VOLUME 80, NUMBER 21 PHYSICAL REVIEW LETTERS 25 My 1998

High-Temperature Series Analysis of 2D Random-Bond Ising Ferromagnets
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We analyze new high-temperature series expansions for the suscepjbiitythe two-dimensional
random-bond Ising ferromagnet with a symmetric bimodal distribution of two positive couplinassd
J,. By studying a wide range of coupling ratids/J; we obtain compelling evidence for a critical
behavior of the formy ~ ~7/4|In¢|"/3, as predicted theoretically by Shalaev, Shankar, and Ludwig.
[S0031-9007(98)06162-6]

PACS numbers: 64.60.Fr, 64.60.Ak, 75.10.Jm

The study of critical phenomena in real materials is of-nearest-neighbor interactions. The coupling constasnts
ten complicated by the influence of impurities and inho-are quenched, random variables which are drawn from a
mogeneities. Since this is the typical situation in mostbimodal distribution,
experiments, it is of great importance to develop a theo- N o B o
retical understanding of the role of these nonideal effects. PWyj) = x8(J;j = Ji) + (1 = x)8(J;; = 1), (2)
One important question is whether the critical propertiesf two positive couplings/; and J,. In the symmetric
of the considered system are robust against such randogase,x = 1/2, the critical temperaturg@. of the model
perturbations and, if not, by how much they are modi-is known exactly [2]. In the high-temperature phase the
fied. In many applications the dynamics of the impuri-magnetic susceptibility per site is defined as
ties is much slower than the dynamics of the other degrees v 2
of freedom. Then_one ma}‘y treat the“impuritigs as frozen y = lim Z o; v . 3)
disorder, i.e., consider the “quenched” approximation. An Vol \\i 5 T av
important guideline for the importance of quenched, ran. e (- denotes the usual thermal average with

dom dlsord_er is the Harris criterion [1_]_Wh|ch states thatrespect to exp- H /ksT), and the bracke - -J,, denotes
a perturbation is relevant when the critical exponerdaf .
the average over the quenched, random disorder.

the specific heat of the pure system is positive. In this case : X o
. . X o : There are two competing theoretical predictions. Based
the critical properties will be modified by the influence of o .
on renormalization-group techniques, Dotsenko and Dot-

guenched disorder. Pure systems with a negativen > " ;
the other hand, are not expected to change their critical bes_enko (DD) [3] predicted a critical behavior of the form

havior in the presence of quenched disorder. The marginal _ 1\)\?
case isx = 0, where the Harris criterion cannot make any X ~ 1 TeX _“<|”|”<_>> . (4)
prediction.

The paradigm of this marginal situation is the two-wheret = (T — T.)/T. = 0 denotes the reduced tem-
dimensional Ising model subject to quenched, randonferature, and is a constant which depends on the strength
bond-disorder [2]. Because of its relative simplicity andof the disorder. A few years later this prediction was
the fact thata = 0 in the pure case is known exactly, questioned by Shalaev, Shankar, and Ludwig (SSL) [4—
this model has been the subject of many theoretical invesZ] who used bosonization techniques and the method of
tigations [3—7], numerical Monte Carlo simulations [8— conformal invariance to derive quite a different behavior,
13], and transfer matrix studies [14,15]. Despite all these x ~ 4 In |78, (5)
efforts, however, theoretical controversies about the criti-
cal behavior of the susceptibility could never really be re-This is the same leading singularity as in the pure case, but
solved. This motivated us to study this problem yet agairmodified by a multiplicative logarithmic correction.
using an independent approach, namely high-temperature Most high-precision Monte Carlo simulations and trans-

series expansions. fer matrix studies [8—14] favor the latter form, but could
The random-bond Ising ferromagnet is defined by theot confirm the multiplicative logarithmic correction in
Hamiltonian: (5) quantitatively. Therefore, we found it worthwhile to

investigate this problem once again with the independent

H = - zlijaiaj, (1)  method of high-temperature series expansions. To derive

(ij) the series expansions of the susceptibility (3) up to the

where the spinsr; = =1 are located at the sites of a 11th order ink = 2J;/kgT we adapted an algebraic
square lattice of size/ and the symbol(ij) denotes computer program package developed originally for the
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d-dimensional ¢-state Potts spin-glass model (wherewhich satisfies lim.. G(z) = p. If z. is known, the
Jij = *£J) [16-19]. Even though spin-glass and value ofG(z) atz. can be obtained by computing standard
random-bond systems are physically very differentPadé approximants 6(z),

[20], precisely the same enumeration scheme for the
high-temperature graphs can be employed. The onhG(z) = [L/M] = = m
difference is in the last step where the quenched averages Ou(@) 1+ aqz+ -+ quz
over theJ;; are performed. The details of the star-graph (11)

expansion technique and our specific implementatiof nare; + 17 = N — 1. We therefore call this method
are described elsewhere [16-19,21]. In this Letter wej,_pgqg '

shall concentrate on the susceptibility series for the two- o+ first step was to investigate whether the suscepti-

dimensional 4 N 2) Landom—_bond Ising ,mo‘?'e'q(= 2) bility series are consistent with a pure power-law behavior
with a symmetric £ = 1/2) bimodal distribution of two  5ccording to the DD prediction (4) (ignoring the exponen-
positive coupling strength and/; (the implementation,  (i5)y small multiplicative correction term). Assuming thus

however, is completely general). _ the behaviory ~ ¢~ and using the biased ratio | method
For the analys_ls of the series we emp!oyed two different, optained the critical exponenis shown in Fig. 1 as
me_thods. The flr_st is based on the rano_ method [22'23]a function of J,/J,. Here and in the following the er-
which for a generic thermodynamic function ror bars are estimated by varying the length of the series
and/or the type of Padé approximants used. Starting with

P(z) _ potpizt -+ przt

— no__ _ —A .
F(z) = Z anz (1 - z/z) (6) vy = 1.738 + 0.014 for the pure case/(/J, = 1), being
n=0 . .
] ] consistent with the exact value ¢f = 7/4, we observe a
amounts to computing the ratios steady increase tg = 2.37 = 0.11 for the strongest in-
_ay, A—171 vestigated disorder/{/J; = 10). We will argue below
'n = a1 - [1 + n }Z (") that the apparent crossover from weak to strong disorder

and extracting the critical point, and the critical expo is mainly due to the finite length of our series expansion

9 p ) P which naturally has a much more dramatic influence for

nent A from the offset and slope of this sequence as a . .

; . " . . weak disorder. At any rate, for strong disorder the DD
function of 1/n, respectively. If the critical point. is ;o . , .

prediction ofy = 2 is clearly outside the error margins of

known from other sources (in our case exactly from self . ; .
the series analysis estimates.

gﬁ?gz)’ggegnc;ﬁ Tay:consme_r b'aie? e\)/(vtm:phmz?r;s Torthe So far no multiplicative logarithmic corrections were
p yAp = RrpZe — n ’ PY  taken into account. If the SSL prediction (5) was correct

:ﬁ!(t)r\:\(l) db\)//villriir:jaenr%?g d Eg.trg)‘.‘bi;ge:jh?atrgl:q’w ing this we would, therefore, expect to observe “effective” critical
) exponents which according to

If the singularity of F(z) contains a multiplicative —(7/4)[1+ 1 naina
logarithmic correction [as, e.g., in the SSL prediction (5)], x ~ t HIne|"? ~ ¢ 2 Tnajn

F(z) ~ (1 = z/zo) " *MIn(1 = z/z0)I7, (8)

then one forms the ratios, as before, but considers in 2.6
addition the auxiliary function [24]

SRR TR D W ...,(9) 2al W}Wﬁ%

and computes the ratio§ = b,/b,—1. If A is known, it 221 %ﬁ%

can be shown that the sequerRg = r,/r, approaches > %ﬁ%

1/z. with zero slope in the limits — o, if and only if ¢

p* = p. This determineg, if also z. is known. IfA is

not known, then one may vary both exponents until the

above relation is satisfied. In the following, we refer to 18 b P

this special ratio method as the “In-ratio.” 537
The second method [25,26] suitable for a singularity of

the form (8) is based on Padé approximants [27]. Here ¢ oy

one constructs the auxiliary function c 1 2 3 4 5 6 v 8 9 10 1

Fo 4 )
F(z) z.—z/)

(12)

FIG. 1. Analysis of the susceptibility series assuming a
singularity of the form y ~ 77, using the biased ratio |
(10)  method.

G(z) = —(zc — 2)In(z, — z)(
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should indeed be larger thaty4. The results in Fig. 1 in turn translates into the need of extremely long series
could thus be well consistent with a critical exponent ofexpansions in order to be detectable.
v = 7/4 in the presence of a multiplicative logarithmic  To justify this claim we have investigated a model

correction. function simulating the “true” susceptibility = 0),
This possibility suggested a more careful analysis based 4 7/8
on the qualitative form of the SSL prediction (5). Our Xmodel = i‘”“[l + 280 In(l/i)} , (14)
v

series are too short to employ a general ansatz with
both exponents as free parameters. We rather fixed thgith 1 = (T — T.)/T, which for anyg, # 0 reproduces
exponent of the leading term to the (predicted) pure Isinghe SSL form (5) in the limitr’ — T, (t = r — 0). No-
model value and enquired if our series expansions artice the discontinuity in the asymptotic behaviogat= 0.
compatible with the ansatz For weak disordep is very small and hence the asymp-
~ i) (13) totic region inz is extremely narrow. By using the weak
X ’ disorder results the parametgs can be related at least
and p = 7/8. Employing the two special methods for heuristically to the ratiao/,/J;. A typical value isgy =
this type of singularity described above we obtained).013 for J,/J; = 1.2. This shows that for weak disorder
well converging results. The resulting estimates for thehe asymptotic region is bounded by exp(— 7 /4g¢) =
exponentp are shown in Fig. 2. We see that the twoexp(—1/0.017) = 1072, When the model series was
methods yield consistent results which start in the puréruncated at a low order we observed precisely the same
case {»/J, = 1) aroundp = 0, as they should do. With crossover effect as for the “true” series. Based on this
increasing disorder the estimates exhibit again an apparemntodel function we are sure, however, that this must be
crossover, until around,/J;, = 5 — 8 they settle at a an artifact of the truncation of the model series at a finite
plateau value in very good agreement with the theoreticabrder.
prediction of p = 7/8. This is the main result of our = To summarize the above results: we have obtained, di-
series analysis which for the first time yields a clearrectly for strong disorder (largé,/J;) and by argument
quantitative confirmation of the SSL prediction (5). from comparison with model series for weaker disorder,
As before, we attribute the apparent crossover focompelling evidence that the singularity of the suscep-
intermediate strength of the disorder to the shortness dfbility is properly described byy ~ r~7/#|In¢|?, with
our series expansions, i.e., we interpret the crossover as agn= 7/8 = 0.875, as theoretically predicted by SSL [4—
unavoidable artifact of high-temperature series expansiol]. The analysis of the model susceptibility (14) clearly
analyses and not as an indication that the exponent showed that the apparent variation ofwith the strength
really is a function of the disorder strength. We thus takeof disorder is an artifact caused by the truncation of the
the view that already a small amount of disorder drivesseries expansions at a finite order. We emphasize that the
the system into a new universality class different from theapparent crossover from weak to strong disorder chmes
pure case which, however, only becomes visible in themply that the universality class of the random-bond Ising
close vicinity of the transition poinf,. (or t = 0). This  model changes continuously with the strength of disorder.
We suspect that a similar artifact occurs in the finite-size
scaling analysis of a related problem [28] and that their
change ofy is also spurious. Our measurement centered
onp = 0.875 over the rangé = J,/J; = 10 is most un-
likely to be coincidental and hence validates both SSL and

09 ¢ ] %T 7 } 10875 fixed y decisively.
% T % ﬁmﬁﬁ ﬁ Our confirmation of the SSL exponents is direct, quan-
o7t ¢ titative, and conclusive, and we conclude this Letter with
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%% a discussion of why the nature of the series method en-
| ables it to be so much stronger than that of previous
¥ o Ln-Pade Monte Carlo simulations of this model. The first reason

03 r ;ﬁ * Ln-Ratio | for ambivalence from simulation results occurred in the

£ finite-size scaling analyses of Refs. [8—11,13,14], where
olr = 1 it is conceptually impossible to detect the multiplicative
logarithmic correction of the SSL prediction (5). The

o 1 2 3 4 5 6 7 8 9 10 u reason is that the SSL theory also predicts a logarith-
3,19, mic correction for the scaling behavior of the correlation

FIG. 2. Analysis of the susceptibility series assuming a sin-length’ &~ 1 lllntll/.z' In the finite-size scaling be—.

gularity of the form y ~ ¢~ 7[in#|?, using Padé approxi- havior the two logarithms cancel and one ends up with

mants and the ratio method (see text). The horizontal line a@ Pure power-law,y ~ LY/* = L7/4 where L is the
p = 7/8 = 0.875 is the theoretical prediction of SSL. linear lattice size. Thusonly the SSL prediction for
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