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Multioverlap Simulations of the 3D Edwards-Anderson Ising Spin Glass
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We introduce a novel method for numerical spin glass investigations: Simulations of two re
at fixed temperature, weighted to achieve a broad distribution of the Parisi overlap paramq
(multioverlap). We demonstrate the feasibility of the approach by studying the 3D Edwards-And
Ising (Jik ­ 61) spin glass in the broken phase (b ­ 1). This makes it possible to obtain reliab
results about spin glass tunneling barriers. In addition, our results indicate a nontrivial scaling be
of the canonicalq distributions not only at the freezing point but also deep in the broken ph
[S0031-9007(98)06189-4]
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The intuitive picture for spin glasses and other syste
with conflicting constraints (for reviews see Ref. [1]) i
that there exists a large number of degenerate therm
dynamic states with the same macroscopic properties
with different microscopic configurations. These states a
separated by free-energy barriers in phase space, cause
disorder and frustration. However, one difficulty of th
theory of spin glasses is to give a precise meaning to t
classification: No explicit order parameter exists whic
allows one to exhibit the barriers. The way out of th
dilemma appears to use an implicit parametrization, t
Parisi overlap parameterq, which allows one to visualize
at least some of them. Calculations of the thus encou
tered barriers inq are of major interest. For instance,
is unclear whether the degenerate thermodynamic sta
are separated by infinite barriers or whether this is just
artifact of mean-field theory.

Before performing numerical calculations of these ba
riers, one of the questions which ought to be addresse
“What are suitable weight factors for the problem?” Th
weight factor of canonical Monte Carlo (MC) simulation
is exps2bEd, where E is the energy of the configura-
tion to be updated andb is the inverse temperature in
natural units. The Metropolis and other methods gen
ate canonical configurations through a Markov proce
However, by their very definition free-energy barriers a
suppressed in such an ensemble. Now, it became wid
recognized in recent years that MC simulations witha pri-
ori unknown weight factors, like, for instance, the invers
spectral density1ynsEd, are also feasible and deserv
to be considered; for reviews see Ref. [2]. Along su
lines progress has been made by exploring [3–6] inno
tive weighting methods for the spin glass problem, whe
free-energy barriers are caused by disorder and frustra
(conflicting constraints) such that canonical simulatio
break down below some freezing temperature.

The main idea of the studies [3–6] is to avoid gettin
stuck in metastable low-energy states by using a Mark
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process which samples the ordered as well as the dis
dered regions of configuration space in one run. Refres
ing the system in the disordered phase clearly benefi
the simulations, but the performance has remained belo
early expectation. One reason appears to be that the dir
(i.e., ignoring the dynamics of the system) barrier weigh
are not affected, such that the simulation slows down d
to the treelike structure of the low-energy spin glass state
see Ref. [7] for a detailed discussion. The present pap
introduces a novel, efficient approach, which targets th
barrier weights directly.

We focus on the 3D Edwards-Anderson Ising (EAI
spin glass on a simple cubic lattice. It is widely consid
ered to be the simplest model to exhibit realistic spin gla
behavior and has been the testing ground of Refs. [3–
The energy is given by

E ­ 2
X
kikl

Jiksisk , (1)

where the sum is over nearest-neighbor sites. The Isi
spinssi andsk as well as the exchange coupling constan
Jik take values61. A realization is defined by a fixed
assignment of the exchange coupling constantsJik . In our
investigation we enforce the constraint

P
kikl Jik ­ 0 by

picking half of theJik at random and assigning them the
value11, whereas the others are fixed at21. Early MC
simulations of the EAI model (for a concise review se
Ref. [6]) located the freezing temperature atbc ø 0.9.
Recent, very high statistics canonical simulations [8,9
estimatebc ­ 0.901 6 0.034, and improve the evidence
in support of a second-order phase transition atbc.

Reference [4] combined two copies (replica) of th
same realization (defined by its couplingsJik) in one
simulation. The purpose was to allow for direct evalu
ation of the Parisi overlap parameter

q ­
1
N

NX
i­1

s1
i s2

i . (2)
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Here N denotes the number of spins, the spinss1
i ­ 61

correspond to the first replica, and the spinss2
i ­ 61 to

the second replica. Now, our observation is that one do
still control canonical expectation values at temperatu
b21 when one simulates with a weight function

w ­ exp

"
b

X
kikl

Jikss1
i s1

k 1 s2
i s2

kd 1 Ssqd

#
. (3)

This is obvious forSsqd ­ 0, and a nontrivialSsqd can
be mapped onto this situation by reweighting [2]. Of pa
ticular interest is to determineSsqd recursively [10] such
that the histogramHsqd becomes uniform inq and the in-
terpretation ofSsqd being the microcanonical entropy o
the Parisi order parameter. Hence, although an expl
order parameter does not exist, an approach very sim
to the multimagnetical [11] (which is an highly efficien
way to sample interface barriers for ferromagnets) exis
herewith.

Our EAI simulations are performed onN ­ L3 lattices
at b ­ 1, in the interesting region well below the freezin
temperature. All calculations were done on a cluster
Alpha workstations at FSU. We simulated 512 differe
realizations forL ­ 4, 6, 8, and 33 forL ­ 12. Each
production run of data taking was concluded after at lea
twenty tunneling events of the form

sq ­ 0d °! sq ­ 61d and back

were recorded. Table I gives an overview of the tunnelin
performance of our algorithm. Fitting the estimates
the mean valuet to the form lnstd ­ a 1 z lnsNd gives
z ­ 2.42 6 0.03. As will be discussed below, the implied
improvement with respect to barrier calculations is hug
Nevertheless, the slowing down is quite off from th
theoretical optimum, which isz ­ 1 for multicanonical
simulations [2]. One reason seems to be that we a
enforcing the limitq ! 61. It correlates strongly with
ground states, which are difficult to reach by local update
see, for instance, Ref. [7]. Being content with a small
region (like the two outmost maxima in theq distribution)
is expected to give further improvements of the tunnelin
performance. Other data compiled in Table I are th
encountered minimum, maximum, and median tunneli
times. We observe that the mean values are systematic
larger than the median, which means that the tunneli
distribution has a rather long tail towards large tunnelin
times. On the other hand, the effect is not severe
hindering our multioverlap simulations: For the lattic

TABLE I. Overview of the tunneling performance: minimum
maximum, median, and mean6 error tunneling times. All
numbers are in units of sweeps.

L tmin tmax tmed t

4 4.5E02 6.2E03 9.9E02 s1.13 6 0.03dE03
6 4.9E03 3.1E05 1.3E04 s1.88 6 0.09dE04
8 2.4E04 1.6E06 1.1E05 s1.76 6 0.09dE05

12 7.1E05 1.6E07 2.7E06 s4.11 6 0.65dE06
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sizesL ­ 4 to 8 the worst behaved realization took nev
more than 3% of the entire computer time, and forL ­ 12
(where we have only 33 realizations) this amount was 12

Initially in each run, a working estimate of the weigh
function (3) has to be obtained. Using a variant of th
recursion proposed in [10] this has turned out to
remarkably easy. For each case we stopped the recur
of weights after four tunnelings were achieved and t
used computer time was smaller than4t, with t as given
in Table I.

The analysis of the thus created data allows us
calculate a number of physically interesting quantitie
In particular, accurate determinations of the canonic
potential barriers inq are, for the first time, possible. Le
Pisqd be the canonical probability densities ofq, where
i ­ 1, . . . , n labels the different realizations (additiona
dependence on lattice size and temperature is implic
We define the corresponding potential barrier by

Bi ­
2 nqY
q­21

maxf1, PisqdyPisq 1 nqdg , (4)

where nq is the stepsize inq. For the double-peak
situations of first-order phase transitions [11], Eq. (
becomesBi ­ Pmax

i yPmin
i , where Pmax

i is the absolute
maximum andPmin

i is the absolute minimum (for ferro-
magnets atq ­ 0) of the probability densityPisqd. Our
definition generalizes to the situation where several m
ima and maxima occur due to disorder and frustratio
When evaluating (4) from numerical data forPisqd some
care is needed to avoid contributions from statistical flu
tuations ofPisqd.

Graphically, our values for theBi are presented in
Fig. 1. It comes as a surprise that the finite-size dep
dence of the distributions is very weak. To study this i
sue further, we have compiled in Table II for each lattic
size the following information about our potential barrie
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FIG. 1. Canonical tunneling barrier distributions atb ­ 1.
(TheL ­ 12 barriers are relabeled to fill into the 1–512 range
The inset shows the two worstL ­ 6 realizations.
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TABLE II. Canonical potential barriers: maximum (and its contribution to the mean in %
second largest value, upper median confidence limit, median, lower median confidence
(upper and lower limit bound a 70% confidence interval), the mean, and its error bar.

L Bmax B2 B1
med Bmed B2

med B

4 6.56E06 (70%) 9.11E05 15.1 12.4 9.62 s1.84 6 1.30dE04
6 2.76E06 (74%) 1.44E05 12.3 11.1 10.1 s7.29 6 5.42dE03
8 1.97E08 (98%) 1.36E06 17.7 15.2 12.3 s3.91 6 3.85dE05

12 9.14E07 (100%) 1.96E03 35.3 12.9 10.7 s2.77 6 2.77dE06
re
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results: largest and second largest valuesBmax and B2,
median values and 70% confidence limits around tho
and mean valuesB with statistical error bars. From this
table it becomes obvious why this investigation cou
not be performed using canonical methods to which
this context multicanonical simulations and enlarged e
sembles also belong, as their weights for those barriers
still canonical. For these methods the slowing down is pr
portional to the average barrier heightB, which is already
large for L ­ 4, about18 3 103, and increases to abou
2.8 3 106 for L ­ 12. On L ­ 4 and L ­ 6 systems
we have performed a number of (very long) canon
cal simulations to estimate the proportionality consta
between barrier height and improvement due to our mu
q simulations. Using these results, we estimate that w
our computer program a canonical MC calculation of th
worst L ­ 12 barrier alone, the one reported in Table I
would take about 1000 years on a 500 MHz Alph
processor.

The reader may be puzzled by the very large error ba
assigned to the mean barrier values. Their explanat
is the following: The entire mean value is dominate
by the largest barrier, which contributes between 70
sL ­ 4d and, practically, 100%sL ­ 12d; see Bmax in
the second column of Table II. BesidesBmax, the second
largest valueB2 is listed in the third column. It may be
remarked that most of these worst case barriers exh
simple double-peak behavior. An exception isL ­ 6
where the distribution yieldingBmax has two double peaks.
To exhibit the difference, the inset of Fig. 1 depicts th
right-hand side of theL ­ 6 probability densitiesPisqd
with i ­ 459 corresponding to theBmax and i ­ 122 to
the B2 barrier. ForB2 the value of our barrier definition
(4) agrees with thePmaxyPmin value, whereas forBmax it is
by about a factor of 2 larger.

Typical configurations, described by the median resu
of Table II, have much smaller tunneling barriers. The
turn out to be quite insensitive to the lattice size; in fac
the valueBmed ­ 12.3 fits into the confidence interval
for all simulated lattice sizes. Presumably, there is som
increase ofBmed with lattice size, but to trace it we
would need to simulate more realizations. This result
an almost constant typical tunneling barrier is consiste
with the fact that our tunneling times are rather far apa
from their theoretical optimum: Still other reasons tha
overlap barriers have to be responsible. Therefore, o
may also question the apparently accepted opinion t
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ld
in
n-
are
o-

t

i-
nt
lti-
ith
e

I,
a

rs
ion
d
%

ibit

e

lts
y
t,

e

of
nt
rt
n
ne

hat

typical barriers are primarily responsible for the seve
slowing down of canonical MC simulations.

Our data allow canonical reweighting in ab range
which includes the critical temperaturebc ­ 0.88. By
analyzing the spin glass susceptibility,xSG ­ Nfkq2lgav ,
we obtain the best finite-size scaling fitxSG ~ Lgyn at
b ­ 0.88 with gyn ­ 2.37s4d and a goodness-of-fit pa-
rameterQ ­ 0.25. This is corroborated by the curves o
the Binder parameter,g ­ s1y2d s3 2 fkq4lgavyfkq2lg2

av d,
which merge aroundb ­ 0.89. In the low-temperature
phase (b . bc) the curves for different lattice sizes seem
to fall on top of each other, but our error bars are still to
large to draw a firm conclusion from this quantity.

In Fig. 2 we show that the averaged canonical probab
ity densitiesPsqd ­ fPisqdgav reweighted to the transition
temperatureTc satisfy the finite-size scaling relation

Psqd ­ LbynP̂sssLbynq, L1ynsT 2 Tcdddd , (5)

where P̂ is a scaling function, andb and n are the
critical exponents of the order parameter and correlat
length, respectively. They are related togyn ­ 2 2 h

by the standard scaling relationbyn ­ sD 2 gyndy2.
Using our estimate forgyn we thus obtain the value
byn ­ 0.317 which is employed in Fig. 2. These result
are consistent with the findings of Ref. [8] and could b
easily improved by redoing the simulations closer tobc,
possibly (using a parallel computer) with more realiz
tions. Narrowing theq range may allow one to simulate
lattices of sizeL ­ 16 and beyond.

FIG. 2. Scaling plot forPsqd at 1yT ­ 0.88 ø 1yTc.
4773
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FIG. 3. Scaling plot forPsqd at 1yT ­ 1.

The observation that the Binder parameter curves
not splay out at low temperatures suggests that, sim
to the 2DXY model, the correlation lengthj may be in-
finite—or at least larger than the simulated lattice siz
Generalizing the second argument ofP̂ to Lyj and as-
suming Lyj ­ 0, we would thus expect that thePsqd
should also scale belowTc. By adjusting the only free
parameter,byn ­ 0.270, we obtained at the simula
tion point T ­ 1 (­ 0.88Tc) the finite-size scaling plot
shown in Fig. 3. Moreover, if we reweight our data
the even lower temperaturesT ­ 1y1.1 (­ 0.80Tc) and
T ­ 1y1.2 (­ 0.73Tc) we still find a reasonable data co
lapse if we choosebyn ­ 0.230 and byn ­ 0.190, re-
spectively. Of course, since our lattice sizes are relativ
small, we cannot conclude that the correlation length
infinite belowTc. If j is large but finite, it is conceivable
that we observe aneffectivescaling behavior as long a
j . L. We may conclude that the correlation length
unusually large (j . 12) down to0.73Tc. However, the
slight discrepancy from scaling atq ­ 0 in Fig. 3 ought
also to be noted. The value ofPs0d . 0 turns out to
show almost no finite-size dependence, and the qualita
behavior ofPsqd is very similar to that in the 4D EAI
model [12]. If this behavior would persist asymptoticall
it would provide numerical evidence in favor of the Par
mean-field scenario being valid down to 3D. Note in th
context that the results of Ref. [13] are still disputed [14

Finally, we mention that our method is particularly we
suited to study the influence of an interaction term [1
e

PN
i­1 s1

i s2
i ­ eNq in the Hamiltonian (1): We obtain

expectation values for arbitrarye values. Physically mos
interesting is to combine a nonzero magnetic field with
nonzeroe value.

In conclusion, we have demonstrated the feasibi
of using q-dependent (multioverlap) weight factors. A
though the tunneling performance is not optimal, t
method opens new horizons for spin glass simulations.
this paper we succeeded, for the first time, to studyq bar-
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riers in some detail. Using parallel computers and sligh
modifications of our method (like narrowing theq range,
including a magnetic field, etc.) will allow us to extend
our investigation into various interesting directions, like
an improved study of the thermodynamic limit at and be
low the freezing point, ore physics.
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