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Computational Quantum Field Theory

12.1 Introduction

The Computational Physics Group performs basic research into classical and quantum
statistical physics with special emphasis on phase transitions and critical phenomena.
In the centre of interest are the physics of spin glasses, diluted magnets and other
materials with quenched, random disorder, soft condensed matter physics with a focus
on fluctuating paths and interfaces, biologically motivated problems such as polymer
collapse/folding, adsorption and aggregation as well as related properties of proteins,
and the intriguing physics of low-dimensional quantum spin systems.

The methodology is a combination of numerical and analytical techniques. The nu-
merical tools are mainly Monte Carlo (MC) and Molecular Dynamics (MD) computer
simulations, chain-growth algorithms, and exact enumeration techniques. The compu-
tational approach to theoretical physics is expected to gain more and more importance
with the future advances of massively parallel computer technologies, and is likely to
become the third cornerstone of physics besides experiment and analytical theory as
sketched in Fig. 12.1. Already now it often helps to bridge the gap between experiments
and the often necessarily approximate calculations in analytic approaches. To achieve
the desired high efficiency of the numerical studies we develop new algorithms and,
to guarantee the flexibility required by basic research, all computer codes are imple-
mented by ourselves. The technical tools are Fortran, C, C++, and Python programs
running under Unix or Linux operating systems and computer algebra using Maple
or Mathematica. The software is developed and tested at the Institute on a cluster of
PCs and workstations, where also most of the numerical analyses are performed. Cur-
rently we are also exploring the possibilities of the rapidly developing graphics card
computing, that is computer simulations on general purpose graphics processing units
(GPGPUs) with a very large number of cores. High-performance simulations requir-
ing vast amounts of computer time are carried out at the Institute on quite powerful
compute servers, at the parallel computers of the Saxon computing centre in Dresden,
and, upon successful grant application, at the national supercomputing centres in Jü-
lich, Stuttgart and München on parallel high-capability computers. This hierarchy of
various platforms gives good training and qualification opportunities for the students,
which offers promising job perspectives in many different fields for their future careers.

Our research activities are closely integrated into the Graduate School “Build-
MoNa”: Leipzig School of Natural Sciences – Building with Molecules and Nano-
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Figure 12.1: Sketch of the “triangular” relationship between experiment, analytical theory and
computer simulation.

objects , the International Max Planck Research School (IMPRS) Mathematics in the Sci-
ences , and the International Doctoral College Statistical Physics of Complex Systems
with Université de Lorraine in Nancy, France, supported by the Deutsch-Französische
Hochschule (DFH-UFA). In the second funding period 2011–2013, Coventry University
in England has been integrated as an associated partner, and in the third funding period
2014–2016, also the National Academy of Sciences of Ukraine in Lviv has joined as an-
other associated partner institution, offering our PhD students now several interesting
options for secondments. For instance, in 2014, one PhD student started a “co-tutelle
de thèse” jointly supervised with a colleague from Coventry University. Currently the
DFH-UFA Doctoral College under the acronym “L4” is in its fourth funding period
2017–2020 and the fifth funding period 2021–2024 has recently been approved. The
three Graduate Schools are all “Classes” of the Research Academy Leipzig (RALeipzig),
providing the organizational frame for hosting visiting students and senior scientists,
offering language courses, organizing childcare and for many other practical matters.

At a more post-graduate level our research projects are embedded into the Son-
derforschungsbereich/Transregio SFB/TRR 102 Polymers under Multiple Constraints:
Restricted and Controlled Molecular Order and Mobility together with Halle Uni-
versity. Our group also actively contributes to two of the top level research areas
(“Profillinien”) and the Centre for Theoretical Sciences (NTZ) of the University. Beside
“BuildMoNa” the latter structures are particularly instrumental for our cooperations
with research groups in experimental physics and biochemistry on the one hand and
with mathematics and computer science on the other.

On an international scale, our research projects are carried out in a wide net of
collaborations which are currently mainly funded by the Deutsch-Französische Hoch-
schule (DFH-UFA) through the Doctoral College “L4” and still rooted in the recently
concluded EU IRSES Network DIONICOS: Dynamics of and in Complex Systems , a
consortium of 6 European and 12 non-European partners, including sites in Austria,
England, France and Germany as well as in Armenia, Russia, Ukraine, India, the United
States and Venezuela. Further close contacts and collaborations are established with
research groups in Armenia, Austria, China, France, Great Britain, India, Israel, Italy,
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Japan, Poland, Russia, Spain, Sweden, Taiwan, Turkey, Ukraine, and the United States.
These contacts are refreshed and furthered through topical Workshops, Advanced
Training Modules and Tutorials, and our International Workshop series CompPhys:
New Developments in Computational Physics , taking annually place at the end of
November just before the first advent weekend.

Wolfhard Janke

12.2 Knots in semiflexible polymers

S. Majumder, M. Marenz, S. Paul, W. Janke

Figure 12.2: Complete phase diagram for (a) the bead-stick model and (b) the bead-spring model
with the usual choice of the ratio rb/rmin = 0.891 for N = 14. The surface plots are drawn with
respect to the spatial extension of the polymer chain measured in terms of the squared radius
of gyration 〈R2

1〉. The labeled phases stand for the following: E for elongated; R for rodlike; G
for globular; F for frozen; KCn for knotted phase with the corresponding knot type Cn; Dn for
bent phases with n number of segments.

Knots are topological properties of closed strings, and hence, knots found in open
polymers are not mathematically defined [1]. Nevertheless, by means of a special
strategy for ring closure, the definition can be extended to open polymers as well
[2]. Using such a protocol there have been several attempts to find knots in proteins,
mostly indicating rarity of them. On the other hand, knots are more common in flexible
polymers. Along the same line, even though the understanding of the phase behavior
of semiflexible polymers is rich [3], there have been no reports of knotted phases until
recently their presence has been identified in a bead-stick semiflexible polymers [4].
Noting the fact that the model used in Ref. [3] by Seaton et al. is a bead-spring model,
in this study [5] we considered both a bead-spring and bead-stick model to explore the
presence of any knotted phase.
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We consider two semiflexible polymer models: i) bead-stick and (ii) bead-spring.
In both the models the monomers are considered to be spherical beads with diameter
σ, and the nonbonded interaction energy is dependent on the inter-particle distance ri j

and is given as

Enb =

N−2
∑

i=1

N
∑

j=i+2

[

ELJ(min{ri j, rc}) − ELJ(rc)
]

(12.1)

where

ELJ(ri j) = 4ǫ
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σ

ri j

)12

−
(

σ

ri j

)6










(12.2)

is the standard Lennard-Jones (LJ) potential which has a minimum at rmin = 21/6σ. In
Eq. (12.1), N is the length of the polymer measured as the total number of beads or
monomers. In order to be consistent with our previous study [4] for the bead-stick
model we set σ = 1.0 and do not use any cut-off in Enb, whereas for the bead-spring
model we choose σ = 2−1/6 in order to be consistent with the choice of rmin = 1.0 in
Ref. [3] and set rc = 2.5σ for faster computation of Enb. For both models the nonbonded
interaction strength ǫ is set to unity. In bead-stick models the monomers form a chain
where the connectivity between successive monomers are maintained via rigid bonds
having fixed length rb. On the other hand, in a bead-spring model the bonds between
successive monomers are maintained via some kind of springs. Here we consider the
standard finitely extensible non-linear elastic (FENE) potential

EFENE = −
K

2
R2

N−1
∑

i=1

ln
[

1 −
(

rii+1 − rb

R

)2
]

(12.3)

where rb is the equilibrium bond distance for which EFENE is minimum. Unless otherwise
mentioned in all the simulations we have used R = 0.3 and K = 40.

In both models stiffness is introduced via the well-known discretized worm-like
chain cosine potential given as

Ebend = κ
N−2
∑

i=1

(1 − cosθi) (12.4)

where θi is the angle between consecutive bonds and κ controls the effective bending
stiffness of the polymer. In this work we aim to perform simulations of the two models
using different values of rb/rmin. For that we fix the value of rmin = 21/6 and 1.0, respect-
ively, for the bead-stick and the bead-spring model (by keeping the respective values
of σ in all our simulations) and vary only the equilibrium bond length rb. For both the
models a two-dimensional replica exchange simulations were done along (T, κ) plane.
The data were analysed via two-dimensional version of the weighted histogram ana-
lysis method (2D-WHAM). The knots were identified using the Alexander polynomial
as described in Refs. [2] and [4].

Our results establish the fact that the presence of a stable knotted phase in the phase
diagram is dependent on the ratio rb/rmin where rb is equilibrium bond length and rmin

is the distance for strongest nonbonded contacts. Our results provide evidence for both
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models that if the ratio rb/rmin is outside a small window around unity then depending
on the bending stiffness one always encounters stable knotted phases along with the
usual frozen and bent like structures at low temperatures. For an illustration see Fig.
12.2 where we show the phase diagrams of both the models for the choices of the ratio
rb/rmin = 0.891. These findings prompt us to conclude that knots are generic stable
phases in semiflexible polymers.

[1] L. Kauffman: Knots Theory and Physics (World Scientific, Singapore, 1991)
[2] P. Virnau: Phys. Proc. 6, 117 (2010)
[3] D.T. Seaton et al.: Phys. Rev. Lett. 110, 028103 (2013)
[4] M. Marenz, W. Janke: Phys. Rev. Lett. 116, 128301 (2016)
[5] S. Majumder et al.: Macromolecules, submitted (2020)

12.3 Simulation of self-avoiding walks and polymers in

continuum by means of binary trees

S. Schnabel, W. Janke
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Figure 12.3: Rescaled quadratic end-to-end distance ree of the hard-sphere polymer as a function
of length L for different sphere diameters D. The crossover from the random walk (D = 0) to
the self-avoiding walk is apparent.

A few years ago Nathan Clisby has introduced a novel technique [1] for the simulation
of self-avoiding walks on lattice geometries. These systems serve as simple models
for polymers with excluded-volume interaction and allow for the investigation of the
related scaling behaviour. With the new method walks are stored as binary trees where
the leaves correspond to individual occupied lattice sites and any internal node contains
collective geometric information of the subtree to which it is root in form of a box (in
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case of a simple-cubic lattice) that contains all derived monomers. This allows one to
test for non-intersection of large parts of the walk very efficiently using nodes high up
in the tree which represent many occupied lattice sites. Lower nodes representing few
sites in more detail are only accessed if necessary. It was possible to determine the 3d
Flory exponent with great accuracy, ν = 0.587 597 0(4) [2], with the new method.

Our first goal is to apply this method to the slightly more realistic hard-sphere
polymer model, also known as continuum self-avoiding walks [3]. A set of monomers
xi that are connected by bonds of fixed length |xi − xi+1| = 1 and represent hard spheres
of diameter D: |xi − x j| ≥ D. Otherwise the chain is fully flexible. The adaptation of
the binary-tree method to the latter system is straightforward. The boxes are replaced
by spheres and transformations are generalized. Now it is easily possible to simulate
systems with many million monomers. In Fig. 12.3 we show the dependence of the end-
to-end distance as a function of the polymer length divided by the asymptotic scaling
law. The crossover from a behaviour akin to a random walk (where ν = 1/2) for small
chains and small diameters to the self-avoiding walk (horizontal in Fig. 12.3) can be
observed. It becomes apparent that for D ≈ 0.45 the corrections to scaling become very
small and asymptotic behaviour is already realized for comparatively short chains.

[1] N. Clisby: J. Stat. Phys. 140, 349 (2010)
[2] N. Clisby, B. Dünweg: Phys. Rev. E 94, 052102 (2016)
[3] S. Schnabel, W. Janke: Comput. Phys. Commun. 256, 107414 (2020)

12.4 Simulation of long polymers near the Θ-point

S. Schnabel, W. Janke

The influence of the solvent on the shape of a polymer is qualitatively well understood:
In a good solvent excluded volume interaction dominates and causes the polymer to ar-
range in an extended configuration that resembles a self-avoiding random walk, while
in a bad solvent due to a high surface tension the contact area between solvent and
polymer is reduced leading to a dense globular configuration. In between those two
cases at the so-called Θ-point both effects cancel and the occupied configurations have
the properties of an ideal Gaussian random walk, see Fig. 12.4. However, the scaling be-
havior that is predicted by mean-field theory has so far not been confirmed. Previously,
Monte Carlo studies that were intended to solve this problem have exclusively been
using lattice models, were polymer configurations are restricted to walks on (typically)
cubic lattices. Although this breaks isotropy, it allows to treat much longer chains than
what was possible with off-lattice models until very recently.

In order to overcome this limitation we developed a variant [1] of the well-known
Metropolis Monte Carlo algorithm that works without the exact knowledge of the
change in energy but still generates the correct dynamics. For the basic framework
we adopted a novel technique introduced by Clisby [2] for the simulation of self-
avoiding walks on lattices. It employs binary trees with nodes that represent sections
of the polymer of various sizes as single units with different degrees of resolution. This
scheme can be used to efficiently estimate the interaction energy of large parts of the
polymer and in combination with the new Metropolis technique allows us to simulate
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Figure 12.4: A configuration of a polymer with 65536 repeat units near the Θ-point.

large off-lattice polymers much faster. We are now able to investigate systems with
more than 105 repeat units.

[1] S. Schnabel, W. Janke: Comput. Phys. Commun. 256, 107414 (2020)
[2] N. Clisby: J. Stat. Phys. 140, 349 (2010)

12.5 Computer simulations of semiflexible polymers in

disordered environments

J. Bock, W. Janke
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Figure 12.5: (a) Histogram used for the guiding field in 3D and (b) an examplary configuration
of a polymer with N = 30 and ξ = 1.

Single-molecule experiments have established the wormlike chain (WLC) as a standard
model for semiflexible polymers [1]. Exploiting the analogy of the WLC with a one-
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(a) Free polymers
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Figure 12.6: End-to-end distance distributions for (a) free polymers and (b) polymers in gaseous
disorder, both in 3D.

dimensional Heisenberg ferromagnet, it can be shown that the equilibrium tangent-
tangent correlation function decays exponentially. The decay rate defines the thermal
persistence length lp. When the same polymer is embedded in a quenched, disordered
environment in three dimensions, this property may change quantitatively or even qual-
itatively. We addressed this problem by performing extensive numerical simulations of
semiflexible polymers in a simple lattice disorder and in a gaseous disorder construc-
ted by microcanonical Lennard-Jones gas simulation which represents the disordered
environment. Further plans are to simulate the polymers in algebraically correlated
disorder. Only the space between the spheres is accessible to the polymer. The extreme
strength and density of the environmental constraints are a great challenge to conven-
tional Monte Carlo simulation schemes, which we found hard to overcome even with
a sophisticated multicanonical histogram reweighting procedure [2]. We have there-
fore adopted a breadth-first chain-growth algorithm [3] that resolves this difficulty by
circumventing energy barriers instead of trying to cross them [2, 4], see examples in
Fig. 12.5. Therefore the already existing procedures were expanded to the third dimen-
sion to investigate the behaviour of the tangent-tangent correlation length, the mean
square end-to-end distance and the end-to-end probability distribution function, see
Fig. 12.6. A difference in behaviour is clear and the task now is to check wether the
differences scale similarly as in two dimensions, where the disorder renormalization is
stated to be [5]:

1
l∗p
=

1
lp
+

1
lD
p

,

with l∗p the renormalized persistence length, lp the persistence length given as simulation
parameter and lD

p the measured disorder persistence length.

[1] O. Otto et al.: Nat. Commun. 4, 1780 (2013)
[2] S. Schöbl et al.: Phys. Rev. E 84, 051805 (2011)
[3] T. Garel, H. Orland: J. Phys. A: Math. Gen. 23, L621 (1999)
[4] S. Schöbl et al.: J. Phys. A: Math. Theor. 45, 475002 (2012)
[5] S. Schöbl et al.: Phys. Rev. Lett. 113, 238302 (2014)
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12.6 Effect of temperature on the scaling laws governing

the kinetics of collapse of a homopolymer

S. Majumder, J. Zierenberg∗, W. Janke
∗Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17,
37077 Göttingen, Germany

Figure 12.7: (a) Snapshots [1] showing the sequence of events occurring during the collapse of a
polymer upon being quenched from an expanded state (at high temperature) into the globular
phase (at low temperatures). (b) Universal finite-size scaling function Y(yp) with a non-universal
metric factor fs in the scaling variable yp describing the scaling in the cluster growth during
the collapse [2]. (c) Temperature-independent scaling plot for the aging and related dynamical
scaling, probed by the behavior of a suitable density-density autocorrelation function C(t, tw)
against xc = Cs(t)/Cs(tw), the ratio of cluster sizes Cs(t) at the observation time t and the waiting
time tw [2].

The collapse transition of a polymer upon transfer from a good solvent (high temper-
ature) to a poor solvent (low temperature) bears significant connection to the folding
process of a proteins and other biomolecules. Thus understanding the kinetics of a ho-
mopolymer in that respect may provide useful primary information on the underlying
mechanism of more realistic problems [1, 2]. On the other hand, if one considers the
usual “pear-necklace” like picture of the collpase [3] as shown in Fig. 12.7(a), it also
resembles coarsening phenomena popular in spin and particle systems [4]. Over the
last two years we have been exploiting this connection to understand the kinetics of
collapse of a homopolymer [5].

In this work, from the state of the art Monte Carlo simulations of an off-lattice
polymer model, we understand the effect of the quench temperature (Tq) on the various
scaling laws related to the collapse viz., scaling of the cluster growth and the dynamical
scaling related to the aging. Our results in conjunction with a nonequilibrium finite-size
scaling analysis [6] show that the cluster growth is rather universal in nature and can be
described by a universal finite-size scaling function with a non-universal metric factor
that depends on the amplitudes of the growth [2], see Fig. 12.7(b). This observation
has recently been confirmed in a related lattice model for the polymer [7]. For a direct
comparison of the lattice and off-lattice formulations, see Ref. [8]. Furthermore, as can
be inspected in Fig. 12.7(c), the scaling related to the aging (which is probed by a suitable
two-time density-density autocorrelation function) is also found to be independent of
the quench temperature Tq. A recent comprehensive overview of these findings is given
in Ref. [9].
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[3] A. Halperin, P. Goldbart: Phys. Rev. E 61, 565 (2000)
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12.7 Coarsening and aging of lattice polymers: Influence

of bond fluctuations

H. Christiansen, S. Majumder, W. Janke
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Figure 12.8: (a) The two-time correlation function C(t, tw) against the ratio of length-scales
xC = ℓ(t)/ℓ(tw) for the model with fixed bonds and different quench-temperatures Tq. In (b) the
growth of the length-scales for the model with flexible bonds is shown for different Tq. Here the
growth is independent of Tq and follows a power law with exponent α = 0.62(5).

The nonequilibrium properties of homopolymer collapse were investigated using
Monte Carlo simulations of the interacting self-avoiding walk on a simple cubic lattice
(with lattice-spacing 1) using fixed bond lengths 1 and flexible bond lengths; 1,

√
2,

and
√

3 [1]. The phenomenological picture of pearl necklace polymer collapse [2] was
observed, in which a polymer, when transferred from a good solvent (Th > Tθ) to a bad
solvent (Tq < Tθ), undergoes a collapse transition from an expanded coil by forming
clusters at locally higher densities which then subsequently coalesce with each other
until only a single globular cluster is left. The aging exponent λ ≈ 1.25 was found to
be independent of the bond conditions and the same as in the off-lattice exponent [3]
[see Fig. 12.8(a) for the model with fixed bonds at different quench temperatures Tq].
For the model with flexible bonds, the power-law growth exponent of the clusters of
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monomers was likewise observed to be independent of temperature α = 0.62(5) [see
Fig. 12.8(b)], while the same exponent was found to be dependent on the temperature
in the fixed bond model. In the off-lattice model on the other hand, α = 1 was found
[4]. The discrepency in the exponent α is attributed to the constraints introduced by the
lattice structure. For a recent review, see Ref. [5].

[1] H. Christiansen et al.: J. Chem. Phys. 147, 094902 (2017)
[2] A. Halperin, P. M. Goldbart: Phys. Rev. E 61, 565 (2000)
[3] S. Majumder, W. Janke: Phys. Rev. E 93, 032506 (2016)
[4] S. Majumder, W. Janke: Europhys. Lett. 110, 58001 (2015)
[5] S. Majumder et al.: Eur. Phys. J. B 93, 142 (2020)

12.8 Scaling laws during collapse of a homopolymer: Lat-

tice versus off-lattice

S. Majumder, H. Christiansen, W. Janke

Figure 12.9: (a) Time evolution snapshots of the collapse of a homopolymer, after being
quenched from an extended coil phase to a temperature, Tq = 1 for OLM, and Tq = 2.5 for
LM, in the globular phase.(b) Plots of the average cluster size Cs(t)/N as function of time for the
two models. To make both the data visible on the same plot, we divide the time axis by a factor
m to obtain tp = t/m, where m = 1 × 106 and 3.5 × 106, respectively, for OLM and LM. The solid
lines there are fits to the form Cs(t) = C0 +Atαc with αc = 0.98 for OLM and αc = 0.62 for LM. (c)
Plot showing that universal aging scaling at different Tq for the two models can be described by
a single master-curve behavior. The solid line here also corresponds to C(t, tw) = ACx−λC

c with
λC = 1.25. Note that C(t, tw) is multiplied by a factor f to make them collapse onto the same
curve. For OLM tw = 104 whereas for LM tw = 103.

The pathways of collapse of a homopolymer, upon a transfer from a good to a poor
solvent, bears resemblance to coarsening processes. Simulation results in this context
can be explained by the phenomenonlogical “pearl-necklace” picture of Halperin and
Goldbart (HG) [1]. Recently we have shown via Monte Carlo simulations of both a
lattice model (LM) and an off-lattice model (OLM) polymer that this nonequilibrium
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evolution dynamics is also a scaling phenomenon [2]. In this work we compared the
results obtained from the LM and OLM, in particular the scaling of the cluster growth
[3] and the aging scaling [4] probed by the two-time density-density autocorrelation
function.

For the OLM, we opt for the bead-spring model of a flexible homopolymer in
d = 3 dimensions where bonds between successive monomers are maintained via the
standard finitely extensible non-linear elastic (FENE) potential

EFENE(rii+1) = −KR2

2
ln

[

1 −
(

rii+1 − r0

R

)2
]

, (12.5)

with K = 40, r0 = 0.7 and R = 0.3. The nonbonded interaction energy is modeled by
Enb(ri j) = ELJ(min(ri j, rc)) − ELJ(rc), where

ELJ(r) = 4ǫ
[

(

σ

r

)12

−
(

σ

r

)6
]

(12.6)

is the standard Lennard-Jones (LJ) potential with σ = r0/21/6 as the diameter of the
monomers, ǫ (= 1) as the interaction strength and rc = 2.5σ as the cut-off radius.

For LM, we consider [5] a variant of the interactive self-avoiding walk on a simple-
cubic lattice, where each lattice site can be occupied by a single monomer. The energy
is given by

ELM = −
1
2

∑

i, j, j±1

w(ri j), where w(ri j) =















J ri j = 1
0 else

. (12.7)

In Eq. (12.7), ri j is the Euclidean distance between two nonbonded monomers i and j,
w(ri j) is an interaction parameter that considers only nearest neighbors, and J(= 1) is the
interaction strength. We allow a fluctuation in the bond length by considering diagonal
bonds, i.e., the possible bond lengths are 1,

√
2, and

√
3.

Phenomenonlogically both LM and OLM show intermediate structures consistent
with the “pear-necklace” picture of HG [Fig. 12.9(a)]. However, the cluster-growth
scaling in LM and OLM are different. While the OLM yields a linear growth (αc ≈ 1),
in the LM the growth is slower (αc ≈ 0.62) [Fig. 12.9(b)], which could be attributed
to the topological constraints one experiences in a lattice model. On the other hand,
surprisingly, both the models show evidence of simple aging scaling having the same
autocorrelation exponent λC ≈ 1.25 [Fig. 12.9(c)], thus implying that the aging scaling
is rather universal. This allowed us to demonstrate that scaling of the autocorrelation
functions for the two models can be described by a single master curve. For a more
detailed discussion, see the recent review in Ref. [6]

[1] A. Halperin, P. M. Goldbart: Phys. Rev. E 61, 565 (2000)
[2] S. Majumder et al.: J. Phys.: Conf. Ser. 955, 012008 (2018)
[3] S. Majumder, W. Janke: Europhys. Lett. 110, 58001 (2015)
[4] S. Majumder, W. Janke: Phys. Rev. E 93, 032506 (2016)
[5] H. Christiansen et al.: J. Chem. Phys. 147, 094902 (2017)
[6] S. Majumder et al.: Eur. Phys. J. B 93, 142 (2020)
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12.9 Kinetics of the collapse of polyglycine in water

S. Majumder, U.H.E. Hansmann∗, W. Janke
∗Department of Chemistry and Biochemistry, University of Oklahoma,
Norman, Oklahoma 73019, USA

Figure 12.10: Left panel: Snapshots showing the sequence of events during collapse of polygly-
cine with 200 residues. Below each snapshot the corresponding contact maps are also shown
revealing the pearl-necklace formation more clearly. Right panel: The upper plot shows the
scaling of the collapse time τc with respect to the chain length. The solid line demonstrates the
consistency of the data with the power-law scaling with an exponent z = 0.5. The lower plot
shows the scaling associated with the cluster coarsening from pearl-necklace to globule.

The collapse of homopolymers was first described by de Gennes’ seminal “sausage”
model [1], but today the phenomenological “pearl-necklace” picture by Halperin and
Goldbart [2] is more commonly used, both for flexible and semiflexible polymer models.
In this picture the collapse begins with nucleation of small local clusters (of monomers)
leading to formation of an interconnected chain of (pseudo-)stable clusters, i.e., the
“pearl-necklace” intermediate. These clusters grow by eating up the un-clustered
monomers from the chain and subsequently coalesce, leading eventually to a single
cluster. Finally, monomers within this final cluster rearrange to form a compact glob-
ule.

Of central interest in this context is the scaling of the collapse time τc with the degree
of polymerization N (the number of monomers). While scaling of the form

τc ∼ Nz, (12.8)

where z is the dynamic exponent, has been firmly established, there is no consensus
on the value of z. Molecular dynamics (MD) simulations provide much smaller values
(z ≈ 1) than Monte Carlo (MC) simulations (z ≈ 2). This difference is often explained
with the presence of hydrodynamics in the MD simulations, but a value z ≈ 1 has
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been reported recently also for MC simulations [4]. The “pearl-necklace” stage or the
cluster-growth kinetics can be understood by monitoring the time (t) dependence of the
mean cluster size Cs(t), the relevant length scale. By drawing analogy with coarsening
ferromagnets it has been shown that scaling of the form

Cs(t) ∼ tαc (12.9)

with growth exponent αc ≈ 1 holds for flexible homopolymers [3, 4].
In this work [5] we investigated the nonequilibrium pathways by which a biological

homopolymer polyglycine [(Gly)N] collapses in water with the aim of exploring the
above mentioned scaling laws. For short chains, the collapse is driven by the competi-
tion between the hydration of the peptide, opposing the collapse, and the intra-peptide
attractions, favoring the collapse [6]. For chains with N > 20, the importance of hydra-
tion effects decreases, and the kinetics of hydrogen bonds indicates that van der Waals
interactions of the backbone dominate [6] and drive the collapse. The nonequilibrium
intermediates seen during the collapse exhibit local ordering or clustering that is ana-
logous to the phenomenological “pearl-necklace” picture [cf. Fig. 12.10 (left)], known
to be valid for the earlier studied coarse-grained homopolymer models [2]. Using the
contact probability of the Cα-atoms in the backbone, we extract a relevant dynamic
length scale, i.e., cluster size, that as in simple homopolymer models grows linearly
with time [4].

Especially intriguing is that the scaling of the collapse time with length of the chain
indicates a faster dynamics, with a critical exponent z = 0.5 [cf. Fig. 12.10 (upper right)]
instead of z = 1 that was seen in earlier homopolymer collapse studies which con-
sidered simplified models describing non-hydrogen-bonded polymers such as poly-
ethylene and polystyrene. The smaller exponent found in this study may be connected
with a mechanism that allows in amino acid based polymers a more rapid collapse
than seen in non-biological homopolymers such as poly(N-isoporpylacrylamide) and
polystyrene, where collapse times of ≈ 300 ms up to ≈ 350s have been reported. We
conjecture that the smaller exponent z is characteristic for collapse transitions in amino
acid based polymers where the presence of intra-chain hydrogen bonding immedi-
ately seeds (transient) local ordering, while in non-hydrogen-bonded polymers such
ordering happens only due to diffusive motion.

The scaling of the cluster growth during the collapse is shown in Fig. 12.10 (lower
right). The solid and the dashed lines represent power-law behavior, Cs(t) ∼ tαc , with
αc = 1 and 2/3, respectively. In the inset, two different choices for a crossover time t0

are taken into account by plotting C
p
s (t) ≡ Cs(t)−Cs(t)0 vs. tp = t− t0. Here the solid line

indicates a power-law behavior with exponent αc = 1.
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[4] S. Majumder et al.: Soft Matter 13, 1276 (2017)
[5] S. Majumder et al.: Macromolecules 52, 5491 (2019)
[6] D. Asthagiri et al.: J. Phys. Chem. B 121, 8078 (2017)
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12.10 Effect of Vicsek-like activity on the collapse dynam-

ics of a flexible polymer

S. Paul, S. Majumder, S.K. Das∗, W. Janke
∗Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,
Jakkur P.O., Bangalore 560064, India

Figure 12.11: (a) Time evolution snapshots of the events occurring during the collapse transition
of a polymer with Nb = 512 beads when quenched from an extended coil state into the globular
phase at low temperature. fA = 0 stands for the passive case, while fA = 1 and 5 correspond
to the case of an active polymer. (b) Average size of clusters as a function of time for the three
cases.

A polymer undergoes a collapse transition when it is quenched from a high-temperature
extended coil state (or in good solvent) to a temperature lower (or in poor solvent) than
its θ-transition value, for which the equilibrium phase is a globular one. Whereas
various aspects of equilibrium and nonequilibrium dynamics of such transition is
reasonably well understood for the case of a passive polymer [1, 2], studies with active
polymers are relatively new [3, 4]. Studying the motion of a single flexible polymer in
presence of controlled active forces is necessary in case of drug delivery, directed self
assembly, etc. Experimental realizations of such a system are given by linking artificially
synthesized colloidal particles that show controlled motion and enhanced diffusion [5].
Here we have modeled each bead as an active element for which we applied Vicsek-like
alignment interaction rules [6]. Our main aim is to look at the nonequilibrium dynamics,
such as, relaxation time of collapse, cluster growth, etc. by tuning the activity and to
compare them with the case of a passive polymer.

Here we consider a flexible bead-spring model of a polymer chain with Nb beads,
determining the degree of polymerization [1]. The equation of motion of each bead is
solved via molecular dynamics simulation using the Langevin thermostat, in which the
quenching temperature has been chosen as T = 0.5. The interaction potentials acting
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among the beads consist of two terms. The non-bonded interaction is the standard LJ
potential and the bonded interaction between two monomers is the FENE potential.
As we have applied Vicsek-like alignment interaction rule [6], the velocity of each bead
gets modified by the average direction of its neighbors present within a cut-off distance
rc, for which we choose rc = 2.5σ, where σ is the diameter of each bead. Following Ref.
[7], the active force ~fi for the i’th bead can be written as,

~fi = fA
~Dn , (12.10)

where fA determines the strength of the active force and ~Dn is the average direction
determined by the neighbors.

In Fig. 12.11(a) we present comparative snapshots for a chain with Nb = 512 beads
during the collapse of the polymer for the passive case as well for two different values
of the active force [8]. Whereas the intermediate snapshots look quite different in the
higher activity case ( fA = 5) than in the passive or fA = 1 case, the final state is in all
cases a globular phase. However, for fA = 0, 1 the polymer evolves to a rather compact
spherical globule, while for fA = 5 it remains in a slightly elongated or sausage-like
globular phase. And the time scale required to reach the final state is much higher for
fA = 5 than in the other two cases. The run time for fA = 5 is up to t = 104 measured in
units of LJ time scale. Though the preferred final phase is a globular one because of the
presence of an attractive potential among the beads, a few realizations still remain in a
dumbbell phase for fA = 5. The persistance of this dumbbell phase for fA = 5 increases
with the value of Nb as well. To make a quantitative comparison, here in Fig. 12.11(b)
we plot the average cluster size Cs(t) of the clusters as a function of time for all the three
cases. We see that for the active cases, though initially the growth amplitude is higher
than in the passive case suggesting a faster initialization of the coarsening process, at
later time Cs(t) crosses over to a lower amplitude as well as a smaller exponent for the
growth. This lowering of the exponent for the active case compared to the passive one
is more prominent for fA = 5. We will investigate these issues in more detail.

[1] S. Majumder, W. Janke: Europhys. Lett. 110, 58001 (2015)
[2] A. Halperin, P. Goldbart: Phys. Rev. E 61, 565 (2000)
[3] R.E. Isele-Holder et al.: Soft Matter 11, 7181 (2015)
[4] V. Bianco et al.: Phys. Rev. Lett. 121, 217802 (2018)
[5] B. Biswas et al.: ACS Nano 11, 10025 (2017)
[6] T. Vicsek et al.: Phys. Rev. Lett. 75, 1226 (1995)
[7] S.K. Das: J. Chem. Phys. 146, 044902 (2017)
[8] S. Paul et al.: Leipzig preprint (2020)

12.11 Explicit solvent model for polymer dynamics using

Lowe-Andersen approach

S. Majumder, H. Christiansen, W. Janke

Dynamics of a polymer chain in a dilute solution, although being extensively studied,
is still a topic of utmost importance. In particular, this topic serves as a benchmark
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Figure 12.12: Left panel: The trajectory of the center of mass of a polymer of length N = 512, over
a time period of 200τ in equilibrium at T = 1.0. Right panel: Dependence of the self-diffusion
coefficient D on the chain length N of a polymer for different solvents with a collision frequency
Γ as indicated. The solid and dashed lines represent the Zimm (D ∼ N−3/5) and Rouse scaling
(D ∼ N−1), respectively.

for establishing a coarse-grained or mesoscopic approach to understand more realistic
problems on larger time and length scales. The equilibrium dynamics of a single chain,
generally, is characterized by the self-diffusion coefficient D which scales with chain
length N as D ∼ N−x. In absence of hydrodynamic effects, one has x = 1, whereas in
presence of hydrodynamic effects, one expects x = 3/5. The former is referred to as
Rouse scaling [1] and the latter as Zimm scaling [2].

In this work [3] we construct an explicit solvent model for a polymer by considering
a bead-spring model of a flexible homopolymer in three spatial dimensions. The bonds
between successive monomers are maintained via the standard finitely extensible non-
linear elastic (FENE) potential

EFENE(rii+1) = −K

2
R2 ln

[

1 −
(

rii+1 − r0

R

)2
]

, (12.11)

with K = 40, r0 = 0.7 and R = 0.3. The monomers and the solvent molecules both
are considered to be spherical beads of mass m = 1 and diameter σ. All nonbonded
interactions are modeled by

Enb(ri j) = ELJ

[

min(ri j, rc)
]

− ELJ(rc) , (12.12)

where ELJ(r) is the standard Lennard-Jones (LJ) potential given as

ELJ(r) = 4ǫ
[

(

σ

r

)12

−
(

σ

r

)6
]

(12.13)

with σ = r0/21/6 as the diameter of the beads, ǫ (= 1) as the interaction strength and rc

= 21/6σ as cut-off radius that ensures a purely repulsive interaction.
We simulate our system via molecular dynamics (MD) simulations at constant tem-

perature using the Lowe-Andersen (LA) thermostat [4]. In this approach, one updates
the position ~ri and velocity ~vi of the i-th bead using Newton’s equations as follows,

d~ri

dt
= ~vi,

d~vi

dt
= ~fi , (12.14)
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where ~fi is the conservative force (originating from the bonded and nonbonded inter-
actions) acting on the bead. For controlling the temperature with the LA thermostat,
one considers a pair of particles within a certain distance RT [4]. Then, with a probab-
ility ∆tΓ, a bath collision is executed, after which the pair gets a new relative velocity
from the Maxwellian distribution. Here, ∆t is the width of the time step chosen for the
updates in Eq. (12.14) and Γ determines the collision frequency. By varying RT and Γ,
one can effectively control the frictional drag or in other words the solvent viscosity.
The exchange of relative velocities with the bath is only done on its component paral-
lel to the line joining the centers of the pair of particles, thus conserving the angular
momentum. Additionally, the new velocities are distributed to the chosen pair in such
a way that the linear momentum is also conserved.

Via the scaling of the radius of gyration R1 with the chain length N as R1 ∼ N3/5

we confirm that our approach yields the known static critical exponent. The method
conserves both the linear and angular momenta locally, thereby preserving the hy-
drodynamics. Thus the scaling of the self-diffusion coefficient D with chain length N
(shown in the right panel of Fig. 12.12) indicates a much faster dynamics than the Rouse
dynamics, and in fact is pretty consistent with Zimm scaling D ∼ N−3/5 valid in the
presence of hydrodynamic effects.

[1] P.E. Rouse: J. Chem. Phys. 21, 1272 (1953)
[2] B.H. Zimm: J. Chem. Phys. 24, 269 (1956)
[3] S. Majumder et al.: J. Phys.: Conf. Ser. 1163, 012072 (2019)
[4] C.P. Lowe: Europhys. Lett. 47, 145 (1999)

12.12 Universal finite-size scaling for kinetics of phase

separation in multicomponent mixtures

S. Majumder, S.K. Das∗, W. Janke
∗Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,
Jakkur P.O., Bangalore 560064, India

In this work [1] we have presented results for the kinetics of phase separation in
multicomponent solid mixtures in space dimension d = 2, via Monte Carlo simulations
of the q-state conserved Potts model that has the Hamiltonian [2]

H = −J
∑

〈i j〉
δσi,σ j

; σi = 1, 2, . . . , q; J > 0 . (12.15)

The primary interest in our work was to quantify the domain-growth kinetics. We
achieve this via the application of appropriate finite-size scaling analyses [3–5]. Like
in critical phenomena [6], this technique allows one to obtain a precise estimation of
the growth exponent α, without using very large systems. We observe that finite-size
effects are weak, as in the Ising model [3, 4]. By considering an initial domain length
[3] in the scaling ansatz, we show that one obtains the Lifshitz-Slyozov growth, for all
q, from rather early time, like in the Ising case.
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Figure 12.13: Left panel: Typical snapshots at two different times demonstrating the domain
growth during phase separation in the q-state Potts model, for two different q. Results were
obtained via Monte Carlo simulations mimiking diffusive dynamics. Right panel: The main
frame illustrates the universality of the finite-size scaling function Y(yq) with a nonuniversal
metric factor fq in the scaling variable yq, for different q. The inset shows the dependence of the
metric factor fq on q.

Intriguingly, we find that the growth for different q can be described by a universal
finite-size scaling function Y(yq), with a nonuniversal q-dependent metric factor fq in
the scaling variable yq, arising from the amplitude of growth. This is illustrated in the
main frame of the right panel of Fig. 12.13. Similarly, for a range of quench depth, viz.
T ∈ [0.5Tc, 0.8Tc], we show that the growth follows Lifshitz-Slyozov law, irrespective
of the temperature, for all q. This also can be described by a similar common finite-size
scaling function. Another important fact we observed is the crossover in the behaviour
of fq as a function of q [7]. Surprisingly, this crossover happens at q = 5 where the nature
of phase transition changes from second order to first order [2].

[1] S. Majumder et al.: Phys. Rev. E 98, 042142 (2018)
[2] F.Y. Wu: Rev. Mod. Phys. 54, 235 (1982)
[3] S. Majumder, S.K. Das: Phys. Rev. E 81, 050102(R) (2010)
[4] S.K. Das et al.: Europhys. Lett. 97, 66006 (2012)
[5] S. Majumder et al.: Soft Matter 13, 1276 (2017)
[6] M.E. Fisher: The theory of critical point singularities, in Critical Phenomena, Proc.

51st Enrico Fermi Summer School, Varenna, Italy, edited by M.S. Green (Academic
Press, London, 1971), p. 1

[7] W. Janke et al.: J. Phys.: Conf. Ser., in print (2020)

12.13 Phase-ordering kinetics of the long-range Ising model

H. Christiansen, S. Majumder, W. Janke
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Figure 12.14: (a) Snapshots of the coarsening in the two-dimensional Ising model with long-
range interactions with different σ = 0.6, 1.0, and 1.5 for the two times t = 100 and 400. Only
spins pointing up are marked blue. (b) Length scale ℓ(t) for different σ, where the solid lines
correspond to the prediction (12.17). The inset shows the influence of a finite cut-off on the
growth of length scale.

The nonequilibrium properties of the long-range Ising model with Hamiltonian

H = −
∑

i

∑

j<i

J(ri j)sis j, with J(ri j) =
1

rd+σ
i j

(12.16)

are investigated. We vary the exponent σ, which controls the decay of the potential J(ri j)
between spins si and s j at distance ri j. In Fig. 12.14(a) we show snapshots of this system
for some of those σ and for two different times. The ordering of structured regions
is clearly visible, where obviously the amplitude of growth depends on σ. However,
this does not tell us something about the underlying law of growth. To quantify this,
we investigate the characteristic length ℓ(t), which we extract from the decay of the
equal-time two-point spin-spin autocorrelation function. For this model, there exists a
prediction [3], reading

ℓ(t) ∝ tα =























t
1

1+σ σ < 1
(t ln t)

1
2 σ = 1

t
1
2 σ > 1

. (12.17)

A previous publication observed ℓ(t) ∝ t1/2 independent of σ, however, using a cut-off
in the potential J(ri, j) [4]. In the inset of Fig. 12.14(b) we show the influence of the cut-off
for ℓ(t) with σ = 0.6 and observe that one indeed finds the exponent 1/2 for small
cut-offs, whereas prediction (12.17) is confirmed for a sufficiently large cut-off. In the
main plot of Fig. 12.14(b) we demonstrate for the first time that indeed (12.17) holds for
all σ investigated when no cut-off is used.
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[4] J. Gundh et al.: PloS One 10, e0141463 (2015)
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12.14 Aging in the long-range Ising model
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∗Laboratoire de Physique et Chimie Théoriques (CNRS UMR 7019), Université de Lorraine
Nancy, 54506 Vandoeuvre-lès-Nancy Cedex, France
†Centro de Física Teórica e Computacional, Universidade de Lisboa,
1749-016 Lisboa, Portugal
‡Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38,
01187 Dresden, Germany

Figure 12.15: Autocorrelation function C(t, tw) versus scaling variable y ≡ t/tw for (a) σ = 1.5
and (b) σ = 0.6 for different waiting times tw. The solid lines are fits, where the obtained
autocorrelation exponent λ is mentioned in the figure. The inset shows the same data, but
dividing out the asymptotic behavior, i.e., plotting C(t, tw)yλ/z versus y.

After first having establishing the coarsening aspects of the phase-ordering kinetics of
the long-range Ising model with power-law decaying interaction potential r−(d+σ) [1, 2],
with the help of a clever trick in the calculation of the local energy change, we now turn
our attention to the aging properties of this system [3]. The current understanding of
aging phenomena is mainly confined to the study of systems with short-ranged inter-
actions. The dynamical scaling of the two-time spin-spin autocorrelator C(t, tw) is well
described by simple aging with respect to the scaling variable y ≡ t/tw for all interaction
ranges σ studied. The autocorrelation exponents are quantitatively estimated and are
consistent with autocorrelation exponent λ = 1.25 in the effectively short-range regime
with σ > 1, while for stronger long-range interactions with σ < 1 the data are consistent
with λ = d/2 = 1. This is demonstrated in Fig. 12.15, where we show in (a) for σ = 1.5
and in (b) for σ = 0.6 C(t, tw) versus y for different waiting times tw. For all tw, the data
shows bulk behavior, whereas for big t and σ = 0.6 one observes finite-size effects.
Especially for σ = 0.6 in the very long-ranged interaction regime, strong finite-size
effects are observed. The solid lines are fits of form C(t, tw) = fC,∞t−λ/z(1 − A/y), where
the latter correction is justified as this is also the leading order correction term coming
from exactly solvable models. We also discuss whether such finite-size effects could be
misinterpreted phenomenologically as sub-aging.
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12.15 Percolation on square lattices with long-range cor-

related defects

J. Zierenberg∗, N. Fricke, M. Marenz, F.P. Spitzner, V. Blavatska†, W. Janke
∗Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17,
37077 Göttingen, Germany
†Institute for Condensed Matter Physics of the National Academy of Sciences
of Ukraine, 79011 Lviv, Ukraine

-4

-3

-2

-1

0

1

2

3

4

(a) (b)

Figure 12.16: Correlated continuous variables on a 211 × 211 lattice for (a) correlation strength
a = 0.5 and (b) corresponding discrete lattice at the percolation threshold with defects shown
in black.

Structural obstacles (impurities) play an important role for a wide range of physical
processes as most substrates and surfaces in nature are rough and inhomogeneous
[1]. For example, the properties of magnetic crystals are often altered by the presence
of extended defects in the form of linear dislocations or regions of different phases.
Another important class of such disordered media are porous materials, which often
exhibit large spatial inhomogeneities of a fractal nature. Such fractal disorder affects a
medium’s conductivity, and diffusive transport can become anomalous [2] This aspect is
relevant, for instance, for the recovery of oil through porous rocks [3], for the dynamics
of fluids in disordered media [4], or for our understanding of transport processes in
biological cells [5].

In nature, inhomogeneities are often not distributed completely at random but tend
to be correlated over large distances. To understand the impact of this, it is useful to
consider the limiting case where correlations asymptotically decay by a power law
rather than exponentially with distance:

C(r) ∼ |r|−a (12.18)
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where a is the correlation parameter. If a is smaller than the spatial dimension D, the
correlations are considered long-range or “infinite.” An illustration of such power-law
correlations for continuous and discrete site variables on a square lattice is shown in
Fig. 12.16.

In this project we studied long-range power-law correlated disorder on square and
cubic lattices [6, 7]. In particular, we obtained high-precision results for the percolation
thresholds and the fractal dimension of the largest clusters as a function of correlation
parameter a. The correlations are generated using a discrete version of the Fourier fil-
tering method [8]. We consider two different metrics to set the length scales over which
the correlations decay, showing that the percolation thresholds are highly sensitive to
such system details. By contrast, we verify that the fractal dimension d f is a universal
quantity and unaffected by the choice of metric. We also show that for weak correla-
tions, its value coincides with that for the uncorrelated system. In two dimensions we
observe a clear increase of the fractal dimension with increasing correlation strength,
approaching d f → 2. The onset of this change, however, does not seem to be determined
by the extended Harris criterion.

As a follow-up project that heavily relies on these results, we are currently studying
the site-disordered Ising model on three-dimensional lattices with long-range correl-
ated defects [9].
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12.16 Monte Carlo study of the Ising model in three di-

mensions with long-range correlated site disorder

S. Kazmin, W. Janke

We study the critical behavior of the Ising model with long-range correlated site dis-
order on the lattice with Monte Carlo simulation techniques. In nature the disorder
often comes with a certain structure and not at random. We want to mimic this fact
by introducing spatially correlated defects on the lattice. The studied Ising model with
site disorder on a lattice is described by the following Hamiltonian

H = −J
∑

〈xy〉
ηxηysxsy − h

∑

x

ηxsx , (12.19)
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where J is the coupling constant, sx = ±1 is a spin at site x, 〈xy〉 stands for next-neighbor
indices, h is the external magnetic field and ηx = 1 when the site is occupied by a spin or
ηx = 0 if it is a defect (vacant site). We can recover the pure Ising model by setting ηx = 1
for each site x. If we set ηx = 0 randomly for each disorder realization, we arrive at the
uncorrelated disorder case. In the case of correlated disorder we place them randomly
but in such a way that they obey a spatial correlation decay of the form

〈ηxηy〉 ∝
1

d(x, y)a
, (12.20)

where d is the distance between two sites and a is the so-called correlation decay
exponent. Formally, a = ∞ corresponds to the uncorrelated case. Finally, the mean
concentration of the defects over a number of realizations is denoted by pd.

The universality class of the three-dimensional Ising model is expected to be dif-
ferent for the pure system, the uncorrelated disorder system according to the Harris
criterion [1] and the correlated disorder system for a ≤ d = 3 (strong correlation)
according to the extended Harris criterion [2]. The situation is sketched in Fig. 12.17.

pd

a

y p̂d(∞) R
∞

d

y

p̂d(a)

Tm`2
mM+Q``2H�i2/

+Q``2H�i2/

Figure 12.17: Universality classes of the three-dimensional Ising model for different disorder
concentrations pd and correlation exponents a. The curve p̂d(a) = 1 − p̂(a) is the percolation
threshold below which the system has the probability 1 to have an infinite cluster of spins for
L → ∞ and therefore the Ising model is well defined. As can be seen qualitatively and was
studied in Ref. [3] one can add more defects without destroying the infinite cluster of spins
when the defects are correlated. On the left side slices of a three-dimensional Ising model at
critical temperature are shown. White dots represent the defects ηx = 0, blue and red the spin
states sx = ±1.

We found the critical exponents of the correlation length ν and the correction expo-
nents ω for various correlation exponents 1.5 ≤ a ≤ 3.5 as well as for the uncorrelated
case a = ∞ [4]. This was achieved by using a set of techniques such as histogram
reweighting, Jackknife resampling and finite-size scaling analysis. Contrarily to other
works we performed a global fit where we included up to eight different disorder
concentrations 0.05 ≤ pd ≤ 0.4 into one simultaneous fit. Such a study was not pos-
sible before because most other works were limited to either only a = 2.0 or only one
concentration of defects or even to both constraints. In Fig. 12.18 the final estimates of
the critical exponents ν and ω are summarized and compared to other works. Or result
for the uncorrelated case matches known results from other groups and verifies the
validity of our analysis program. The correlated cases show a qualitative behavior of
the form 1/a but deviate from the prediction ν = 2/a by about 10 %.
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Figure 12.18: Final results for the critical exponent ν compared to the known results from the
literature and to the extended Harris criterion estimation ν = 2/a. 1: Ballesteros et al. [5], 2:
Calabrese et al. [6], 3: Ballesteros and Parisi [7], 4: Ivaneyko et al. [8], 5: Prudnikov et al. [9], 6:
Prudnikov et al. [10]. The inset shows a close up of the uncorrelated case a = ∞. The uncorrelated
case critical exponent was set to ν∞ = 0.683 as an average value from other works.

An ongoing research is to extract further critical exponents β and γ and eventually
improve the current results for ν by increasing the number of disorder realizations.
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12.17 Random field q-state Potts model: Ground states

and low-energy excitations

R. Kumar∗, M. Kumar†‡, M. Weigel§, V. Banerjee‡, S. Puri†, W. Janke



116 INSTITUTE FOR THEORETICAL PHYSICS

∗Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-
Coventry (L4)
†School of Physical Sciences, Jawaharlal Nehru University, New Delhi – 110067, India
‡Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi – 110016,
India
§Applied Mathematics Research Centre, Coventry University, England, UK

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

L = 16

[O
]

q

(a)

0.88

0.92

0.96

1

8 12 16 20 24

q = 3

[O
]

L

(b)

Figure 12.19: Overlap between the lowest states found by graph-cut methods (GCM) and the
putative ground state (a) as a function of the number of Potts states q and (b) as a function of
system size L.

While the ground-state (GS) problem for the random-field Ising model is polynomial
and can be solved by using a number of well-known algorithms for maximum flow [1–
4], the analogue random-field q-state Potts model with q ≥ 3 corresponds to a multi-
terminal flow problem that is known to be NP hard. Hence an efficient exact algorithm
is extremely unlikely to exist [5]. Still, it is possible to employ an embedding of binary
degrees of freedom into the Potts spins to use graph-cut methods (GCMs) to solve the
corresponding ground-state problem approximately with polynomial methods. It is
shown in this project [6] that this works relatively well. We compare results produced
by this heuristic algorithm to energy minima found by an appropriately tuned parallel
tempering method that is configured to find ground states for the considered system
sizes with high probability. The method based on graph cuts finds the same states in
a fraction of the time. The new method is used for a first exploratory study of the
random-field Potts model in d = 2, 3.

We observe that the probability of finding a ground state decreases exponentially
with q for GCM, but for parallel tempering this decay is linear [Fig. 12.19(a)]. Hence,
GCM is more suitable for lower q studies. We also find that the lower energies found
by GCM are very close to the ground state and the excess energy is very small. The
probability of finding the ground state falls exponentially with the system size, whereas
for GCM it falls linearly [Fig. 12.19(b)]. Therefore, GCM is better suited for studying
larger system sizes. This is one very good feature of GCM as for the smaller system sizes
we have larger finite-size effects. The overlap between the states found by GCM and
the ground state is observed to be very large. Hence, we conclude that GCM produces
the approximate GS which can be treated as an exact GS for sufficiently small q (q = 3, 4)
for studying the critical behaviour and ground-state morphologies.



COMPUTATIONAL QUANTUM FIELD THEORY 117

[1] G.P. Shrivastav et al.: Europhys. Lett. 96, 36003 (2011)
[2] G.P. Shrivastav et al.: Phys. Rev. E 90, 032140 (2014)
[3] G.P. Shrivastav et al.: Eur. Phys. J. E 37, 98 (2014)
[4] V. Banerjee et al.: Ind. J. Phys. 88, 1005 (2014)
[5] J.C. Angles d’Auriac et al.: J. Physique Lett. 46, L173 (1985)
[6] M. Kumar et al.: Phys. Rev. E 97, 053307 (2018)

12.18 Distribution of local minima for the Edwards-Anderson

spin-glass model

S. Schnabel, W. Janke

In statistical physics the term “complex behavior” is usually used to characterize
systems that posses a rough free-energy landscape with many metastable states. This
can be the result of competing interactions on different scales like in the case of protein
folding or it may arise from quenched disorder as for spin glasses. A conceptually
simple model for such a system is the Edwards-Anderson spin-glass model [1], whose
Hamiltonian is given by

H =
∑

〈i j〉
Ji jSiS j,

where the spins sit on the sites of a cubic lattice, can take two values Si ∈ {−1, 1},
and adjacent spins interact via normally distributed random couplings Ji j. Since these
interactions can be either ferromagnetic (positive) or antiferromagnetic (negative), there
is no trivial order established at low temperatures. Instead, many very different pure
states might coexist, each one of them corresponding to a minimum in free energy.

Albeit not identical, minima of the energy, i.e. spin configurations that are stable
against single spin flips are closely related to these pure states. It is thought that
minima in energy form the end-points of hierarchical tree-like structures with branches
corresponding to different pure states. Understanding their properties might, therefore,
improve our understanding of the behavior of the system. However, they have proven
to be a very demanding subject of inquiry.

We have developed an advanced Monte Carlo method that in its basic form allows
to sample the local energy minima with uniform distribution, i.e., each minimum
configuration is occupied with equal probability [3–5]. This is achieved by establishing
within the simulation the combination of a spin configuration together with a random
minimization thereof. I.e., the repeated flipping of spins with positive energy until a
local minimum is reached. If one now alters the spin configuration and the parameters
of the minimization in a suitable way it is possible to ensure that all local minima are
equally likely found this way. This corresponds to ‘simple sampling’ in the space of
local minima. It is also possible to perform ‘importance sampling’ by including suitable
weight functions. We can for instance sample a canonical distribution of local minima
in energy by including the Boltzmann weight [6].

A basic application of this method is the measurement of the distribution of the
energy minima. Since existing algorithms are unable to perform such a task, there is
no numerical data for comparison. However, we can use our results to test analytical
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approximations [2] that are based on the expansion of meanfield solutions. We found
that there are considerable deviations (Fig. 12.20) [3]. In fact, the distributions much
more closely – although not entirely – resemble Gaussian distributions.
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Figure 12.20: The distribution of local minima for different system sizes and the analytical
approximation.
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12.19 Massively parallel simulations on GPUs for dis-

ordered systems

R. Kumar∗, J. Gross, W. Janke, M. Weigel†

∗Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-
Coventry (L4)
†Applied Mathematics Research Centre, Coventry University, England, UK

Simulations of systems with quenched disorder are extremely demanding, suffering
from the combined effect of slow relaxation and the need of performing the disorder
average. As a consequence, new algorithms, improved implementations, and alternat-
ive and even purpose-built hardware are often instrumental for conducting meaningful
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Figure 12.21: (a) Times spent in the different parts of the simulation on a log-scale on GPU
and single-threaded as well as multi-threaded CPU implementations for 2D spin-glass systems
of linear size L = 40 with couplings drawn from a bimodal (±J) distribution. The middle
and right panels show relative timings (speed-ups) of the GPU code as compared to the (b)
single-threaded and (c) multi-threaded CPU runs, respectively.

studies of such systems. Examples include our recent studies of random field Ising and
Potts models [1] which motivated the present project. The ensuing demands regarding
hardware availability and code complexity are substantial and sometimes prohibitive.
In this study [2] we demonstrate how with a moderate coding effort leaving the overall
structure of the simulation code unaltered as compared to a CPU implementation, very
significant speed-ups can be achieved from a parallel code on Graphics Processing
Units (GPUs) by mainly exploiting the trivial parallelism of the disorder samples and
the near-trivial parallelism of the parallel tempering replicas. A combination of this
massively parallel implementation with a careful choice of the temperature protocol
for parallel tempering as well as efficient cluster updates allows us to equilibrate com-
paratively large systems with moderate computational resources.

We discuss the computational challenges of simulating disordered systems on mod-
ern hardware, and present a versatile and efficient implementation of the full spin-glass
simulation stack consisting of single-spin flips, cluster updates and parallel-tempering
updates in CUDA. Due to the favorable relation of performance to price and power
consumption in GPUs, they have turned into a natural computational platform for the
simulation of disordered systems. While a range of very efficient, but also very com-
plex, simulational codes for the problem have been proposed before [3–6], our focus
in the present work was on the provision of a basic simulation framework that never-
theless achieves a significant fraction of the peak performance of GPU devices for the
simulation of spin-glass systems. A comparison of the performance achieved on GPUs
and CPUs is shown in Fig. 12.21. To be representative of typical installations accessible
to users, we used Nvidia GPUs from the consumer series (GTX 1080).
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12.20 Acceptance rate is a thermodynamic function in

local Monte Carlo algorithms

E. Burovski∗, W. Janke, M. Guskova∗, L. Shchur∗†

∗National Research University Higher School of Economics, 101000 Moscow, Russia
†Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia

Figure 12.22: Average acceptance rates for several one-dimensional models using (a) Metropolis
updates and (b) heat-bath updates.

In this study [1] we investigate properties of Markov chain Monte Carlo simulations of
classical spin models with local updates. We derive analytic expressions for the mean
value of the acceptance rate of single-spin-flip algorithms (Metropolis, Glauber respect-
ively heat bath) for the one-dimensional Ising model. For the Metropolis algorithm we
find that the average acceptance rate is a linear function of energy [see Fig. 12.22(a)],
which moreover – and rather unexpectedly – turned out to be independent of system
size.

We further provide numerical results for the energy dependence of the average
acceptance rate for the 3- and 4-state Potts model, and the XY model in one and two
spatial dimensions. Our results in one dimension using Matropolis respectively heat-
bath updates are shown in Fig. 12.22. In all cases, the acceptance rate turns out to be an
almost linear function of the energy in the critical region. The variance of the acceptance
rate is studied as a function of the specific heat. While the specific heat develops a
singularity in the vicinity of a phase transition, the variance of the acceptance rate stays
finite.

[1] E. Burovski et al.: Phys. Rev. E 100, 063303 (2019)

12.21 Non-flat histogram techniques for spin glasses

F. Müller, S. Schnabel, W. Janke
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Figure 12.23: Histograms of the simulation with the different methods together with the pre-
scribed power-law shape PSH(E).

We took into consideration the three-dimensional bimodal Edwards-Anderson (EA)
spin-glass model [1]. Spin glasses are difficult to simulate with conventional simu-
lation methods and their investigation requires calculating disorder averages over a
sufficiently large set of samples. Each sample has its own characteristics and it is known
that finding the ground state of hard samples, i.e., solving the underlying optimization
problem of that sample, is NP-hard.

There are existing methods such as the multicanonical (MUCA) method [2, 3], the
1/k ensemble [4] and parallel tempering (PT) [5] which have already been applied to the
three-dimensional EA model. Especially also their performance in terms of the ability
to solve the underlying optimization problem has been investigated. We looked at the
round-trip times in energy which are defined as the average time which a simulation
takes to reach the ground state and travel back to high energies. The ability of finding
the ground state strongly influences the round-trip times of the respective method.

In addition to the above mentioned methods we modified the MUCA approach from
sampling a flat distribution in energy to sampling a power-law shaped distribution in
energy with a parametric form of the distribution of the form

PSH(E, ∆E, α) =
(

E

∆E − E1
+ 1

)α

, (12.21)

where ∆E = 96 is the position of the pole of the power law relative to the ground-state
energy E1 and α = −3.6 is the exponent [6]. In Fig. 12.23 the outcoming histograms of
one sample with linear lattice size L = 8 are plotted. The figure shows clearly that the
effort of the simulation is concentrated towards the ground-state region for all methods
but the traditional MUCA. The power-law MUCA and PT have similar distributions of
sampled states which increase drastically towards the ground-state energy.

Table 1 shows the comparison of the mean round-trip times for the three different
methods. The mean round-trip times of the power-law MUCA improve significantly
compared to the traditional MUCA and also compared to the other methods.
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Table 12.1: Ratios of the population mean and the quantile mean of round-trip times of the flat
MUCA and parallel-tempering methods with respect to the power-law MUCA method.

flat MUCA parallel tempering
L rpop rǫ=10−4 rpop rǫ=10−4

3 1.16+0.02
−0.02 1.17+0.04

−0.04 1.64+0.03
−0.03 1.64+0.04

−0.04

4 1.62+0.05
−0.05 1.66+0.09

−0.08 1.17+0.04
−0.04 1.22+0.07

−0.07

5 2.3+0.2
−0.2 2.34+0.3

−0.3 1.14+0.05
−0.05 1.14+0.1

−0.09

6 3.8+0.6
−0.5 3.5+0.7

−0.6 2.8+0.4
−0.4 3.3+0.8
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12.22 Population annealing: A massively parallel com-

puter simulation scheme

M. Weigel∗, L.Yu. Barash†‡, M. Borovský§, L.N. Shchur†‡¶, W. Janke
∗Applied Mathematics Research Centre, Coventry University, England, UK
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‡Science Center in Chernogolovka, 142432 Chernogolovka, Russia
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¶National Research University Higher School of Economics, 101000 Moscow, Russia

The generic technique for Monte Carlo simulations in statistical physics is importance
sampling via a suitably constructed Markov chain [1]. While such approaches are quite
successful, they are not particularly well suited for parallelization as the chain dynamics
is sequential, and if replicated chains are used to increase statistics each of them relaxes
into equilibrium with an intrinsic time constant that cannot be reduced by parallel work.
Population annealing is a sequential Monte Carlo method that simulates an ensemble
of system replica under a cooling protocol as sketched in Fig. 12.24. This method was
first suggested in 2001 by Iba [2] and later on discussed in more detail by Hukushima
and Iba [3] as a method to tackle potentially difficult sampling problems, but with no
particular view to a parallel implementation. More recently, Machta [4] used a variant
that avoids the recording of weight functions through population control in every step.
This is the variant we adapted in our own implementation.

The population element makes this method naturally well suited for massively
parallel simulations, and both the bias in estimated quantities and the statistical errors
can be systematically reduced by increasing the population size. To demonstrate this,
we developed an implementation of population annealing on graphics processing units
(GPUs) [5] and benchmarked its behaviour for different systems undergoing continuous
and first-order phase transitions [6, 7]. For a recent overview, see Ref. [8].
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t/T

R

Figure 12.24: Schematic illustration of the population annealing method: R replica of the system
are cooled down in discrete temperature steps. At each temperature T the current configurations
at the next higher temperature are resampled according to their Boltzmann weights. This
amounts to deleting some of them (e.g., the red one in the upper row) and replicating others
one, two or more times (e.g., the dark green one in the second row). This new population is
then further evolved in “time” t by any valid update procedure at this temperature.
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12.23 Accelerating molecular dynamics with population

annealing

H. Christiansen, M. Weigel∗, W. Janke
∗Applied Mathematics Research Centre, Coventry University, England, UK

Systems having a rugged free-energy landscape cannot be simulated using naive ca-
nonical (NVT) simulations, because they get trapped in local minima. Therefore, one
uses so-called generalized ensemble methods to overcome those barriers. In Molecular
Dynamics, one mostly uses Parallel Tempering [1], which is easy to parallelize. How-
ever, this method can only effectively use a limited number of CPU cores. In this work,
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Figure 12.25: (a) Energy histogram for Met-enkephalin at the lowest temperature (T = 200 K)
considered for the different methods. (b) Speedup Sp and, in the inset, efficiency Sp/p for different
number of CPU cores p.

we adapt Population Annealing [2, 3] to Molecular Dynamics simulations. This method
has the advantage that it scales to effectively “arbitrary” number of CPU cores while
having comparable performance to Parallel Tempering when using the same compu-
tational resources. For a broad range of systems, this opens the door to the world of
highly efficient computer simulations on petaflop supercomputers of the present and
the exaflop machines of the future. To demonstrate this advantage, we have investig-
ated the penta-peptide Met-enkephalin [4, 5], a system commonly used to probe the
performance of novel simulation methods. In Fig. 12.25(a) we show the energy his-
togram for the lowest temperature considered at T = 200 K, where the free-energy
barriers are most prominent. Both Population Annealing (PA) and Parallel Tempering
(PT) produce energy histograms that are compatible with each other, whereas a single
canonical simulation leads to a shifted histogram. Here “anneal” corresponds to an
ensemble of independent Simulated Annealing runs. The excellent scaling with the
number of CPU cores p is presented in Fig. 12.25(b), where we show the speedup Sp for
up to p = 500 CPU cores. In the inset, the efficiency Sp/p is shown, indicating a parallel
performance of clearly above 80% in this case.
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12.24 Framework for programming Monte Carlo simula-

tions (βMC)

M. Marenz, J. Zierenberg∗, W. Janke
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Figure 12.26: The 5 basic building blocks.
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Figure 12.27: Scaling properties of the par-
allel multicanonical algorithm as a function
of the number of processors p.
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Monte Carlo (MC) computer simulations are a very powerful tool for investigating
and understanding the thermodynamic behavior of a wide variety of physical systems.
These systems range from such simple ones like the Ising or Blume-Capel spin models
to complex ones like semiflexible polymers confined in a sphere or proteins interacting
with surfaces. In contrast to Molecular Dynamics (MD) simulations, the other important
class of algorithm to simulate microscopic systems, MC simulations are not suitable to
investigate dynamical properties. On the other hand, the ability of modern MC methods
to explore effectively the phase space of physical systems, especially those with a phase
transition, makes them a very powerful and indispensable tool.

Another difference to MD simulations is the lack of a widely used program package
for generic MC simulations. One reason for this lack is the versatility of modern MC
algorithms – there are various different algorithm and many different possibilities
to adjust a MC simulation to a specific problem. This was the starting point for the
development of our framework for advanced MC algorithms. The aim of the framework
is to enable the programmer to implement specific simulations in an easy and efficient
way, without the need to implement all the tricky details for every new problem. The
framework is implemented in the C++ programming language and is designed such
that it separates basics parts of a MC algorithm in separate building blocks. These
building blocks can be used by the programmer to implement a specific simulation.

There are 5 basic building blocks as illustrated in Fig. 12.26: The first one is the
“system”, which defines the Hamiltonian and the structure of the physical system.
This means that the “system” building block encapsulates the energy calculation and
the structure of the considered physical problem. For off-lattice system this block con-
tains a smaller subpart, the “atom” block, which encodes the geometry of the system
(e.g., boundary conditions). As systems we have implemented so far different kinds of
coarse-grained homopolymers, the Lennard-Jones gas, the TIP4P water model, lattice
polymers and the Potts model in different dimensions. On top of the “system” are the
last two other building blocks, the “move” and the “MC technique”. A “move” defines
a single update proposal, propagating the system from the current state to the next one.
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Additionally a “constraint” can be added to every “move” in order to simulate effi-
ciently systems with geometrical confinements. The “MC technique” implements the
Monte Carlo algorithm itself. At the moment we have implemented various algorithms
such as Metropolis MC, parallel tempering, multicanonical MC, multimagnetic MC
and the Wang-Landau MC algorithm. One of the most advanced MC algorithms we
have implemented is a parallel version of the multicanonical algorithm [1, 2], see Fig.
12.27.

The boundaries between these blocks are well defined, so that one can easily ex-
change one of them. For example one can use two different algorithm to simulate a
specific system without implementing a completely new program. The framework is
already in practical use for different studies, for example the investigation of the influ-
ence of bending stiffness on a coarse-grained homopolymer, the influence of a spherical
confinement to pseudo-phase transitions of homopolymers, and the study of polymer
aggregation of several polymers for a large set of parameters (temperature, bending
stiffness). Thus, the framework is very useful and has led already to several publications
[3–9].
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