
Monte Carlo Methods in Classical

Statistical Physics

Wolfhard Janke

Universität Leipzig

Contents

1. Motivation

2. Models and phase transitions

3. Importance sampling MC simulations

4. Estimators and autocorrelation times

5. A toy and the 2D Ising model

6. Cluster algorithms

7. Single-histogram technique

8. Multiple-histogram technique

9. Tempering methods

10. Summary

Heraeus Summerschool

Computational Many Particle Physics

Greifswald, 18 – 29 September 2006



Monte Carlo Methods in Classical Statistical Physics Wolfhard Janke

Motivation

Objectives:

Understanding of phase transitions and critical phenomena in

classical and quantum statistical physics.

Tools:

Numerical computer simulations.

Two major methods:

• Molecular Dynamics (MD)

• Monte Carlo simulations (MC)

Here focus on MC:

• Stochastic method

• Importance sampling

• Temporal (auto-)correlations

• Statistical error estimation of correlated data

• Improved algorithms and analysis tools
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Models and Phase Transitions
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Ising Model

ZI(β) =
X

{σi}
exp(−βHI) , HI = −

X

〈ij〉
σiσj , σi = ±1

Internal energy per site:

e = E/V, E = −d ln ZI/dβ ≡ 〈HI〉

Specific heat:

C/kB =
de

d(kBT )
= β

2
“

〈H2
I 〉 − 〈HI〉2

”

/V

Magnetization:

m = M/V = 〈|µ|〉 , µ =
X

i

σi/V

Susceptibility:

χ = βV
“

〈µ2〉 − 〈|µ|〉2
”

χ′ = βV 〈µ2〉 (T ≥ Tc)

Correlation function (~x = ~xi − ~xj):

G(~xi − ~xj) = 〈σiσj〉 ∼ exp(−|~x|/ξ) for large |~x|

Spatial correlation length ξ:

ξ = − lim
|~x|→∞

(|~x|/ ln G(~x))
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Spatial Correlations
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Ilustration of the growth of spatial correlations when criticality is

approached (100 × 100 Ising model, β/βc = 0.50, 0.70, 0.85,

0.90, 0.95, and 0.98).
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Finite-Size Rounding and Shifts

For systems of finite size Ld, as in any numerical simulation, the

correlation length cannot diverge, and the divergencies in all other

quantities are rounded and shifted.

Write

t ≡ |1 − T/Tc| ∝ ξ
−1/ν −→ L

−1/ν
,

and use this replacement in the temperature scaling laws to obtain

the finite-size scaling (FSS) ansätze

m ∝ L
−β/ν

+ . . . ,

χ ∝ L
+γ/ν

+ . . . ,

C = Creg + aL+α/ν + . . . .

Locations Tmax of the (finite) maxima of thermodynamic quantities

scale with the system size as

Tmax = Tc + cL
−1/ν

+ . . . .

Finite-scaling functions, e.g., for the susceptibility:

χ(T, L) = Lγ/νfχ(x) + . . . ,

where x = (1 − T/Tc)L
1/ν is the scaling variable (i.e,

L−γ/νχ(T, L) does depend only on the single variable x).
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Example: 2D Ising Model
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+ . . .

βmax = βc + cL−1/ν + . . .
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Importance Sampling Monte Carlo

Simulations

Goal: Draw configurations according to their Boltzmann weight:

P eq[{σi}] ∝ exp (−βH[{σi}]) .

In mathematical terms one sets up a Markov chain:

. . .
W−→ {σi} W−→ {σ

′
i}

W−→ {σ
′′
i }

W−→ . . . ,

with a transition operator W satisfying the conditions

(a) W ({σi} −→ {σ′
i}) > 0 ∀{σi}, {σ′

i} ,

(b)
X

{σ′
i
}

W ({σi} −→ {σ′
i}) = 1 ∀{σi} ,

(c)
X

{σi}
W ({σi} −→ {σ

′
i})P

eq
[{σi}] = P

eq
[{σ

′
i}] ∀{σ

′
i} .

From (c): P eq is a fixed point of W .

A somewhat simpler sufficient condition is detailed balance:

P eq[{σi}]W ({σi} −→ {σ′
i}) = P eq[{σ′

i}]W ({σ′
i} −→ {σi}) .

After an initial equilibration time, expectation values can be

estimated as an arithmetic mean over the Markov chain, e.g.,

〈H〉 =
X

{σi}
H[{σi}]P eq

[{σi}] ≈
1

N

N
X

j=1

H[{σi}]j .
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Metropolis Algorithm

Propose locally a flip of a single spin and accept this update with

probability:

W ({σi} −→ {σ′
i}) =



exp
ˆ

−β(E′ − E)
˜

E′ > E

1 E′ ≤ E ,

with energies E before and E′ after the spin flip.

Note: The practical implementation needs pseudo-random numbers.

If the energy is lowered, the spin flip is always accepted.

If the energy is increased, accept flip with a certain probability −→
entropic contributions.

It is straightforward to show that the Markov conditions (a) – (c)

are satisfied by this update rule.

Selecting spins: At random, random permutation, sequentially,

checker-board scheme.

Continuous degrees of freedom: Choose new spin direction at

random (but be careful with the proper integration measure!).

This update algorithm is not the most efficient one, but works in

virtually all cases!

So, we are basically done, just wait – every 5 years, the computer

speed improves by about a factor of 10 (Moore’s law; confirmed

since about 1950).

Or, if you are impatient, use better update algorithms ...
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Heat-Bath Algorithm

Test all spin states of a single spin si0 in the heat-bath of its (fixed)

local neighbors (4 on a square lattice, 6 on a simple-cubic lattice

with nearest-neighbour interactions):

W ({σi} −→ {σ′
i}) =

e−βH({σ′i}

P

s′
i0

e−βH({σ′
i
}

Detailed balance obviously satisfied:

e
−βH({σi} e−βH({σ′i}

P

s′
i0

e−βH({σ′
i
}

= e
−βH({σ′i}

e−βH({σi}
P

si0
e−βH({σi}

Selecting spins as for Metropolis alg. (random, sequentially, . . . ).

But: Only in special cases easy to generalize to continuous degrees

of freedom.
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Glauber Algorithm

Conceptually similar to Metropolis algorithm:

Propose locally a flip of a single spin and accept this update with

probability:

W ({σi} −→ {σ′
i}) =

1

2

ˆ

1 − tanh
`

β(E′ − E)/2
´˜

,

with energies E before and E′ after the spin flip.

Only for this update algorithm the Monte Carlo (pseudo-) dynamics

can be calculated analytically – and even only in one dimension.

For two and higher dimensions no exact solutions are known.
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Estimators and Autocorrelation Times

Given a time series of N measurements of a quantity O. As

estimator for the expectation value 〈O〉 one may take the arithmetic

mean value

O =
1

N

N
X

j=1

Oj .

Expectation value 〈O〉: Ordinary number

Mean value O: fluctuating random number with variance

σ2
O = 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2 .

For uncorrelated measurements Oj:

σ
2
O = σ

2
Oj

/N

σ2
Oj

= 〈O2
j〉 − 〈Oj〉2

σ2
Oj

: Variance of individual measurements; for e.g. O = energy

E, σ2
Oj

∝ specific heat C.
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Correlated measurements Oj:

σ2
O = 〈O2〉 − 〈O〉2 =

1

N2

N
X

i,j=1

〈OiOj〉 −
1

N2

N
X

i,j=1

〈Oi〉〈Oj〉 .

Collecting diagonal and off-diagonal terms:

σ2
O =

1

N2

N
X

i=1

“

〈O2
i 〉 − 〈Oi〉2

”

+
1

N2

N
X

i 6=j

(〈OiOj〉 − 〈Oi〉〈Oj〉) .

Symmetry i ↔ j ⇒
PN

i 6=j = 2
PN

i=1

PN
j=i+1, time translation

invariance:

σ2
O =

1

N

"

σ2
Oi

+ 2
N

X

k=1

(〈O1O1+k〉 − 〈O1〉〈O1+k〉)
„

1 − k

N

«

#

.

Factoring out σ2
Oi

:

ǫ
2
O ≡ σ

2
O =

σ2
Oi

N
2τ

′
O,int ,

with the (proper) integrated autocorrelation time

τ
′
O,int =

1

2
+

N
X

k=1

A(k)

„

1 − k

N

«

,

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi〉

〈O2
i 〉 − 〈Oi〉〈Oi〉

.
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Asymptotic behavior (governed by exponential autocorrelation

time):

A(k)
k→∞−→ ae−k/τO,exp ,

Hence
`

1 − k
N

´

can be neglected:

τO,int =
1

2
+

N
X

k=1

A(k) .

Generically τO,int 6= τO,exp.

Effective statistics:

σ2
O = σ2

Oj
/Neff ,

Neff = N/2τO,int ≤ N .

Scaling behavior of autocorrelation time at criticality:

τO,int ∝ ξz ∝ t−νz .

In finite systems:

τO,int ∝ L
z

.

z: Dynamical critical exponent (z ≈ 2 for local update algorithms)
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Bias

Physical example: Specific heat C = β2V
`

〈e2〉 − 〈e〉2
´

=

β2V σ2
ei

.

Estimator for variance:

σ̂2
ei

= e2 − e2 = (e − e)2 =
1

N

N
X

i=1

(ei − e)2 .

What is the expected value of σ̂2
ei

?

〈σ̂2
ei
〉 = 〈e2 − e

2〉 = 〈e2〉 − 〈e〉2 −
“

〈e2〉 − 〈e〉2
”

,

This gives

〈σ̂2
ei
〉 = σ

2
ei

„

1 − 2τe,int

N

«

= σ
2
ei

„

1 − 1

Neff

«

6= σ
2
ei

,

showing the weak bias of oder 1/Neff = 2τO,int/N .

Uncorrelated measurements: Bias = 1/N can be corrected by using

σ̂
2
ei,corr

=
N

N − 1
σ̂

2
ei

=
1

N − 1

N
X

i=1

(ei − e)
2

,

〈σ̂2
ei,corr

〉 = σ
2
ei

.
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Binning and Jackknife Analysis

NB non-overlapping blocks of length k , N = NBk. Block

average

OB,n ≡ 1

k

k
X

i=1

O(n−1)k+i , n = 1, . . . , NB .

Error estimate on the mean value:

ǫ
2
O ≡ σ

2
O = σ

2
B/NB =

1

NB(NB − 1)

NB
X

n=1

(OB,n − OB)
2

.

Since σ2
B/NB = 2τO,intσ

2
Oi

/N :

2τO,int = kσ
2
B/σ

2
Oi

Better: NB large Jackknife blocks OJ,n containing all data but one

of the binning blocks:

OJ,n =
NO − kOB,n

N − k
, n = 1, . . . , NB .

Re-using of data leads to an extra factor (NB − 1)2:

ǫ
2
O ≡ σ

2
O =

NB − 1

NB

NB
X

n=1

(OJ,n − OJ)
2

.
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A Simplified Model

Bivariate Gaussian variables (0 ≤ ρ < 1):

e0 = e′
0 ,

ei = ρei−1 +
p

1 − ρ2e′
i , i ≥ 1 ,

e′
i: independent Gaussian random variables satisfying 〈e′

i〉 = 0 and

〈e′
ie

′
j〉 = δij. Thus

ek = ρek−1 +
p

1 − ρ2e′
k = ρke0 +

p

1 − ρ2

k
X

l=1

ρk−le′
l ,

and consequently

A(k) = 〈e0ek〉 = ρ
k ≡ e

−k/τexp ,

τexp = −1/ ln ρ ,

τint =
1

2
+

∞
X

k=1

A(k) =
1

2

1 + ρ

1 − ρ
=

1

2
cth(1/2τexp) .
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Practical implementation:

τint(kmax) ≡ 1

2
+

kmax
X

k=1

A(k)

=
1

2
cth(1/2τexp)

"

1 − 2e−(kmax+1)/τexp

1 + e−1/τexp

#

.

For τexp ≫ 1:

τint(kmax) = τint

»

1 − 2τexp

2τexp + 1
e
−kmax/τexp

–

.

Often employed: Self-consistent cutoff at kmax = 6τint.

Binning analysis:

σ
2
B = 〈e2

B,n〉 =
1

k2

k
X

i,j=1

ρ
|i−j|

=
1

k2

2

4k + 2
k

X

i=1

i−1
X

j=1

ρi−j

3

5

=
1

k

"

1 +
2ρ

1 − ρ
− 2ρ

k

1 − ρk

(1 − ρ)2

#

≈ 2τexp

»

1 − τexp

k

“

1 − e−k/τexp
”

–

.

17



Monte Carlo Methods in Classical Statistical Physics Wolfhard Janke

Time Evolutions
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One percent of the “MC time” evolution of the bivariate Gaussian

process with a total of 100 000 “measurements”.
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Autocorrelation and Binning Analysis
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(a) Autocorrelation functions and (b) integrated autocorrelation

time for τexp = 10. The solid lines show the exact results.
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Binning analysis for τexp = 10. The solid line shows the exact

result.
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A Realistic Example: 2D Ising Model

Metropolis simulations, 16 × 16 lattice at βc:
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e

0 10000 20000 30000 40000 50000
MC time
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0.0

0.5

1.0

m

Part of the time evolution of the energy e and magnetization m.

Total length of time series: 1 000 000 measurements.
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Autocorrelation and Binning Analysis
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Autocorrelation function of the energy on (a) linear and (b) log

scale. (c) Integrated autocorrelation time and (d) binning analysis.

16 × 16 lattice, β = βc.

Horizontal line in (d): 2τe,int ≈ 54.
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Local Update Algorithms

. . . such as Metropolis, heat-bath, Glauber, . . .

Dynamical critical exponent (τ ∝ Lz):

z ≈ 2

Critical slowing down

Example: 100 × 100 square lattice (L = 100)

⇒ τ ≃ 10 000

⇒ Only every ≈ 10 000th sweep through the lattice, a statistically

independent measurement can be taken (L = 1000 ⇒ 1 000 000)

Questions:

Is there a proper way of flipping (non-locally) whole clusters of

spins?

Does that reduce the dynamical critical exponent z?

Answers:

YES – YES: Cluster update algorithms
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Cluster Algorithms

Employ Fortuin-Kasteleyn representation:

Z =
X

{σi}
exp

0

@β
X

〈ij〉
σiσj

1

A

=
X

{σi}

Y

〈ij〉
eβ

h

(1 − p) + pδσiσj

i

=
X

{σi}

X

{nij}

Y

〈ij〉
e

β
h

(1 − p)δnij,0 + pδσiσj
δnij,1

i

,

with

p = 1 − e−2β .

Here use was made of the fact that σi = ±1 so that

exp(βσiσj) = x + yδσiσj
,

and of the “deep” identity

a + b =
1

X

n=0

(aδn,0 + bδn,1) .

nij are bond variables with the interpretation:

nij = 0: “deleted” bond

nij = 1: “active” bond
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Swendsen-Wang Cluster

According to the last line of the Fortuin-Kasteleyn representation,

a cluster update sweep then consists of alternating updates of the

bond variables nij for given spins with updates of the spins σi for

a given bond configuration:

1. Set nij = 0 if σi 6= σj, or assign values nij = 1 and 0 with

probability p and 1 − p, respectively, if σi = σj, cp. Fig.

2. Identify clusters of spins that are connected by “active” bonds

(nij = 1).

3. Draw a random value ±1 independently for each cluster

(including one-site clusters), which is then assigned to all spins

in a cluster.

nij=0 nij=1 nij=0

always p1=p p0=1-p

Illustration of the bond variable update. The bond between unlike

spins is always “deleted” as indicated by the dashed line. A bond

between like spins is only “active” (nij = 1) with probability

p = 1 − exp(−2β) .

Only at zero temperature (β −→ ∞) stochastic and geometric

clusters coincide.
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Wolff Single Cluster

Here only a single cluster is flipped at a time:

1. Choose lattice site at random.

2. Construct the cluster around this site.

3. Flip the spins in this cluster always.
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The spin configuration is from an actual simulation of the 2D Ising

model at 0.97 × βc on a 100 × 100 lattice.

Adjusting work (= time) scale: A sweep consists of V/〈C〉 single

cluster steps, where 〈C〉 denotes the average cluster size, which is

a very convenient so-called “improved estimator” for the magnetic

susceptibility, i.e., scales with system size L as Lγ/ν.
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Single-Histogram Technique

Rewrite partition function in terms of density of states:

Z =
X

{s}
e−βH =

X

E

Ω(E)e−βE ∼
X

E

Pβ(E)

At simulation point β0:

Pβ0
(E) ∼ Ω(E)e−β0E

Then:

Pβ(E) ∼ Ω(E)e−βE

= Ω(E)e
−β0E

e
−(β−β0)E

∼ Pβ0
(E)e

−(β−β0)E
,

i.e., up to normalization the histogram at any point β can

be (trivially) computed from the MC sampled histogram at the

simulation point β0.

Normalization unimportant (cancels) for expectation values.

Disclaimer: Be careful with “any” in practice – for finite statistics,

β must be “close enough” to β0.

Ferrenberg & Swendsen (1988)

26



Monte Carlo Methods in Classical Statistical Physics Wolfhard Janke

Example: 2D Ising Model
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Specific heat computed by reweighting (•) from a single MC

simulation at β0 = βc (•). Continuous line is the exact solution.
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(b)

Energy histograms at the simulation point β0 = βc, and reweighted

to β = 0.375 and β = 0.475. Red dashed lines are exact.
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Reweighting Range

Width of energy histogram:

∆e
2 ≡ 〈e2〉 − 〈e〉2

= C(β0)/β
2
0V

Taylor expansion of energy around T0 (C(T0) = (∂e/∂T )|T0
):

e(T ) = e(T0) + C(T0)(T − T0) + . . .

Require:

e(T ) − e(T0) = ∆e

Hence:

C(T0)(T − T0) = T0

q

C(T0)/V

or

∆t ≡ T − T0

T0

=
1√
V

1
p

C(T0)

Three cases:

Off-critical: C(T0) ≈ const. ∆t ∼ L−d/2

Critical: C(T0) ∼ Lα/ν ∆t ∼ L−1/ν

1st order: C(T0) ∼ Ld = V ∆t ∼ L−d = 1/V

(Hyperscaling employed: α = 2 − dν)
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Multiple-Histogram Technique

• Perform m MC simulations at β1, β2, . . . , βm

• Reweight all data to one reference point β0

• Take care of (reweighted) error bars and compute error weighted

average at β0

• Reweight “combined” (averaged) histogram to any other β (in

the reliable reweighting range)

By conveniently chosing β0 = 0, this yields:

Ω(E) =

Pm
i=1 Pβi

(E)
Pm

i=1 NiZ(βi)−1e−βiE

Self-consistency determines

Z(βi) =
X

E

Ω(E)e−βiE =
X

E

e−βiE

Pm
k=1 Pβk

(E)
Pm

k=1 NkZ(βk)−1e−βkE
,

up to an overall, unimportant constant.

Ferrenberg & Swendsen (1989)
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Tempering Methods

Loosely speaking, tempering methods may be characterized as

“dynamical multi-histogramming”.

Consider m simulation points β1 < β2 < . . . < βm and treat

them as dynamical variables to be updated, similar to the spin

degrees of freedom.

Two different variants:

• Simulated tempering (expanded ensemble)

• Parallel tempering (exchange Monte Carlo, multiple Markov

chain Monte Carlo)

Both are very useful for complex, disordered systems (e.g., spin

glasses).
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Simulated Tempering

Joint partition function (expanded ensemble):

ZST =
m

X

i=1

e
gi

X

{s}
e
−βiH({s})

,

where gi = βif(βi) and the inverse temperature β is treated as

an additional dynamical degree of freedom that can take the values

β1, . . . , βm.

Propose move from β = βi to βj and accept a la Metropolis with

probability

min [1, exp[−(βj − βi)H({s})] + gj − gi] .

Similar to multi-histogram reweighting (and also to multicanonical

simulations discussed below), the free-energy parameters gi are a

priori unknown and have to be adjusted iteratively.

To assure a reasonable acceptance rate for the β-update moves

(usually between neighbouring βi-values), the histograms at βi and

βi+1, i = 1, . . . , m− 1, must overlap. An estimate for a suitable

spacing δβ = βi+1−βi is hence immediately given by our previous

results for the reweighting range:

δβ ∝

8

>

<

>

:

L−d/2 off-critical ,

L−1/ν critical ,

L−d first-order .

(1)
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Parallel Tempering

While the “expanded” ensemble of the simulated tempering method

is built on a sum of partition functions, here the starting point is

the product of partition functions (“extended” ensemble)

ZPT =
m

Y

i=1

Z(βi) =
m

Y

i=1

X

{s}i

e−βiH({s}i) ,

All m systems at different simulation points β1 < β2 < . . . < βm

are simulated in parallel, using any legitimate update algorithm

(Metropolis, cluster,. . . ).

After a certain number of sweeps, exchanges of the current

configurations {s}i and {s}j are attempted (equivalently, the

βi may be exchanged, as is done in most implementations for

efficiency reasons).

Accept proposed exchange a la Metropolis with probability

W = min(1, e
∆
) , ∆ = (βj − βi)[E({s}j) − E({s}i)] .

To assure a reasonable acceptance rate, usually only “nearest-

neighbour” exchanges (j = i ± 1) are attempted, with spacing

δβ = βi+1 − βi choosen as for simulated tempering.

Notice that in parallel tempering no free-energy parameters must

be adjusted. The method is thus very flexible and moreover can be

almost trivially parallelized.
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Summary

• Great improvements of MC simulation methodology ⇒ high

precision results ⇒ need for careful and reliable statistical error

analyses.

• Autocorrelations require rather involved analyses.

• However, this extra effort is worth spending when compared

with the months or even years of computer time needed for the

generation of the raw data.
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