
5.5. COMPUTATIONAL QUANTUM FIELD THEORY 283

5.5 Computational Quantum Field Theory

5.5.1 Introduction

The Computational Physics Group performs basic research in classical and quantum sta-
tistical physics with special emphasis on phase transitions and critical phenomena. In
the centre of interest are currently spin glasses, diluted magnets and other physical sys-
tems with quenched, random disorder, a geometrical approach to the statistical physics of
topological defects with applications to superconductors and superfluids, biologically mo-
tivated problems (e.g., protein folding and semiflexible polymers), fluctuating geometries
with applications to quantum gravity (e.g., dynamical triangulations) and soft condensed
matter physics (e.g., membranes and interfaces). Supported by a Development Host grant
of the European Commission, currently also research into the physics of anisotropic quan-
tum magnets is established.

The methodology is a combination of analytical and numerical techniques. The numer-
ical tools are currently mainly Monte Carlo computer simulations and high-temperature
series expansions. The computational approach to theoretical physics is expected to gain
more and more importance with the future advances of computer technology, and will
probably become the third basis of physics besides experiment and analytical theory. Al-
ready now it can help to bridge the gap between experiments and the often necessarily
approximate calculations of analytical work. To achieve the desired high efficiency of the
numerical studies we develop new algorithms, and to guarantee the flexibility required by
basic research all computer codes are implemented by ourselves. The technical tools are
Fortran, C, and C++ programs running under Unix or Linux operating systems and com-
puter algebra using Maple or Mathematica. The software is developed and tested at the
Institute on a cluster of PC’s and workstations, where also most of the numerical analyses
are performed. Large-scale simulations requiring vast amounts of computer time are car-
ried out at the Institute on a recently installed Beowulf cluster with 40 Athlon MP1800+
CPU’s and a brandnew Opteron cluster with 18 processors of 64-bit architecture, at the
parallel computers of the University computing center, and upon grant application at the
national supercomputing centres in Jülich and München on T3E, IBM and Hitachi parallel
supercomputers. This combination of various platforms gives good training opportunities
for the students and offers promising job perspectives in many different fields for their
future career.

The research is embedded in a wide net of national and international collaborations
funded by network grants of the European Commission and the European Science Foun-
dation, and by binational research grants with scientists in Great Britain, France, and
Israel. Close contacts are also established with research groups in Armenia, Austria,
China, Italy, Russia, Spain, Taiwan, and the United States.
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5.5.2 Monte Carlo Studies of Spin Glasses

B. A. Berg∗, A. Billoire∗∗, E. Bittner, W. Janke, A. Nußbaumer, D. B. Saakian∗∗∗

∗ Florida State University, Tallahassee, USA, ∗∗ CEA/Saclay, Gif-sur- Yvette, France,
∗∗∗ Yerevan Physics Institute, Yerevan, Armenia

Spin glasses are examples for an important class of materials with random, competing
interactions [1]. This leads to “frustration”, since no unique spin configuration is favored
by all interactions, and a rugged free energy landscape with many minima separated
by barriers. Standard Monte Carlo simulations are very inefficient in such a case since
they overcome the barriers only very rarely and hence run into ergodicity problems. To
elucidate the scaling behaviour of the barriers with system size we therefore developed
a multi-overlap Monte Carlo algorithm [2] which can be optimally tailored [3] for the
sampling of rare-events. Recently we have further improved this method by combining
it with parallel tempering and N-fold way ideas [4]. First tests indicate [5] that the new
algorithm will enable us to push the studies of the spin-glass phase further towards the
physically more interesting low-temperature regime. As in our previous work at higher
temperatures [6] we focus on the free-energy barriers F q

B in the probability density PJ (q)
of the Parisi overlap parameter q [7] which can be defined in terms of the autocorrelation
times τ q

B of auxiliary Markov chains.
Along a second line of research we have also investigated the diluted generalized

random-energy model (DGREM) which provides an approximation to the ground-state
energy of spin glasses. Applications to two-dimensional q-state Potts models and a com-
parison with numerically determined ground-state energies are reported in Ref. [8].
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5.5.3 Monte Carlo Studies of Diluted Magnets

B. Berche∗, P.-E. Berche∗∗, C. Chatelain∗ and W. Janke
∗ Université Nancy, France, ∗∗ Université Rouen, France

The influence of quenched, random disorder on phase transitions has been the subject of
exciting experimental, analytical and numerical studies in the past few years. To date
most theoretical studies have concentrated on two-dimensional (2D) models with site- or
bond-dilution or bond-disorder [1]. Generically one expects that quenched disorder, under
certain conditions, will modify the critical behaviour at a second-order transition (Harris
criterion) and can soften a first-order transition of the pure system to a second-order one
[2]. In three dimensions (3D), numerical studies have mainly focused on the site-diluted
Ising model [3] where good agreement with field theory was obtained. For the case of a
first-order transition in the pure model, large-scale simulations have only been performed
for the 3-state Potts model with site-dilution [4].

In this project we have performed intensive Monte Carlo studies of the 3D Ising and
4-state Potts models with bond -dilution [5]. We have determined the phase diagrams of
the diluted models, starting from the pure model limit down to the neighbourhood of
the percolation threshold, in very good agreement with a single-bond effective-medium
approximation. For the estimation of critical exponents in the Ising case [6], we have first
performed a finite-size scaling study, where we concentrated on three different dilutions
to check the stability of the disorder fixed point. We emphasize in this work the great
influence of the cross-over phenomena between the pure, disorder and percolation fixed
points which lead to effective critical exponents dependent on the concentration. In a
second set of simulations, the temperature behaviour of physical quantities has been
studied in order to characterize the disorder fixed point more accurately. In particular
this allowed us to estimate universal ratios of some critical amplitudes which are usually
more sensitive to the universality class than the critical exponents. Moreover, the question
of non-self-averaging at the disorder fixed point is investigated and compared with recent
results for the bond-diluted 4-state Potts model. We obtain very good agreement with
approximate analytical calculations by Aharony and Harris. Overall our numerical results
provide evidence that, as expected on theoretical grounds, the critical behaviour of the
bond-diluted model is indeed governed by the same universality class as the site-diluted
model.
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5.5.4 High-Temperature Series Expansions for Spin Glasses and
Disordered Magnets

M. Hellmund∗ and W. Janke
∗ Fakultät für Mathematik und Informatik

Despite considerable efforts there are still many open problems in the physics of disor-
dered systems. One alternative to large-scale numerical simulations are systematic series
expansions. Such expansions for statistical models defined on a lattice are a well-known
method to study phase transitions and critical phenomena [1]. The extension of this
method to disordered systems [2] demands the development of new graph theoretical and
algebraic algorithms.

Using the method of “star-graph expansion”, we calculate, e.g., free energies and
susceptibilities for disordered q-state Potts models on d-dimensional hypercubic lattices.
The probability distribution of couplings is parametrized by P (Jij) = pδ(Jij − J0) + (1−
p)δ(Jij − RJ0), which includes spin glasses, diluted ferromagnets, random-bond models
and transitions between them. First results for the random-bond Ising [3] and Potts [4]
model demonstrate the feasibility of the method to complement Monte Carlo [5] and field
theoretic studies of phase transitions in disordered systems.

For the bond-diluted 4-state Potts model in three dimensions, which exhibits a rather
strong first-order phase transition in the undiluted case, we obtained results [6] for the
transition temperature and the effective critical exponent γ as a function of p from anal-
yses of susceptibility series up to order 18. A comparison with recent Monte Carlo data
[5] shows signals for the softening to a second-order transition at finite disorder strength.
Further new results were also obtained for the three-dimensional bond-diluted resp. ran-
dom bond Ising model and the q → 1 percolation limit for different dimensionalities d
[7].
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tions [5] and DLog-Padé series analyses [6].
The inset shows the difference between the
two estimates.

[1] C. Domb and M. S. Green, eds, Phase Transitions and Critical Phenomena, Vol. 3
(Academic Press, New York, 1974).



5.5. COMPUTATIONAL QUANTUM FIELD THEORY 287

[2] R. R. P. Singh and S. Chakravarty, Phys. Rev. B 36, 546 (1987).

[3] M. Hellmund and W. Janke, Comp. Phys. Comm. 147, 435 (2002).

[4] M. Hellmund and W. Janke, Nucl Phys. B (Proc. Suppl.) 106/107, 923 (2002).

[5] C. Chatelain, B. Berche, W. Janke and P.-E. Berche, Phys. Rev. E 64, 036120 (2001).

[6] M. Hellmund and W. Janke, Phys. Rev. E 67, 026118 (2003).

[7] M. Hellmund and W. Janke, to be published.

5.5.5 Harris-Luck Criterion and Potts Models on Random Graphs

W. Janke, G. Kähler and M. Weigel

The Harris criterion judges the relevance of uncorrelated, quenched disorder for altering
the universal properties of systems of statistical mechanics close to a continuous phase
transition [1]. For this situation, as e.g., in the paradigmatic case of a quenched random-
bond or bond diluted model, a change of universal properties is expected for models with
a positive specific heat exponent α, i.e., the relevance threshold is given by αc = 0. For the
physically more realistic case of spatially correlated disorder degrees of freedom, Harris’
scaling argument can be generalised, yielding a shifted relevance threshold −∞ < αc ≤ 1
known as Luck criterion [2]. The value of αc depends on the quality and strength of
the spatial disorder correlations as expressed in a so-called geometrical fluctuation or
wandering exponent .

We consider the effect of a different, topologically defined type of disorder on the
universal behaviour of coupled spin models, namely the result of connectivity disorder
produced by placing spin models on random graphs. As it turns out, the Harris-Luck
argument can be generalised to this situation, leading to a criterion again involving a
suitably defined wandering exponent of the underlying random graph ensemble. Using a
carefully tailored series of finite-size scaling analyses, we precisely determine the wander-
ing exponents of the two-dimensional ensembles of Poissonian Voronöı-Delaunay random
lattices as well as the quantum gravity graphs of the dynamical triangulations model,
thus arriving at explicit predictions for the relevance threshold αc for these lattices [3].

As a result, for Poissonian Voronöı-Delaunay random graphs the Harris criterion αc =
0 should stay in effect, whereas for the dynamical triangulations the threshold is shifted
to a negative value, αc ≈ −2. The latter result is in perfect agreement with Monte Carlo
simulations of the q-states Potts model [4] as well as an available exact solution of the
percolation limit q → 1 [5]. For the Poissonian Voronöı-Delaunay triangulations, the Ising
case q = 2 with α = 0 is marginal and a change of universal properties cannot normally
be expected. The q = 3 Potts model with α = 1/3, on the other hand, should be shifted
to a new universality class. Following up on a first exploratory study for small graphs
[6], we performed high-precision cluster-update Monte Carlo simulations for rather large
lattices of up to 80 000 triangles to investigate this model. Astonishingly, however, the
(exactly known) critical exponents of the square-lattice q = 3 Potts model are reproduced
to high precision [7]. To clarify this situation, a generalised model introducing a distance
dependence of the interactions is currently under investigation.
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5.5.6 The F Model on Quantum Gravity Graphs

W. Janke, D. A. Johnston∗ and M. Weigel
∗ Heriot-Watt University, Edinburgh, Scotland

As an alternative to various other approaches towards a theory of quantum gravity, the
dynamical triangulations method has proved to be a successful discrete formulation of
Euclidean quantum gravity in two dimensions. There, the necessary integration over all
metric tensors as the dynamic variables of the theory, is performed as a discrete summation
over all possible gluings of equilateral triangles to form a closed surface of a given (usually
planar) topology. The powerful methods of matrix integrals and generating functions
allow for an exact solution of the pure gravity model in two dimensions. Furthermore,
matrix models can be formulated for the coupling of spin models of statistical mechanics
to the random graphs and some of them could be solved analytically. More generally, the
“dressing” of the weights of c < 1 conformal matter on coupling it to quantum gravity in
two dimensions is predicted by the KPZ/DDK formula [1], in agreement with all known
exact solutions.

One of the most general classes of models in statistical mechanics is given by Baxter’s
8-vertex model [2]. Thus its behaviour on coupling it to dynamical quadrangulations ,
i.e., surfaces built from simplicial squares, is of general interest. Although a solution of
special slices of this model could recently be achieved [3], the general model could not yet
be solved. Heading for computer simulations, one first has to ensure the correct handling
of the (quite unorthodox) geometry of four-valent graphs or quadrangulations in the dual
language. While simulations of three-valent graphs have already been extensively done,
the code for φ4-graphs had to be newly developed and tested [4]. Due to the fractal
structure of the graphs being described as a self-similar tree of “baby universes”, this
local dynamics suffers from critical slowing down. To alleviate the situation, we adapted
a non-local update algorithm known as “minBU surgery” [5].

Combining the developed techniques, we simulated the F model, a symmetric case of
the 8-vertex model, coupled to planar random φ4 graphs. On regular as well as random
lattices, this model is expected to exhibit a Kosterlitz-Thouless transition to an anti-
ferroelectrically ordered state [2, 3]. The numerical analysis of this model turned out
to be exceptionally difficult due to the combined effect of the highly fractal structure of
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the lattices and the presence of strong logarithmic corrections, leading to rather extreme
finite-size effects. Nevertheless, a scaling analysis of the staggered polarizability yields
results [6] in agreement with the predictions of Ref. [3] as far as the order of the transition
and the location of the transition point are concerned.
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5.5.7 Conformational Transitions of Lattice Heteropolymers

M. Bachmann, W. Janke, R. Schiemann and T. Vogel

The native conformation of a protein is strongly correlated with the sequence of amino
acid residues building up the heteropolymer. The sequence makes the protein unique
and assigns it a specific function within a biological organism. The reason is that the
different types of amino acids vary in their response to the environment and in their
mutual interaction. Since many diseases (e.g., Alzheimer’s, Creutzfeld-Jacob, type II
diabetes) are due to protein misfolds, it is an important task to reveal on what general
principles the folding process of a protein is based. Models differ extremely in their
level of abstraction, ranging from simple and purely qualitative lattice models to highly
sophisticated all-atom off-lattice formulations with explicit solvent that partially yield
results comparable with experimental data. Due to the enormous computational effort
required for simulations of realistic proteins, usually characteristic properties of a protein
with a given sequence are studied in detail. Much simpler, but by no means trivial, lattice
models enjoy a growing interest, since they allow a more global view on, for example, the
analysis of the relation between sequence and structure.

We focused ourselves on the study of thermodynamic properties of lattice proteins at
all temperatures. In particular, this includes the investigation of the transitions between
the different classes of states: lowest-energy (hydrophobic-core) states, compact globules,
and random coils. Since the ground-state–globule transition occurs at rather low temper-
atures, a powerful algorithm is required that in particular allows a reasonable sampling of
the low-lying energy states. To this end we combined multicanonical strategies [1] with
chain growth algorithms [2] to a new method [3]. We applied this method to different
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lattice proteins, modeled by the simplest lattice formulation for heteropolymers, the HP
model [4]. In this model, only two types of monomers enter, hydrophobic (H) and polar
(P) residues. The model is based on the assumption that the hydrophobic interaction is
one of the fundamental principles in protein folding. An attractive hydrophobic interac-
tion provides for the formation of a compact hydrophobic core that is screened from the
aqueous environment by a shell of polar residues.

For different sequences with lengths between 42 and 103 monomers, we analyzed in
detail the temperature-dependent behavior of radius of gyration, end-to-end distance, as
well as their fluctuations, and compared it with the specific heat in order to elaborate
relations between characteristic properties of these curves (peaks, “shoulders”) and con-
formational transitions not being transitions in a strict thermodynamic sense due to the
impossibility to formulate a thermodynamic limit for proteins. Therefore, we identified
temperature regions, where global changes of protein conformations occur. These tran-
sition regions separate “phases”, where random coils, maximally compact globules, or
states with compact hydrophobic core dominate. As an interesting by-product, we not
only confirmed the known global-minimum energies for these examples, but we even found
a new minimum for the 103mer being the longest sequence under consideration [3].

bad solvent poor solvent good solvent

In another project [5] we exactly analyzed the combined space of sequences and con-
formations for proteins on the simple cubic lattice for HP-type models that differ in the
contact energy between hydrophobic and polar monomers. Since there were only a few
known exact results for heteropolymers in 3D, in particular on compact cuboid lattices,
we generated by exact enumeration the sets of designing sequences (i.e. sequences with
nondegenerate ground state) and native conformations on simple cubic lattices. We stud-
ied, how their properties, measured, e.g., in terms of quantities like end-to-end distance,
radius of gyration, designability, etc., differ from the bulk of all possible sequences and all
self-avoiding conformations, respectively. We confirmed that the ground-state conforma-
tions are very compact, but not necessarily maximal compact. We studied also energetic
thermodynamic properties, in order to investigate how characteristic the low-temperature
behavior of designing compared to non-designing sequences is and found that designing se-
quences show up a pronounced low-temperature peak in the specific heat being related to
a conformational transition between low-energy states with hydrophobic core and highly
compact globules. While designing sequences behave similarly for very low temperature,
nondesigning sequences react quite differently on changes of the temperature, over the
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entire range of temperatures.
We also investigated the HP model on more general lattices, e.g. the triangular lattice

in 2D and the face-centered cubic (fcc) lattice in 3D [6]. Comparing for given sequences
the results obtained on the fcc lattice with results from considerations on the simple cubic
lattice, it turned out that there was in most cases no qualitative coincidence. In particular,
for exemplified sequences exhibiting a distinct “three-phase” behavior on the simple cubic
lattice, we did not find a clear indication for the low-temperature transition between
globules and hydrophobic-core conformations on the fcc lattice. Consequently, ground-
state properties and thermodynamic properties for given sequences strongly depend on
the type of the lattice used. This does not render lattice models completely irrelevant for
qualitative studies of heteropolymers, but it shows that, just for this reason, HP proteins
on the simplest lattices will not adequately describe properties of a realistic amino acid
sequence that was translated into the corresponding HP sequence.
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5.5.8 Thermodynamic Properties of Simple Off-Lattice Models
for Proteins

H. Arkın∗, M. Bachmann and W. Janke
∗ Hacettepe University, Ankara, Turkey

The understanding of protein folding is one of the most challenging objectives in
biochemically motivated research. Although the physical principles are known, the com-
plexity of proteins as being macromolecules consisting of numerous atoms, the influence
of quantum chemical details on long-range interactions as well as the role of the solvent,
etc. makes an accurate analysis of the folding process of realistic proteins extremely dif-
ficult. Therefore, one of the most important questions in this field is how much detailed
information can be neglected to establish effective models yielding reasonable, at least
qualitative, results that allow for, e.g., a more global view on the relationship between the
sequence of amino acid residues and the existence of a global, funnel-like energy minimum
in a rugged free-energy landscape.

Within the past two decades much work has been done to introduce minimalistic
models based on general principles that are believed to primarily control the structure
formation of proteins. One of the most prominent examples is the HP model of lattice
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proteins [1] which has been exhaustively investigated without revealing all secrets, despite
its simplicity. The only explicit interaction is between non-adjacent but next-neighbored
hydrophobic monomers. This interaction of hydrophobic contacts is attractive to force
the formation of a compact hydrophobic core which is screened from the (hypothetic)
aqueous environment by the polar residues.

A manifest off-lattice generalization of the HP model is the AB model [2], where the
hydrophobic monomers are labeled by A and the hydrophilic ones by B. The contact in-
teraction is replaced by a distance-dependent Lennard-Jones type of potential accounting
for short-range excluded volume repulsion and long-range interaction, the latter being
attractive for AA and BB pairs and repulsive for AB pairs of monomers. An additional
interaction accounts for the bending energy of any pair of successive bonds. This model
was first applied in two dimensions [2] and generalized to three-dimensional AB proteins,
partially with modifications taking into account the additional torsional degree of freedom
of each bond [3].

We have studied thermodynamic and ground-state properties of known AB sequences
for two representations [2, 3] of the AB model. In order to more accurately resolve the
low-temperature behavior we applied a multicanonical Monte Carlo algorithm with an
appropriate update mechanism, which enabled us to sample the density of states over
more than 70 orders of magnitude [4]. This allowed us to calculate fluctuating quantities
such as the specific heat with very high accuracy for almost all temperatures. We also
obtained with this method a very good estimate for the ground-state energies. These
values are in very good agreement with results achieved by means of the energy landscape
paving (ELP) minimizer [5], which was designed just for this purpose.
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5.5.9 Phase Transitions in Ginzburg-Landau Theory

E. Bittner, W. Janke, A. Krinner and S. Wenzel

Scalar fields with n components and a fourth-order O(n)-symmetric quartic self-interaction
are so far the best understood examples of systems, whose second-order phase transi-
tions can be treated with field-theoretic techniques [1, 2]. Universality ensures that spin
models which describe only directional fluctuations show the same critical properties as
scalar fields with n ≥ 2 components, and the precise reason for this can easily be un-
derstood [3]. In particular, this equivalence holds for the superfluid phase transition
which can be described either by a directional XY model or by an O(2)-symmetric scalar
field theory, whose Hamiltonian is of the Ginzburg-Landau form with a complex field
ψ(�r) = |ψ(�r)|eiφ(�r). Therefore the model can equivalently be represented as a partition
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function of a dual theory where the elementary excitations are closed vortex lines, i.e.
loops. The loops of the dual theory may therefore play an important role in determining
the properties of the phase transition. A seemingly natural approach to study the vortex
degrees of freedom is to decompose every spin configuration generated in a lattice Monte
Carlo simulation [4] into a number of vortex loops. The hope is then that the transition
will be signalized by a non-zero probability for finding vortex loops that extend through
the whole system [5], a phenomenon which is often called percolation.

Percolation has been used to study phase transitions in various different theories.
From studies of the Ising model, where a different kind of percolation may occur, related
to spin clusters instead of vortex lines, it is known that one has to be quite careful with the
interpretation [6]. In discussing the phase transition of the Ginzburg-Landau theory, we
study a geometrically defined vortex loop network as well as the magnetic properties of the
system in the vicinity of the critical point. Using high-precision Monte Carlo techniques we
consider an alternative formulation of the geometrical excitations in relation to the global
O(2)-symmetry breaking, and check if both of them exhibit the same critical behaviour
leading to the same critical exponents and therefore to a consistent description of the
phase transition. Different percolation observables are taken into account and compared
with each other.
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5.5.10 Equilibrium Crystal Shapes in Three Dimensions

E. Bittner, W. Janke and A. Nußbaumer

The free energy of the three-dimensional Edwards-Anderson Ising model in the low tem-
perature phase shows a multi-valley structure. Multicanonical simulations, e.g. for the
overlap parameter, were expected to remove these valleys and to lead to a random walk
behaviour in the corresponding observable. In fact there are still jumps in the time series
which were attributed to so-called “hidden barriers”. Recently, Neuhaus and Hager [1]
explained such barriers in the magnetisation M for the much simpler case of the two-
dimensional Ising model. Based on the analytic work of Leung and Zia [2], they identified
a geometrically induced first-order transition from a droplet to a strip domain and showed
that even a perfect multimagnetic simulation operating with the optimal weights needs ex-
ponential time to overcome the associated free energy barrier. To obtain more qualitative
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insights, we determined directly the anisotropy of a configuration by measuring a struc-
ture function. Simulating different system sizes with Kawasaki dynamics (M = const.),
the scaling of the anisotropy leads to a value for the barrier height in good agreement with
the theoretical prediction (see Fig. 1). By generalising these considerations to the case
of the three-dimensional Ising model, new transitions could be identified analytically and
verified numerically, and the crystal shapes emerging during the transition were visualised.
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Fig. 1: Linear fit to ln(Pmax/Pmin) in the range L = 30 to L = 40. The measured value
α = 1.30 ± 0.01 is to be compared with the analytic value [2] of α = 1.35.

[1] T. Neuhaus and J. Hager, Stat. Phys. 113, 47 (2003).

[2] K. Leung and R. Zia, J. Phys. A 23, 4593 (1990).

5.5.11 Geometrical Approach to Phase Transitions

W. Janke and A. M. J. Schakel

The geometrical approach to phase transitions is an exciting research topic in contempo-
rary physics. The prototype of this approach is percolation theory, describing clusters of
(randomly) occupied sites on a lattice. The fractal structure of these geometrical objects
and whether or not a cluster percolates the lattice are central topics addressed by the
theory. Percolation theory is easily adapted to describe other geometrical objects such
as lines and (hyper)surfaces as well. Typical line objects featuring in phase transitions
that can be described in this way are, for example, (i) vortex lines in systems with spon-
taneously broken global U(1) or local gauge symmetries, (ii) worldlines in Bose-Einstein
condensates, and (iii) graphs in high-temperature representations of spin models.

(i) Because of topological constraints, vortices generally form closed loops. Whereas in
the broken-symmetry phase only finite vortex loops are present, at the critical point, loops
of all sizes appear. This vortex proliferation is in complete analogy to what happens with
clusters at the percolation threshold. The disordering effect of the proliferating vortices
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destroys superfluidity in superfluids, and leads to charge confinement in certain gauge
theories.

(ii) Boson worldlines at finite temperature also form closed loops in imaginary time.
Feynman’s theory of Bose-Einstein condensation asserts that upon lowering the temper-
ature, small loops describing single particles hook up to form larger exchange rings, so
that the particles become indistinguishable. At the critical temperature, again as in per-
colation phenomena, worldlines proliferate and loops of arbitrary size appear, signalling
the onset of Bose-Einstein condensation.

(iii) The high-temperature representation of spin models can be visualized by closed
graphs on the lattice (see Fig. 1), making these models eligible to a geometrical descrip-
tion. In this project, the fractal structure of two-dimensional spin models was investigated
and a close connection between different models established. To support our theoretical
findings, the high-temperature representation of the Ising model was simulated by means
of a Metropolis plaquette update. It was shown that (a) large graphs are exponentially
suppressed in the high-temperature phase, and that (b) graphs percolate the lattice and
proliferate precisely at the thermal critical point. From the percolation strength (defined
as the number of bonds in the largest graph) and the average graph size, the fractal di-
mension of the graphs is extracted through finite-size scaling [1]. The resulting value was
found to agree with theoretical predictions [2].

Fig. 1. Typical graph configurations generated on a 16 × 16 square lattice with periodic
boundary conditions in the high- (left panel) and low-temperature (right panel) phase of
the two-dimensional Ising model.

[1] W. Janke and A. M. J. Schakel, cond-mat/0311624.

[2] B. Duplantier and H. Saleur, Phys. Rev. Lett. 61, 1521 (1988).

5.5.12 Information Geometry and Phase Transitions

W. Janke, D. A. Johnston∗, R. Kenna∗∗ and R. P. K. C. Malmini∗∗∗
∗ Heriot-Watt University, Edinburgh, Scotland, ∗∗ Coventry University, England,
∗∗∗ University of Sri Jayewardenepura, Sri Lanka

Various authors, motivated by ideas in parametric statistics [1], have discussed the ad-
vantages of taking a geometrical perspective on statistical mechanics [2]. The “distance”
between two probability distributions in parametric statistics can be measured using a
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geodesic distance which is calculated from the Fisher information matrix for the system.
To this end the manifold M of parameters is endowed with a natural Riemannian metric,
the Fisher-Rao metric [1]. For a spin model in field, M is a two-dimensional manifold
parametrised by (θ1, θ2) = (β, h). The components of the Fisher-Rao metric take the
simple form Gij = ∂i∂jf in this case, where f is the reduced free energy per site and
∂i = ∂/∂θi. A natural object to consider in any geometrical approach is the scalar or
Gaussian curvature R which in various two-parameter calculable models has been found to
diverge at the phase transition point βc according to the scaling relation R ∼ |β −βc|

α−2,
where α is the usual specific heat critical exponent. For spin models the necessity of cal-
culating in non-zero field has limited analytic consideration to 1D, mean-field and Bethe
lattice Ising models [3].

In this project we used the exact solution in field of the Ising model on an ensemble
of fluctuating planar random graphs (where α = −1, β = 1/2, γ = 2) [4] to evaluate
the scaling behaviour of the scalar curvature explicitly, and find R ∼ |β − βc|

−2 [5]. The
apparent discrepancy with the general scaling postulate is traced back to the effect of a
negative α [5]. As anticipated, the same effect is found [6] in exact calculations for the
three-dimensional spherical model, which was solved (in field) in the classic Berlin and Kac
paper [7] and shares the same critical exponents as the Ising model on two-dimensional
planar random graphs. We mainly concentrated on the 3D case, but also discussed other
dimensions [6], in particular the mean-field like behaviour which sets in at D = 4.
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C. R. Rao, Bull. Calcutta Math. Soc. 37, 81 (1945).
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[5] W. Janke, D. A. Johnston and R. P. K. C. Malmini, Phys. Rev. E 66, 056119 (2002)
[cond-mat/0207573].

[6] W. Janke, D. A. Johnston and R. Kenna, Phys. Rev. E 67, 046106 (2003).
D. A. Johnston, W. Janke and R. Kenna, Acta Physica Polonica B 34, 4923 (2003).

[7] T. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
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Grassberger (Jülich and Wuppertal), Thomas Nattermann (Köln), and Dietrich
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3. Multicanonical Chain Growth Algorithm,
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4. Density of States for HP Lattice Proteins ,
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(with Janke, W.) 2nd Day of Biotechnology, Leipzig, May 21 (P).
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Elmar Bittner:
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2. Zum Phasenübergang in der komplexen |ψ4| Theorie,
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3. Generalized Comlex ψ4 Model ,
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European Cooperation in Statistical Physics (MECO28), Saarbrücken, March 20–22
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5. Phase Transitions of the Diluted 3D 4-State Potts Model ,
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6. Quenched Disorder in Ferromagnets,
invited talk, Yalelat03 – 13. Workshop on Lattice Field Theory, Yale University,
New Haven, USA, May 1–3 (T).



304 5. INSTITUTE FOR THEORETICAL PHYSICS

7. Simulating Rare Events in Spin Glasses ,
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8. Quenched Connectivity Disorder ,
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9. Ground States of Lattice Proteins ,
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2. Ising Droplets in Action,
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Adriaan Schakel:

1. Physics in Geometrical Potts Clusters,
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Reinhard Schiemann:

1. Exact Statistical Analysis of Native Ground States of Lattice Proteins,
(with Bachmann, M.; Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik,
TU Dresden, March 24–28 (P).

Thomas Vogel:

1. Monte Carlo Simulations of the 2D Ising Model with Brascamp-Kunz Boundary
Conditions ,
(with Krinner, A.; Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik,
TU Dresden, March 24–28 (P).

Martin Weigel:

1. Effects of Connectivity Disorder on the Potts Model ,
(with Janke, W.) 28th Conference of the Middle European Cooperation in Statistical
Physics (MECO28), Saarbrücken, March 20–22 (P).
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2. Effects of Connectivity Disorder on the Potts Model ,
(with Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik, TU Dres-
den, March 24–28 (P).

3. Effects of Connectivity Disorder on the Potts Model ,
(with Janke, W.) Workshop on Random Geometry and EU-Network Meeting, Krakow,
Poland, May 15–17 (P).

4. The Harris-Luck Criterion for Random Lattices,
Institute for Theoretical Physics, University of Leipzig, October 8 (T).

5. The Harris-Luck Criterion for Random Lattices,
Condensed Matter Theory Seminar, University of Waterloo, Canada, November 4
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6. Harris Criterion and Correlated Disorder from Random Graphs,
Emerging Materials Knowledge Meeting, University of Waterloo, Canada, December
18 (T).

Andreas Wernecke:

1. Q-state Potts Models on Quenched Random Planar φ3 Graphs,
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5.5.17 Graduations
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3. Sandro Wenzel, Monte Carlo Simulations of the 3D Ginzburg-Landau Model with
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5. Axel Krinner, Nature of Phase Transitions in a Generalized Complex Ginzburg-
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1. Dr. Pai-Yi Hsiao, Laboratoire de Physique Théorique de la Matière Condensée,
University Paris 7, France,
NTZ-Kolloquium, January 9, 2003: Critical Behavior of the Ferromagnetic Ising
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Model on the Fractals ,
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Peptides ,
Period: December 16–19, 2003.

Long-term guests

1. Adriaan Schakel (FU Berlin): June–July 2003.

2. Handan Arkın (Hacettepe University, Ankara, Turkey): July–October 2003.

3. Thomas Neuhaus (Univ. Bielefeld): November–December 2003.

4. Adriaan Schakel (FU Berlin): November–December 2003.

5. Thomas Neuhaus (Univ. Bielefeld): January–February 2004.


