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Multibondic Cluster Algorithm for Monte Carlo Simulations of First-Order Phase Transitions
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Inspired by the multicanonical approach to simulations of first-order phase transitions we propose
for g-state Potts models a combination of cluster updates with reweighting of the bond configurations

in the Fortuin-Kastelein-Swendsen-Wang representation of this model.

dimensional models with ¢ =

Numerical tests for the two-

7, 10, and 20 show that the autocorrelation times of this algorithm grow

with the system size V as 7 « V#, where the exponent takes the optimal random walk value of a =~ 1.
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Conventional Monte Carlo simulations of phase transi-

tions suffer from strong correlations between successive

configurations. itions the re
son for the slowing down can be traced back to the leCI‘—
gence of spatial correlations at criticality. At first-order
phase transitions one encounters a different and even

worse type of slowing down problem which is caused_»

by exponentially small tunneling rates between coexist-
ing phases separated by high energy barriers [1]. Since
the inverse rate is proportional to the autocorrelation time
7 of the Monte Carlo process, thus being a measure for
the average time between tunnelings, this implies for a
D-dimensional system of size V = LP an exponentially
fast growth of 7 « exp(cLP~!) with increasing system
size [2]. To overcome this problem Berg and Neuhaus
[3] have recently introduced multicanonical simulations
which are based on reweighting ideas and can, in prin-
ciple, be combined with any legitimate update algorithm.
Using local update algorithms (Metropolis or heat-bath)
it has been demonstrated in several applications [4] that
the growth of autocorrelation times with system size is re-
duced to a power law, 7 « V® with @« = 1. For the two-
dimensional g-state Potts model values of & = 1.3 have
been reported for ¢ = 7 [5] and ¢ =10 [6].

Since by construction the multicanonical energy distri-
bution is constant over the interesting energy range, in-
voking a random walk argument, one would expect an ex-
ponent & = 1 for an optimally designed update algorithm.
Promising candidates are nonlocal cluster algorithms [7,8]
which proved very successful at continuous phase transi-
tions. A direct implementation, however, turned out to
be difficult because the multicanonical energy is effec-
tively long ranged. The purpose of this Letter is to present
for Potts models a variant of the multicanonical approach
which does take advantage of cluster updates and turns
out to be optimal in the above sense. Basically the idea is
to treat the cluster flips in the first place and to reweight
the bond degrees of freedom instead of the energy.

The basis of cluster update algorithms is the equiva-
lence of the Potts model

Zpotts = Ze—ﬂE, E =_,_ Zéa;crj, o,=1,...q,

{o} - D

(D
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For continuous phase transitions the rea-

with the Fortuin-Kastelein (FK) and random cluster (RC)

representations [9],

- ZPotts = ZFK = Zrc, (V)]
where
Zpx = Z Z I—[[paf’iojabi,‘,l + 5bij,0]’ (3)
{0',-} {bij} [
Zpc = Z pZ(ij) biqur({bij}), (4)
{bi}
with p = exp(B) — 1. Here b;; = 0 or 1 are bond occu-

pation numbers and N.({b;;}) denotes the number of con-
nected clusters (including one-site clusters.) According to
(3) a Swendsen-Wang cluster update sweep then consists
of (1) setting b;; = 0 if o; # o, or assigning values 0
and 1 with relative probability 1: p if o; = o7, (2) iden-
tifying clusters of spins that are connected by “active”
bonds (b;j = 1), and (3) choosing a new random value
1,...,q independently for each cluster.

By differentiating In Z with respect to B it is easy to
see that the average of the energy E = — D ;5 85,0, Can
be expressed in terms of the average of the number of

active bonds B = X ;;, by,
dlnZ p+1
25 = —® )
and for the specific heat per site C one finds
cv HE) p+1
= -l = B
B? B p? &
+ 1
+ (” p ) (B ~(BY). ©)

Equation (5) suggests that the bond histogram P,(B)
should develop for B = B, = 68 a pronounced peak
around B,; = —[p/(p + )]JE,4 and for B~ B, a

“double-peak structure similar to P,(E). In fact, as is

illustrated in Fig. 1 for g = 7 and L = 60, a plot of P, vs
[(p + 1)/p]B is hardly distinguishable from P,(E). For

__other values of ¢ and L the comparison looks very

similar.
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FIG. 1. Canonical energy and bond histograms for g =7,
L =60, and B = 1.292283. The bond histogram is plotted vs

[(p + 1)/p]B, where p = exp(B) — 1.

In terms of P, the slowing down of canonical simula-
tions is thus caused by the strongly suppressed configura-
tions near the minimum between the two peaks, analogous
to the well known argument for P,. To enhance these
probabilities we therefore introduce in analogy to multi-
canonical simulations a “multibondic” partition function

Zosto = 2. 2. [ 11P80ia, 86,1 + 6b,~,,0]exp[_fb(3)];
{oi} by} G %)

where f,(B) = In P,(B) between the two peaks and
f»(B) = 0 otherwise. Of course, as in multicanonical
simulations, any reasonable approximation of P,(B) can
be used in practice. Canonical expectation values can
always be recovered exactly by applying the inverse of
the reweighting factor exp[—f5(B)].

Obviously, once the b;; are given, we can update the
o; exactly as in the original Swendsen-Wang cluster
algorithm. To update the b;; we proceed as follows.
If o; # o; then the bond b;; is never active, and we
always set b;; = 0. If o; =0, then we define B' =
B — b;; and choose new values b;; = 0 or 1 with proba-
bilities P(b;; = 0) = N exp[—f»(B')] and P(b;; = 1) =
N pexp[—fp(B' + 1)], where N = 1/{exp[—f»(B")] +
pexpl—fp(B' + 1)]} is a trivial normalization factor.
Since this is nothing but a local heat-bath algorithm for
the b;;, the whole procedure is obviously a valid update
algorithm. )

To evaluate the performance of the multibondic (mubo)
cluster algorithm we performed simulations of the Potts
model (1) in two dimensions with ¢ = 7, 10, and 20.
The investigated lattice sizes and simulation temperatures
are compiled in Table I. For comparison we run standard
multicanonical (muca) simulations using the heat-bath up-
date algorithm with the same parameters. In each run
we recorded N = 100000 measurements of E, B, and two
definitions of the magnetization in a time-series file. (The
only exception is the multicanonical simulation for ¢ = 7,

TABLE I. Simulation parameters: o is the inverse simula-
tion temperature, Mo and Mp,p, denote the number of lattice
sweeps between measurements, and |Elyinmax and Bpinmex are
the cuts used in the definition of the autocorrelation time 7P,

q L 'BO Mmuca [Elmin ]Elmax Mmubo Bmin Bmax
20 1.284690 10 426 644 10 310 462
7 40 1.291050 50 1801 2542 30 1310 1840
60 1292283 100 4139 5675 70 3003 4118

100 1.293089 100 11692 15672 100 8476 11367

12 1.407 380 10 120 247 20 91 186
16 1.415340 20 222 439 40 166 326

- 10 20 1.418864 30 353 676 60 270 512

26 1421642 70 614
34 1423380 200 1065 1938 400 813 1474
50 1.424752 200 2349 4185 400 1797 3182

4 1.577747 5 6 32 10 5 24

6 1.639809 6 17 72 12 14 56

8 1.665033 12 33 124 25 28 96

10 1.676 647 17 56 192 35 45 151

20 12 1.683517 32 79 280 65 66 215
14 1.688 195 67 112 357 135 92 295

16 1.690278 87 154 470 175 122 384

18 1.692013 125 194 593 250 155 485

20 1.693698 175 231 728 350 201 595

1137 140 467 867

‘L = 100 with N = 30000.) Between the measurements
- we performed M lattice sweeps, with M adjusted in such

a way that the autocorrelation times in units of measure-
ments and thus the effective statistics of practically uncor-
related data was roughly the same in all simulations.

To make sure that the new multibondic algorithm
was implemented correctly, we have analyzed some
of the usually considered canonical quantities such as
the specific heat C and the Binder parameter V =1 —
(E%/3(E%2. In Table I we compare results for the
specific-heat maximum and Binder-parameter minimum
for ¢ = 10 obtained from our multicanonical and multi-
bondic simulations. The error bars are estimated by the
jackknife method [10]. The data are in good agreement
with each other and also with results from independent
canonical Metropolis [11] or single-cluster [12] high-
statistics simulations. ]

As discussed in Refs. [13,14] in the context of a
multicanonical multigrid implementation, it is not com-
pletely obvious which definition of the autocorrelation
time should be used to characterize the dynamics of mul-
ticanonical or multibondic simulations. One could, e.g.,
analyze the (multicanonical or multibondic) autocorre-
lation function of E, Eexp[f.(E)], B, or Bexp[fs(B)],
where f.(E) is the multicanonical analog of f,(B). More
relevant from a practical point of view is the effec-
tive autocorrelation time [13,14] for canonical observ-
ables which can be defined from the ratio of proper and
naive error estimates (€/enaiy = v27°f). The third pos-
sibility, which allows a direct comparison with previous
work, is to define flipping (or more properly diffusion)

213
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TABLE II. Two-dimensional 10-state Potts model: Comparisonwof results for speciﬁc-heat maxima and Binder-parameter minima
from multicanonical (muca) and multibondic (mubo) simulations.

L alg. BC;u ) CmmL . BV 7 Vanin

12 muca 1.40621(28) 4489(18) 1.392 56(29) 0.50379(75)
12 mubo 1.407 33(29) | 44.92(18) 1.39373(29) 0.50521(79)
16 muca 1.41480(17) 73.68(25) 1.40757(17) 0.52503(53)
16 mubo 1.41451(15) 73.87(27) 1.407 29(15) 0.52447(61)
20 muca 1.41837(11) 109.92(32) 1.41392(11) 0.53541(44)
20 mubo 1.418 602(95) 109.33(33) i 1.414 150097) 0.53649(44)
26 muca 1.421325(71) 177.61(44) 1.418786(72) 0.54451(34)
26 mubo 1.421 506(54) 177.91(43) 1.418 969(54) 0.544 53(34)
34 muca 1.423313(36) 7296.13(52) 1.421 873(36) 0.55001(24)
34 mubo 1.423 _,3,L2(26) } . 297j 14(_50_) S 1421 872(26) 0.54941(23)
50 muca "1.424 801(28) 627.79(97) 1.424 155(34) 0.55437(21)
50 mubo 1.424834(21)  _ . 621.6(1.1) 0.55439(22)

.1.424 188(21)

) i ) L e .
times 47z © by counting the number of update sweeps  multicanonical simulations [S] and also Rummukainen’s

that are needed to travel from E < Enin t0 E > Epax
and back. Here Epjnmax (OF Byinmax fOr 75 p) are cuts
which are usually chosen as the peak locations E, 4(L)
of the canonical probability distribution. Alternatively,
one could also use the infinite volume limits E,4 of
E,q4(L) for all lattice sizes. For 2D Potts models this
is straightforward since E,4 are known exactly. In our
simulations we have tested if E (or B) has passed the cuts
after each sweep. We observed significantly larger 71iP
when performing this test only every Mth sweeps, since
then any cut crossings during the M — 1 sweeps between
the measurements cannot be detected. )

Our results for TS“’ obtained in multicanonical and
multibondic simulations for ¢ == 7, 10, and 20 are shown
in the log-log plots of Figs. 2—4. Here we have used
the canonical peak locations for the energy cuts. Let us
first concentrate on the results for ¢ = 7 in Fig. 2 where
we have included for comparison the data from previous
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FIG. 2. Log-log plot of autocorrelation times r,f;ip_ of the

energy vs lattice size for ¢ = 7, using L-czpendent energy

cuts defined by the peak locations of the canonical
distribution. ’ )

energy
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results for his hybridlike two-step algorithm which com-
bines microcanonical cluster updates with a multicanon-
ical demon refresh [15]. Both cluster update versions
show qualitatively the same behavior and, for L > 20,
perform much better than the standard multicanonical al-
gorithm. From least-squares fits by

flip

— Tg = aV*®,

®

we estimate « = 1.3 for multicanonical heat-bath and
o = 1 for multibondic cluster simulations; see Table III

 where we also give results for fixed energy cuts. Our

“— flip e e e fli
results for rBlp are almost indistinguishable from TE'p

which, recalling Fig. 1, is no surprise. Furthermore, we
have also measured the effective autocorrelation times and
find that they are systematically smaller for both algo-
rithms.

Unfortunately, for ¢ = 10 and 20 the situation is less
favorable for the multibondic algorithm. While we still
find an exponent of a = 1, the prefactor in (8) turns out to
be so large that we can take advantage of this asymptotic
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L
=~ FIG. 3. Same as Fig. 2 for ¢ = 10.



VOLUME 74, NUMBER 2

PHYSICAL REVIEW LETTERS

9 JANUARY 1995

TABLE IIl.  Results for the dynamical exponent a in multi-
canonical (muca) and multibondic (mubo) simulations from fits

to 75" = aV=, using L-dependent cuts defined by the canoni-

cal peak locations (@) and fixed cuts at the infinite volume
limits of E;, and By, (ayix).

Dmax Afix
q muca mubo muca mubo
7 1.27(2) 0.92(2) 1.53(2) 1.02(2)
10 1.32(2) 1.05(1) 1.43(1) 1.12(1)
20 1.26(1) 1.09(1) 1.46(1) 1.18(1)

improvement only for very large lattice sizes. As can be
seen in Fig. 3, for ¢ = 10 the crossover happens around
L = 50. Extrapolating to L = 100, we estimate that the
multibondic algorithm would perform for this lattice size
about 1.5 times faster than the standard multicanonical
heat bath. For ¢ = 20 the same comparison clearly favors
the standard algorithm for all reasonable lattice sizes—
and we certainly cannot recommend the new algorlthm
for large 4.

In summary, we have proposed for Potts models a com-
bination of cluster update techniques with reweighting
in the random bond representation and have shown that
this approach is feasible in practice. In fact, it is tech-
nically not more involved than the standard multicanoni-
cal approach, and one lattice sweep takes about the same
CPU time. Numerical tests for the two-dimensional g-
state Potts model with ¢ = 7, 10, and 20 show that the
multibondic cluster algorithm is optimal in the sense that
the exponent « in the power law, 7f? = gV2, is consis-
tent with @ = 1, the value one would expect in an ide-
alized random walk picture. For g = 7 the multibondic
algorithm clearly outperforms the standard multicanonical
heat-bath algorithm. Compared with Rummukainen’s hy-
bridlike two-step cluster variant, the multibondic autocor-
relation times are smaller for all lattice sizes by a roughly
constant factor of 1.5. For larger values of g, however,
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FIG. 4. Same as Fig. 2 for g = 20.

the prefactor a turns out to be relatively large, render-
ing the new algorithm for reasonable lattice sizes more
efficient than multicanonical simulations only for ¢ < gq
with gy somewhat over 10.

The multibondic cluster algorithm may be of value for
a wide range of investigations, since it can be applied to
any systems where conventional cluster update techniques
are applicable.
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