) on a 162 lattice at Jβc ≈ 0.440 686 (β = 1/kBT ). Construct
from the time-series data for E and M the energy histogram and de-
termine the reweighted distributions at Jβ1 = 0.375 and Jβ2 = 0.475.
Compare with Beale’s exact results or independent simulations at these
temperatures. Analyze the quality of the reweighted histograms criti-
cally.


