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Motivated by recent claims for rather unconventional first-order phase transitions in the two- and three-
dimensional complex |i|* theory in certain parameter ranges we performed Monte Carlo simulation
studies of this model. From our results in two and three dimensions we can unambiguously conclude that
there is no evidence for a first-order transition, provided the measure of field fluctuations is treated
properly. The origin of the discrepancy is traced by comparative simulations reproducing the erroneous
results and by a transfer-matrix study of the one-dimensional case.
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Scalar fields with n components and a fourth-order
O(n)-symmetric quartic self-interaction are so far the
best understood examples of systems, whose second-order
phase transitions can be treated with field-theoretic techni-
ques [1,2]. Perturbative calculations of critical exponents
and amplitude ratios of the Ising, XY, Heisenberg, . . . spin
models and the concept of universality relied heavily on
this field-theoretic formulation. Universality ensures that
spin models which describe only directional fluctuations
show the same critical properties as scalar fields with n =
2 components, and the precise reason for this can easily be
understood [3]. In particular, this equivalence holds for the
superfluid phase transition which can be described either
by a directional XY model or by an O(n)-symmetric scalar
field theory, whose Hamiltonian is commonly expressed
with a complex field #(7) = |(7)|e’*"") in the Ginzburg-
Landau form as

Hwk=fﬂ{awv+§wﬁ+§vwﬂy>a W

It came therefore as a surprise when, on the basis of an
approximate variational approach to the two-component
Ginzburg-Landau model, Curty and Beck [4] recently
predicted for certain parameter ranges the possibility of
first-order phase transitions induced by phase fluctuations.
Being not so credible to start with, in several papers [5-9]
this uncontrolled quasianalytical [10] approximation was
tested by Monte Carlo simulations. As a result the rather
unconventional claim by Curty and Beck [4] was appa-
rently confirmed numerically. If true, these findings would
have an enormous impact on the theoretical description of
many related systems such as superfluid helium, super-
conductors, certain liquid crystals and possibly even the
electroweak standard model of elementary particle physics
[11,12].

Although it came as a surprise, the result is not com-
pletely nonsensical in view of an old observation in
Ref. [13], that an appropriately mixed action of the purely
directional XY type can have first-order transitions.
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However, this was caused by the generation of a negative
coefficient of the effective quartic interaction from fluctua-
tion, whereas it was hard to see how such a sign change
could be achieved in (1).

In view of the potentially important implications for a
broad variety of different fields we report here the results of
independent Monte Carlo simulations of the model (1) in
two and three dimensions to show that the claim of phase-
fluctuation induced first-order transitions in Refs. [5-9] is
incorrect. The source for the wrong result is pointed out.
We also give a further argument in favor of our result by a
transfer-matrix study of the one-dimensional complex
Ginzburg-Landau chain. Our results clearly support the
conventional opinion that the transition in the Ginzburg-
Landau model as in the parametrization of Curty and Beck
[4] is of second-order. As often noticed [14], variational
approximations are not a reliable tool to determine the
order of a transition, and the same thing is true for the
approximation employed by Ref. [4].

In order to carry out the Monte Carlo simulations we put
the model (1) on a d-dimensional hypercubic lattice with
spacing a. Adopting the notation of Ref. [4] we normalize
the Hamiltonian by setting ¢ = //(|al/b), i = 7/&,
where &2 = y/|a| is the mean-field correlation length at
zero temperature. The normalized lattice Hamiltonian is
thus given by

- o [ 1&
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where we have removed a constant term, u denotes the unit
vector along the w axes, and N = L is the total number of
sites. Only two parameters remain,

a2

?:

where furthermore V, can be used to set the scale of the
(dimensionless) temperature. The partition function Z is
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where the reduced temperature is defined as 7 = T/V,
and [ DDy stands short for summing over all possible
complex field configurations.

In our simulations described in detail below we have
measured among other quantities the energy density e =
(H)/N, the specific heat ¢, = ((H*) — (H)*)/N, and in
particular, the mean square amplitude

- 1/
W) =5 (> 1.8 ©

which will serve as the most relevant quantity for compar-
ison with previous work [4-9]. For further comparison and
in order to determine the critical temperature, the helicity
modulus,

1/ = s
F,u = N<”Z| |'7[/n||'7[/n+y,| COS((bn - ¢n+y,)>

| (6)

was also computed. Notice that the helicity modulus I',, is
a direct measure of the phase correlations in the direction
of w. In the infinite-volume limit, I" u 1s zero above T, and
different from zero below T'... For notational simplicity we
will omit in the rest of the Letter the tilde on ¢, o, and T.

Let us now turn to the description of the Monte Carlo
update procedures used by us. Since we suspected from the
outset some flaws in the previous numerical results, we
started with the most straightforward (but most inefficient)
algorithm known since the early days of Monte Carlo
simulations: The standard Metropolis algorithm [15].
Here the complex field ¢, is decomposed in its Cartesian
components, ¢, = i, + iy, ,. For each lattice site a
random update proposal for the two components is made,
eg., Y., — ., + 6, with 6¢,, E[—A, A], and in
the standard fashion accepted or rejected according to the
energy change 6H. The parameter A is usually chosen
such as to give an acceptance rate of about 50%, but other
choices are permissible and may even result in a better
performance of the algorithm (in terms of autocorrelation
times). All this is standard [16] and guarantees in a
straightforward manner that the complex measure DD
in the partition function (4) is treated properly.

The well-known drawback of this algorithm is its critical
slowing down (large autocorrelations) in the vicinity of a
continuous phase transition [16], leading to large statistical
errors for a fixed computer budget. To improve the accu-
racy of our data we therefore employed the single-cluster
algorithm [17] to update the direction of the field [18],
similar to simulations of the XY spin model [19]. The
modulus of ¢ is updated again with a Metropolis algo-
rithm. Here some care is necessary to treat the measure in
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(4) properly (see below). Per measurement we performed
one sweep with the Metropolis algorithm and m single-
cluster updates. For the 3D model the number of cluster
updates was chosen roughly proportional to the linear
lattice size L, a standard choice as suggested by a simple
finite-size scaling analysis. For L = 15 we thermalized
with 500 to 1000 sweeps and averaged the measurements
over 10000 sweeps.

All error bars are computed with the Jackknife method
[20]. In the following, we show only the more extensive
and accurate data set of the cluster simulations, but we
tested in many representative cases that the Metropolis
simulations coincide within error bars. In Fig. 1(a) the
mean square amplitude {|i/|?) for the 3D model is shown
as a function of T for different values of the parameter o.
We see a smooth variation with temperature and definitely
no indication of a first-order phase transition as claimed in
Refs. [5-9]. For precisely the same set of parameters and
lattice size L the simulations of Refs. [5,9] yielded results
which are consistent within error bars with our Fig. 1(b)
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FIG. 1. (a) Mean square amplitude of the 3D Ginzburg-Landau
model on a 15 cubic lattice for different values of the parameter
o =0.25,...,3.0. (b) The same quantities using the incorrect
Jacobian in the polar coordinates representation (7) (see text).
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and which, in fact, look indicative of first-order transitions,
at least for small values of o

What is the reason for this pronounced discrepancy?
The disagreement is the result of an incorrect treatment
of the Jacobian which emerges from the complex measure
in (4) when transforming the field representation. If we
decompose the field ¢, in polar coordinates, ¥, =
R,[cos(¢),), sin(¢,)], and update in the simulations the
modulus R, = |i,| and the angle ¢,, then we have to
rewrite the partition function (4) as

27 0
z=f ngf RDRe H/T, (7)
0

0

where R = [[V_, R, is the Jacobian of this transformation.
While mathematically indeed trivial (and properly taken
into account in Ref. [4]), this fact may easily be overlooked
when coding the update proposals for the modulus and
angle in the Monte Carlo simulation program. In fact, if we
ignore the Jacobian and simulate the model (7) (errone-
ously) without the R factor, then we obtain the results
displayed in Fig. 1(b). As already mentioned above these
results reproduce [21] those in Refs. [5,9], and from this
data one would indeed conclude evidence for a first-order
phase transition when o is small. With the correct measure,
on the other hand, we have checked that no first-order
signal shows up down to o = 0.01. The same conclusion
can be drawn by looking at other quantities such as the
helicity modulus (6). Technically speaking, in the simula-
tions the erroneous omission of the R factor results from
the implicit assumption of a uniform measure not only for
the angles ¢, € (0, 277) (correct), but also for the modulus
R, € (0, ) (incorrect).

To treat the measure in Eq. (7) properly one can either
use the identity R DR = DR?/2 and update the squared
moduli R2 = |, |? according to a uniform measure, or one
can introduce an effective Hamiltonian,

N
He = H — Tk Y logR,, (8)

n=1

with k = 1 and work directly with a uniform measure for
R,. The omission of the R factor in (7) corresponds to
setting k = 0. It is well known [11] that the nodes R, = 0
correspond to core regions of vortices in the dual formu-
lation of the model. The Jacobian factor R (or equivalently
the term — Y logR, in H.) tends to suppress field con-
figurations with many nodes R, = 0. If the R factor is
omitted, the number of nodes and hence vortices is rela-
tively enhanced. It is thus at least qualitatively plausible
that in this case a discontinuous, first-order “freezing
transition” to a vortex dominated phase can occur, as is
suggested by a similar mechanism for the XY model
[11,22] and defect models of melting [23,24].

In order to check our update algorithm, we performed
further simulations of a one-dimensional chain with the
Hamiltonian defined in Eq. (2) and compared the results
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with (numerically exact) transfer-matrix calculations for
the same model. We used a chain of length L = 400 with
periodic boundary conditions. In the Monte Carlo simula-
tions we thermalized with 5000 sweeps and averaged over
5000 sweeps for different values of o. To determine the
quantities for the chain by transfer-matrix calculations
we extended the method described in Refs. [25-27] to
a two-component field. As is demonstrated in Fig. 2,
the two methods, proper Monte Carlo simulations and
transfer-matrix calculations, give indeed the same results
(the error bars on the Monte Carlo data are smaller than the
symbols). Also shown are the results obtained with the
incorrect update procedure (i.e., ignoring the R factor
coming from the Jacobian)—the outcome of this final
test is indisputable.

We also performed simulations in two dimensions and
found the same error in the results given in Refs. [6-8], i.e.,
in particular, we found again no evidence for a first-order
phase transition.

To summarize, the possibility of a phase-fluctuation
induced first-order phase transition in the Ginzburg-
Landau model as suggested by approximate variational
calculations by Curty and Beck [4] cannot be confirmed
by our numerical simulations. Contrary claims in previous
numerical work [5-9] in two and three dimensions
are incorrect due to the omission of the Jacobian
factor R =[]"_, R,, appearing when transforming the
complex field integration to polar coordinates ¢, =
R,[cos(o),), sin(¢,)]. By exponentiating the Jacobian fac-
tor R, it becomes qualitatively clear that its omission tends
to enhance the condensation of vortices which can trigger
the erroneously claimed first-order phase transitions.

Turning the arguments around, our results suggest that
the Ginzburg-Landau model can be modified to undergo a
first-order transition in a way similar to Ref. [13] by vary-
ing the coefficient x of the — > logR,, term in the effective
Hamiltonian (8). As in Ref. [13] this can be understood by
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FIG. 2.  Energy density of the one-dimensional Ginzburg-

Landau chain of length L = 400 for o = 1.
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a duality argument. The extra term reduces the ratio of core
energies of vortex lines of vorticity 2 versus those of
vorticity 1, and this leads to the same type of transition
as observed in defect melting of crystals. A study of the
tricritical point as a function of « would be an interesting
future project.
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