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Multioverlap Simulations of the 3D Edwards-Anderson Ising Spin Glass
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We introduce a novel method for numerical spin glass investigations: Simulations of two replica
at fixed temperature, weighted to achieve a broad distribution of the Parisi overlap parameter
(multioverlap). We demonstrate the feasibility of the approach by studying the 3D Edwards-Anderson
Ising (/ix = £1) spin glass in the broken phasg & 1). This makes it possible to obtain reliable
results about spin glass tunneling barriers. In addition, our results indicate a nontrivial scaling behavior
of the canonicalg distributions not only at the freezing point but also deep in the broken phase.
[S0031-9007(98)06189-4]

PACS numbers: 75.10.Nr, 75.40.Mg, 75.50.Lk

The intuitive picture for spin glasses and other systemgrocess which samples the ordered as well as the disor-
with conflicting constraints (for reviews see Ref. [1]) is dered regions of configuration space in one run. Refresh-
that there exists a large number of degenerate thermang the system in the disordered phase clearly benefits
dynamic states with the same macroscopic properties baihe simulations, but the performance has remained below
with different microscopic configurations. These states arearly expectation. One reason appears to be that the direct
separated by free-energy barriers in phase space, caused(bg., ignoring the dynamics of the system) barrier weights
disorder and frustration. However, one difficulty of the are not affected, such that the simulation slows down due
theory of spin glasses is to give a precise meaning to thig the treelike structure of the low-energy spin glass states;
classification: No explicit order parameter exists whichsee Ref. [7] for a detailed discussion. The present paper
allows one to exhibit the barriers. The way out of thisintroduces a novel, efficient approach, which targets the
dilemma appears to use an implicit parametrization, théarrier weights directly.

Parisi overlap parameter, which allows one to visualize =~ We focus on the 3D Edwards-Anderson Ising (EAI)
at least some of them. Calculations of the thus encourspin glass on a simple cubic lattice. It is widely consid-
tered barriers iy are of major interest. For instance, it ered to be the simplest model to exhibit realistic spin glass
is unclear whether the degenerate thermodynamic staté&havior and has been the testing ground of Refs. [3—6].
are separated by infinite barriers or whether this is just affhe energy is given by

artifact of mean-field theory.

Before performing numerical calculations of these bar- E=— ZJ,-ksisk, (@B)]
riers, one of the questions which ought to be addressed is (ik)

“What are suitable weight factors for the problem?” The, nere the sum is over nearest-neighbor sites. The Ising
weight factor of canonical Monte Carlo (MC) simulations gpins. ands, as well as the exchange coupling constants
is exp(—BE), where £ is the energy of the configura- ;. take valuest1. A realization is defined by a fixed
tion to be updated ang is the inverse temperature in yssignment of the exchange coupling constantsIn our
natural units. The'Metrqpolls and other methods generyyestigation we enforce the constrai, Jix = 0 by

ate canonical configurations through a Markov Processyicking half of theJ;; at random and assigning them the
However, by_ their very definition free-ene_rgy barriers aréyalue + 1, whereas the others are fixed-al. Early MC
suppressed in such an ensemble. Now, it became widelyiyjations of the EAI model (for a concise review see
recognized in recent years that MC simulations vaitbri- Ref. [6]) located the freezing temperature @&t ~ 0.9.

ori unknown weight factors, like, for instance, the inverseRecem, very high statistics canonical simulations [8,9]
spectral densityl/n(E), are also feasible and deserve estimate8. = 0.901 + 0.034, and improve the evidence
to be considered; for reviews see Ref. [2]. Along suchy, support of a second-order phase transitiogat

lines progress has been made by exploring [3—6] innova- Reference [4] combined two copies (replica) of the
tive weighting methods for the spin glass problem, where,gme realization (defined by its couplingg) in one

free-energy barriers are caused by disorder and frustratiafjjation. The purpose was to allow for direct evalu-
(conflicting constraints) such that canonical simulationsiion of the Parisi overlap parameter

break down below some freezing temperature. N
The main idea of the studies [3—6] is to avoid getting g = 1 Z o2 )
stuck in metastable low-energy states by using a Markov N &S
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Here N denotes the number of spins, the spifis= +1  sizesL = 4 to 8 the worst behaved realization took never

correspond to the first replica, and the spifis= +1to  more than 3% of the entire computer time, andZfor 12

the second replica. Now, our observation is that one doegvhere we have only 33 realizations) this amount was 12%.

still control canonical expectation values at temperature Initially in each run, a working estimate of the weight

B! when one simulates with a weight function function (3) has to be obtained. Using a variant of the

recursion proposed in [10] this has turned out to be
w = ex;{ﬁ Zjik(s}s,i + s757) + S(q):|_ (3) remarkably easy. For each case we stopped the recursion

(ik) of weights after four tunnelings were achieved and the

This is obvious forS(g) = 0, and a nontrivialS(q) can  used computer time was smaller thé, with 7 as given

be mapped onto this situation by reweighting [2]. Of par-in Table I.

ticular interest is to determing(q) recursively [10] such ~ The analysis of the thus created data allows us to

that the histograntf (¢) becomes uniform iy and the in-  calculate a number of physically interesting quantities.

terpretation ofS(g) being the microcanonical entropy of In particular, accurate determinations of the canonical

the Parisi order parameter_ Hence, a|though an exp”cﬁ)otential barriers |W are, for the first time, pOSSibIe. Let

order parameter does not exist, an approach very simildfi(¢) be the canonical probability densities @f where

to the multimagnetical [11] (which is an highly efficient i = 1.....n labels the different realizations (additional
way to sample interface barriers for ferromagnets) existéependence on lattice size and temperature is implicit).
herewith. We define the corresponding potential barrier by

Our EAI simulations are performed av = L3 lattices - Nq
atB = 1, in the interesting region well below the freezing B, = l_[ max 1, Pi(q)/Pi(q + Ag)], 4)
temperature. All calculations were done on a cluster of g=—1

Alpha workstations at FSU. We simulated 512 different

realizations forL = 4, 6, 8, and 33 for. = 12. Each Where Ag is the stepsize irg. For the double-peak

production run of data taking was concluded after at leassituations of first-order phase transitions [11], Eq. (4)

twenty tunneling events of the form becomesB; = P"*/P{™", where P/ is the absolute
(g =0)— (g = +1) and back maximum andP;"" is the absolute minimum (for ferro-

. ] _ magnets ay = 0) of the probability density?;(g). Our
were recorded. Table I gives an overview of the tunnelingyefinition generalizes to the situation where several min-
performance of our algorithm. Fitting the estimates ofima and maxima occur due to disorder and frustration.
the mean valug to the form I7) = a + z In(N) gives  \when evaluating (4) from numerical data By(¢) some
z = 2.42 + 0.03. Aswillbe discussed below, the implied care is needed to avoid contributions from statistical fluc-
improvement with respect to barrier calculations is hugey,ations ofP:(q).

Nevertheless, the slowing down is quite off from the Gyaphically, our values for thes; are presented in

theoretical optimum, which is = 1 for multicanonical  Fig 1. It comes as a surprise that the finite-size depen-
simulations [2]. One reason seems to be that we argence of the distributions is very weak. To study this is-
enforcing the limity — *1. It correlates strongly with  gye further, we have compiled in Table Il for each lattice

ground states, which are difficult to reach by local updatesjze the following information about our potential barrier
see, for instance, Ref. [7]. Being content with a smaller

region (like the two outmost maxima in tlyedistribution)
is expected to give further improvements of the tunneling 600
performance. Other data compiled in Table | are the -
encountered minimum, maximum, and median tunneling
times. We observe that the mean values are systematically _ -
larger than the median, which means that the tunneling
distribution has a rather long tail towards large tunneling
times. On the other hand, the effect is not severely
hindering our multioverlap simulations: For the lattice
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TABLE I. Overview of the tunneling performance: minimum,
maximum, median, and meati error tunneling times. All
numbers are in units of sweeps.

L Tmin Tmax Tmed T 0

4 4.5E02 6.2E03 9.9E02 (1.13 = 0.03)E03 B,
6 4.9E03 3.1E05 1.3E04 (1.88 £ 0.09)E04

8 2 AE04 1.6E06 1.1E05 (1.76 = 0.09)E05 FIG. 1. Canonical tunneling barrier distributions gt= 1.
12 7.1E05 1.6E07 2.7E06 (4.11 + 0.65)E06  (TheL = 12 barriers are relabeled to fill into the 1-512 range.)

The inset shows the two worét = 6 realizations.
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TABLE Il. Canonical potential barriers: maximum (and its contribution to the mean in %),
second largest value, upper median confidence limit, median, lower median confidence limit
(upper and lower limit bound a 70% confidence interval), the mean, and its error bar.

L Bmax BZ Br::ed Bmed Bl;]ed E

4 6.56E06 (70%) 9.11E05 151 12.4 9.62 (1.84 + 1.30)E04

6 2.76E06 (74%) 1.44E05 12.3 111 10.1 (7.29 = 5.42)E03

8 1.97E08 (98%) 1.36E06 17.7 15.2 12.3 (3.91 = 3.85)E05
(

12 9.14E07 (100%) 1.96E03 35.3 12.9 10.7 (2.77 = 2.77)E06

results: largest and second largest valgs, and B,  typical barriers are primarily responsible for the severe
median values and 70% confidence limits around thoseslowing down of canonical MC simulations.

and mean valueB with statistical error bars. From this  Our data allow canonical reweighting in & range
table it becomes obvious why this investigation couldwhich includes the critical temperatugg. = 0.88. By
not be performed using canonical methods to which imanalyzing the spin glass susceptibilitysg = N[{g*)]av,
this context multicanonical simulations and enlarged enwe obtain the best finite-size scaling fikg = L?/” at
sembles also belong, as their weights for those barriers ag = 0.88 with y/» = 2.37(4) and a goodness-of-fit pa-
still canonical. For these methods the slowing down is prorameterQ = 0.25. This is corroborated by the curves of
portional to the average barrier heightwhich is already the Binder parameteg = (1/2) (3 — [{g*)]av/[g®) 12,
large for L = 4, about18 X 103, and increases to about which merge aroungd = 0.89. In the low-temperature
28 X 10% for L =12. OnL =4 andL = 6 systems phase 8 > B.) the curves for different lattice sizes seem
we have performed a number of (very long) canoni-to fall on top of each other, but our error bars are still too
cal simulations to estimate the proportionality constantarge to draw a firm conclusion from this quantity.
between barrier height and improvement due to our multi- In Fig. 2 we show that the averaged canonical probabil-
g simulations. Using these results, we estimate that witlity densitiesP(q) = [P;(g)]., reweighted to the transition
our computer program a canonical MC calculation of thetemperaturd’. satisfy the finite-size scaling relation

worst L = 12 barrier alone, the one reported in Table I _ 1 B/vi(rB/v 1/v

’ ! P =L P(L ,L T — TC 5 5
would take about 1000 years on a 500 MHz Alpha . _(Q) ) ( q ( ) ®)
processor. where P is a scaling function, ang3 and » are the

The reader may be puzzled by the very large error barsritical exponents of the order parameter and correlation
assigned to the mean barrier values. Their explanatiolgndth, respectively. They are related yg» =2 — 7
is the following: The entire mean value is dominateddy the standard scaling relatiog/» = (D — y/v)/2.
by the largest barrier, which contributes between 7094Jsing our estimate fory/» we thus obtain the value
(L = 4) and, practically, 100%L = 12); S€€ Bmax in B/v = 0.317 Whlph is em_plo_yed in Fig. 2. These results
the second column of Table Il. BesidBs., the second are consistent with the findings of Ref. [8] and could be
largest valueB, is listed in the third column. It may be easily improved by redoing the simulations closer3a
remarked that most of these worst case barriers exhibROSSibly (using a parallel computer) with more realiza-
simple double-peak behavior. An exception lis= 6 tions. Narrowing the; range may allow one to simulate
where the distribution yieldingmax has two double peaks. lattices of sizel. = 16 and beyond.

To exhibit the difference, the inset of Fig. 1 depicts the

right-hand side of thd, = 6 probability densitiesP;(g) y : T
with i = 459 corresponding to thé,.x andi = 122 to

the B, barrier. ForB, the value of our barrier definition

(4) agrees with thé® o/ Pmin Value, whereas foB . it is 1.0
by about a factor of 2 larger.

Typical configurations, described by the median results,
of Table Il, have much smaller tunneling barriers. Theya—l
turn out to be quite insensitive to the lattice size; in fact, ,\5
the valueB.q = 12.3 fits into the confidence interval &
for all simulated lattice sizes. Presumably, there is some
increase ofB.q With lattice size, but to trace it we
would need to simulate more realizations. This result of Biv=0317
an almost constant typical tunneling barrier is consistent
with the fact that our tunneling times are rather far apart ¢
from their theoretical optimum: Still other reasons than
overlap barriers have to be responsible. Therefore, one
may also question the apparently accepted opinion that FIG. 2. Scaling plot forP(q) at1/7T = 0.88 = 1/T..
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" ' riers in some detail. Using parallel computers and slight
modifications of our method (like narrowing tlgerange,
including a magnetic field, etc.) will allow us to extend
our investigation into various interesting directions, like
an improved study of the thermodynamic limit at and be-

low the freezing point, oe physics.
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FIG. 3. Scaling plot forP(¢) at1/T = 1.

The observation that the Binder parameter curves do
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not splay out at low temperatures suggests that, similar

TElectronic address: janke@miro.physik.uni-mainz.de

to the 2DXY model, the correlation length may be in-
finite—or at least larger than the simulated lattice sizes.
Generalizing the second argument Bfto L/¢ and as-
suming L/& = 0, we would thus expect that th2(g)
should also scale beloW,.. By adjusting the only free
parameter,3/v = 0.270, we obtained at the simula-
tion point 7 = 1 (= 0.88T.) the finite-size scaling plot
shown in Fig. 3. Moreover, if we reweight our data to
the even lower temperaturds= 1/1.1 (= 0.807.) and
T = 1/1.2 (= 0.73T.) we still find a reasonable data col-
lapse if we choosg8/v = 0.230 and 8/v = 0.190, re-
spectively. Of course, since our lattice sizes are relatively
small, we cannot conclude that the correlation length is
infinite belowT,. If £ is large but finite, it is conceivable
that we observe aeffectivescaling behavior as long as
& > L. We may conclude that the correlation length is
unusually large £ > 12) down t00.737.. However, the
slight discrepancy from scaling gt= 0 in Fig. 3 ought
also to be noted. The value d@f(0) > 0 turns out to
show almost no finite-size dependence, and the qualitativ
behavior of P(q) is very similar to that in the 4D EAI
model [12]. If this behavior would persist asymptotically,
it would provide numerical evidence in favor of the Parisi
mean-field scenario being valid down to 3D. Note in this
context that the results of Ref. [13] are still disputed [14].
Finally, we mention that our method is particularly well
suited to study the influence of an interaction term [15]
e>Y sl st = eNg in the Hamiltonian (1): We obtain
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