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We analyze new high-temperature series expansions for the susceptibilityx of the two-dimensional
random-bond Ising ferromagnet with a symmetric bimodal distribution of two positive couplingsJ1 and
J2. By studying a wide range of coupling ratiosJ2yJ1 we obtain compelling evidence for a critica
behavior of the formx , t27y4jln tj7y8, as predicted theoretically by Shalaev, Shankar, and Ludw
[S0031-9007(98)06162-6]
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The study of critical phenomena in real materials is o
ten complicated by the influence of impurities and inho
mogeneities. Since this is the typical situation in mo
experiments, it is of great importance to develop a the
retical understanding of the role of these nonideal effec
One important question is whether the critical propertie
of the considered system are robust against such rand
perturbations and, if not, by how much they are mod
fied. In many applications the dynamics of the impur
ties is much slower than the dynamics of the other degre
of freedom. Then one may treat the impurities as froze
disorder, i.e., consider the “quenched” approximation. A
important guideline for the importance of quenched, ra
dom disorder is the Harris criterion [1] which states tha
a perturbation is relevant when the critical exponenta of
the specific heat of the pure system is positive. In this ca
the critical properties will be modified by the influence o
quenched disorder. Pure systems with a negativea, on
the other hand, are not expected to change their critical b
havior in the presence of quenched disorder. The margi
case isa ­ 0, where the Harris criterion cannot make an
prediction.

The paradigm of this marginal situation is the two
dimensional Ising model subject to quenched, rando
bond-disorder [2]. Because of its relative simplicity an
the fact thata ­ 0 in the pure case is known exactly
this model has been the subject of many theoretical inve
tigations [3–7], numerical Monte Carlo simulations [8–
13], and transfer matrix studies [14,15]. Despite all the
efforts, however, theoretical controversies about the cri
cal behavior of the susceptibility could never really be re
solved. This motivated us to study this problem yet aga
using an independent approach, namely high-temperat
series expansions.

The random-bond Ising ferromagnet is defined by th
Hamiltonian:

H ­ 2
X
kijl

Jijsisj , (1)

where the spinssi ­ 61 are located at the sites of a
square lattice of sizeV and the symbolkijl denotes
0031-9007y98y80(21)y4697(4)$15.00
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nearest-neighbor interactions. The coupling constantsJij

are quenched, random variables which are drawn from
bimodal distribution,

PsJijd ­ xdsJij 2 J1d 1 s1 2 xddsJij 2 J2d , (2)

of two positive couplingsJ1 and J2. In the symmetric
case,x ­ 1y2, the critical temperatureTc of the model
is known exactly [2]. In the high-temperature phase th
magnetic susceptibility per site is defined as

x ­ lim
V!`

"*√
VX

i­1

si

!2+
T

,
V

#
av

, (3)

where k· · ·lT denotes the usual thermal average wit
respect to exps2H ykBT d, and the bracketf· · ·gav denotes
the average over the quenched, random disorder.

There are two competing theoretical predictions. Base
on renormalization-group techniques, Dotsenko and Do
senko (DD) [3] predicted a critical behavior of the form

x , t22 exp

"
2a

µ
ln ln

µ
1
t

∂∂2
#

, (4)

where t ­ sT 2 TcdyTc $ 0 denotes the reduced tem-
perature, anda is a constant which depends on the streng
of the disorder. A few years later this prediction wa
questioned by Shalaev, Shankar, and Ludwig (SSL) [4
7] who used bosonization techniques and the method
conformal invariance to derive quite a different behavior

x , t27y4jln tj7y8. (5)

This is the same leading singularity as in the pure case, b
modified by a multiplicative logarithmic correction.

Most high-precision Monte Carlo simulations and trans
fer matrix studies [8–14] favor the latter form, but could
not confirm the multiplicative logarithmic correction in
(5) quantitatively. Therefore, we found it worthwhile to
investigate this problem once again with the independe
method of high-temperature series expansions. To der
the series expansions of the susceptibility (3) up to th
11th order in k ­ 2J1ykBT we adapted an algebraic
computer program package developed originally for th
© 1998 The American Physical Society 4697
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d-dimensional q-state Potts spin-glass model (wher
Jij ­ 6J) [16–19]. Even though spin-glass an
random-bond systems are physically very differe
[20], precisely the same enumeration scheme for t
high-temperature graphs can be employed. The o
difference is in the last step where the quenched avera
over theJij are performed. The details of the star-grap
expansion technique and our specific implementati
are described elsewhere [16–19,21]. In this Letter w
shall concentrate on the susceptibility series for the tw
dimensional (d ­ 2) random-bond Ising model (q ­ 2)
with a symmetric (x ­ 1y2) bimodal distribution of two
positive coupling strengthsJ1 andJ2 (the implementation,
however, is completely general).

For the analysis of the series we employed two differe
methods. The first is based on the ratio method [22,2
which for a generic thermodynamic function

Fszd ­
X
n­0

anzn , s1 2 zyzcd2l (6)

amounts to computing the ratios

rn ;
an

an21
,

∑
1 1

l 2 1
n

∏
1
zc

, (7)

and extracting the critical pointzc and the critical expo-
nent l from the offset and slope of this sequence as
function of 1yn, respectively. If the critical pointzc is
known from other sources (in our case exactly from se
duality), then one may consider biased extrapolants for
critical exponent,ln ­ nrnzc 2 n 1 1, which simply
follow by rearranging Eq. (7). In the following this
method will be denoted as the “biased ratio I.”

If the singularity of Fszd contains a multiplicative
logarithmic correction [as, e.g., in the SSL prediction (5)

Fszd , s1 2 zyzcd2ljlns1 2 zyzcdjp , (8)

then one forms the ratiosrn as before, but considers in
addition the auxiliary function [24]

z2pp

s1 2 zd2lhlnf1ys1 2 zdgjpp

­
NX

n­0

bnzn 1 . . . ,

(9)

and computes the ratiosrp
n ; bnybn21. If l is known, it

can be shown that the sequenceRn ; rnyrp
n approaches

1yzc with zero slope in the limitn ! `, if and only if
pp ­ p. This determinesp, if also zc is known. If l is
not known, then one may vary both exponents until th
above relation is satisfied. In the following, we refer t
this special ratio method as the “ln-ratio.”

The second method [25,26] suitable for a singularity
the form (8) is based on Padé approximants [27]. He
one constructs the auxiliary function

Gszd ­ 2szc 2 zd lnszc 2 zd
µ

F0szd
Fszd

2
l

zc 2 z

∂
,

(10)
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which satisfies limz!zc Gszd ­ p. If zc is known, the
value ofGszd at zc can be obtained by computing standa
Padé approximants toGszd,

Gszd ø fLyMg ;
PLszd
QM szd

;
p0 1 p1z 1 · · · 1 pLzL

1 1 q1z 1 · · · 1 qMzM ,

(11)

whereL 1 M # N 2 1. We therefore call this method
“ln-Padé.”

Our first step was to investigate whether the suscep
bility series are consistent with a pure power-law behav
according to the DD prediction (4) (ignoring the expone
tially small multiplicative correction term). Assuming thu
the behaviorx , t2g and using the biased ratio I metho
we obtained the critical exponentsg shown in Fig. 1 as
a function of J2yJ1. Here and in the following the er-
ror bars are estimated by varying the length of the ser
and/or the type of Padé approximants used. Starting w
g ­ 1.738 6 0.014 for the pure case (J2yJ1 ­ 1), being
consistent with the exact value ofg ­ 7y4, we observe a
steady increase tog ­ 2.37 6 0.11 for the strongest in-
vestigated disorder (J2yJ1 ­ 10). We will argue below
that the apparent crossover from weak to strong disor
is mainly due to the finite length of our series expansi
which naturally has a much more dramatic influence f
weak disorder. At any rate, for strong disorder the D
prediction ofg ­ 2 is clearly outside the error margins o
the series analysis estimates.

So far no multiplicative logarithmic corrections wer
taken into account. If the SSL prediction (5) was corre
we would, therefore, expect to observe “effective” critic
exponents which according to

x , t27y4jln tj7y8 , t
2s7y4d f11 1

2

lnsj ln tjd
lns1ytd

g
(12)
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J2 / J1
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FIG. 1. Analysis of the susceptibility series assuming
singularity of the form x , t2g , using the biased ratio I
method.
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should indeed be larger than7y4. The results in Fig. 1
could thus be well consistent with a critical exponent o
g ­ 7y4 in the presence of a multiplicative logarithmic
correction.

This possibility suggested a more careful analysis bas
on the qualitative form of the SSL prediction (5). Ou
series are too short to employ a general ansatz w
both exponents as free parameters. We rather fixed
exponent of the leading term to the (predicted) pure Isi
model value and enquired if our series expansions a
compatible with the ansatz

x , t27y4jln tjp , (13)

and p ­ 7y8. Employing the two special methods fo
this type of singularity described above we obtaine
well converging results. The resulting estimates for th
exponentp are shown in Fig. 2. We see that the tw
methods yield consistent results which start in the pu
case (J2yJ1 ­ 1) aroundp ­ 0, as they should do. With
increasing disorder the estimates exhibit again an appar
crossover, until aroundJ2yJ1 ­ 5 2 8 they settle at a
plateau value in very good agreement with the theoretic
prediction of p ­ 7y8. This is the main result of our
series analysis which for the first time yields a clea
quantitative confirmation of the SSL prediction (5).

As before, we attribute the apparent crossover f
intermediate strength of the disorder to the shortness
our series expansions, i.e., we interpret the crossover a
unavoidable artifact of high-temperature series expans
analyses and not as an indication that the exponentp
really is a function of the disorder strength. We thus ta
the view that already a small amount of disorder drive
the system into a new universality class different from th
pure case which, however, only becomes visible in t
close vicinity of the transition pointTc (or t ­ 0). This

0 1 2 3 4 5 6 7 8 9 10 11
J2 / J1

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

p

 Ln-Pade
 Ln-Ratio

0.875

FIG. 2. Analysis of the susceptibility series assuming a si
gularity of the form x , t27y4jln tjp , using Padé approxi-
mants and the ratio method (see text). The horizontal line
p ­ 7y8 ­ 0.875 is the theoretical prediction of SSL.
f

ed
r
ith
the
g
re

d
e

re

ent

al

r

or
of
an

on

e
s
e
e

n-

at

in turn translates into the need of extremely long serie
expansions in order to be detectable.

To justify this claim we have investigated a mode
function simulating the “true” susceptibility (g0 $ 0),

xmodel ­ Ùt27y4

∑
1 1

4g0

p
lns1yÙtd

∏7y8

, (14)

with Ùt ­ sT 2 TcdyT , which for anyg0 fi 0 reproduces
the SSL form (5) in the limitT ! Tc (Ùt ø t ! 0). No-
tice the discontinuity in the asymptotic behavior atg0 ­ 0.
For weak disorderg0 is very small and hence the asymp
totic region int is extremely narrow. By using the weak
disorder results the parameterg0 can be related at least
heuristically to the ratioJ2yJ1. A typical value isg0 ­
0.013 for J2yJ1 ­ 1.2. This shows that for weak disorder
the asymptotic region is bounded byt ø exps2py4g0d ø
exps21y0.017d ø 10226. When the model series was
truncated at a low order we observed precisely the sam
crossover effect as for the “true” series. Based on th
model function we are sure, however, that this must b
an artifact of the truncation of the model series at a fini
order.

To summarize the above results: we have obtained,
rectly for strong disorder (largeJ2yJ1) and by argument
from comparison with model series for weaker disorde
compelling evidence that the singularity of the susce
tibility is properly described byx , t27y4jln tjp , with
p ­ 7y8 ­ 0.875, as theoretically predicted by SSL [4–
7]. The analysis of the model susceptibility (14) clearl
showed that the apparent variation ofp with the strength
of disorder is an artifact caused by the truncation of th
series expansions at a finite order. We emphasize that
apparent crossover from weak to strong disorder doesnot
imply that the universality class of the random-bond Isin
model changes continuously with the strength of disorde
We suspect that a similar artifact occurs in the finite-siz
scaling analysis of a related problem [28] and that the
change ofg is also spurious. Our measurement centere
on p ­ 0.875 over the range5 # J2yJ1 # 10 is most un-
likely to be coincidental and hence validates both SSL an
fixed g decisively.

Our confirmation of the SSL exponents is direct, quan
titative, and conclusive, and we conclude this Letter wit
a discussion of why the nature of the series method e
ables it to be so much stronger than that of previou
Monte Carlo simulations of this model. The first reaso
for ambivalence from simulation results occurred in th
finite-size scaling analyses of Refs. [8–11,13,14], whe
it is conceptually impossible to detect the multiplicative
logarithmic correction of the SSL prediction (5). The
reason is that the SSL theory also predicts a logarit
mic correction for the scaling behavior of the correlatio
length, j , t21jln tj1y2. In the finite-size scaling be-
havior the two logarithms cancel and one ends up wi
a pure power-law,x , Lgyn ­ L7y4, where L is the
linear lattice size. Thusonly the SSL prediction for
4699
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gyn can be tested in finite-size scaling analyses. Wa
et al. [9,10] obtained forJ2yJ1 ­ 4 and 10 an estimate
of gyn ­ 1.7507 6 0.0014, and also the results of Reis
et al. [14] at J2yJ1 ­ 2, 4, and 10 are consistent with
1.75. While among the two alternatives, the theories
DD and SSL, this may be interpreted as an evidence
favor of SSL, a numerical estimate ofgyn ø 1.75 would
also be expected for thepure Ising model and is there-
fore not really conclusive. To overcome this limitatio
Talapov and Shchur [12] simulated the temperature d
pendence ofx for J2yJ1 ­ 4 directly. From least-squares
fits to a power lawx , t2g, they obtained an effective
exponent g ø 7y4 1 0.135 ­ 1.885. Notice that this
value is quite close to our series estimate ofg ­ 2.019 6

0.024 for J2yJ1 ­ 4, if the pure power-law ansatz is use
(cp. Fig. 1). Even though this points in the right directio
if the SSL prediction is correct, it is only a measureme
at a singleJ2yJ1 value, thus it is still fair to conclude that
also this simulation has not unambiguously identified th
multiplicative logarithmic correction term.

With series expansions there is no problem scanni
many parameter choices. Series expansions are clo
expressions in several parameters (such as the dim
sion d, x, J2yJ1, . . .) up to a certain order in the inverse
temperature1ykBT . Here the infinite-volume limit is al-
ways implied and the quenched, random disorder can
treated exactly. There are no problems with either sam
equilibration or random number choice. Scanning is s
verely limited in Monte Carlo simulations of systems wit
quenched, random disorder which require an enormo
amount of computing time because many realizations
the disorder have to be simulated for the quenched a
erage. It is this scanning which enabled us to find t
plateau in Fig. 2. Locating this plateau, combined wi
the possibility of measuringg directly, led to our conclu-
sive results. (Another example of the power of the sca
ning combined with direct exponent measurement with
the series method was provided by [29] where confirm
tion of two-exponent scaling for the random-field Isin
model was found.)

We would suggest that independent confirmation fro
simulations could now be obtained by carrying ou
further calculations of the Talapov and Shchur type
two different J2yJ1 values that are well in the plateau
of Fig. 2. A longer manuscript, with details of the
generation of the series and an analysis of series for
specific heat is in preparation. Our preliminary specifi
heat analyses support the above picture.
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