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From First-order to Two Continuous Melting Transitions:
Monte Carlo Study of a New 2D Lattice-Defect Model
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We present a Monte Carlo study of a new lattice model describing defects and their elastic interac-
tions, including a term that accounts for rotational stiffness over a length scale I. We show that, when

going from small i (as in most atomic crystals) to large i (as in many molecular crystals), the melting
process changes from a single first-order to two successive Kosterlitz-Thouless transitions.

PACS numbers: 64.70.Dv

The Kosterlitz- Thouless-Halperin-Nelson- Young sug-
gestion' that two-dimensional melting should proceed via
two successive continuous transitions of the Kosterlitz-
Thouless type seems to be applicable only to layers of
liquid crystals. Experiments on atomic layers loosely
absorbed on surfaces, or molecular-dynamic simulations
of two-dimensional Lennard- Jones systems, ~ have always
been found to undergo only a single first-order melting
transition. For high coverage, it may sometimes become
continuous, but it has never been seen to split into two
successive transitions. The same has been found for all
lattice models which simulate an ensemble of crystal de-
fects with long-range elastic interactions of linear elasti-
city

d'&[(p/4)(t);u, +8,u;)'+(X/2)(r);u;)'],

where u; are the lattice displacements and p, A, are the
elastic moduli.

Recently, it has been shown that the characteristic
parameter which specifies the difference between atomic
crystals and those formed by liquid crystals, namely, the
length scale of rotational stiffness, I, is responsible for
the different melting processes. It a~pears in the second
gradient elastic interaction E t =2pl j d g(8;to),
where to= —,

' e;J8;uj. If the combined energy is placed on
a lattice of spacing a, with the gradients 8; substituted
by 1/a times lattice differences V; [V;f(x)
=f(x+i) —f(x)], if, further, displacements u; 6
( —a/2, a/2) are scaled to y; 2tru;/a E ( —tr, tr) and to

to 2 E''jV; yj, and if discrete-valued plastic distortions are
inserted to supply the Volterra jumping surfaces of dislo-
cations and disclinations, the ensuing model energy reads
(in natural units in which pa /4tr =1, and lattice spac-
ing a =1)

E =—g(V;yj+Vjy; 4ttn J) + —g g(V;y; —2trn, ';) +2l +[V;ta —tr[2m;+V;(nt2 —n2~))]
X,lj P X X, l

The partition function (with P= I/kaT)

ZtLQ „dy g exp( PE), —
'

(n,),m, )
(2)

summed over all integer nt~ [n,'J=—(n;~+nj;)/2] and tn;, was shown to possess, for very small I, a single first-order melt-
ing transition and, for very large I, two successive Kosterlitz-Thouless transitions (at least for v=1). A few manipula-
tions on the partition function lead to two alternative representations. One involves the energy
[V f(x) =—f(x) —f(x —i)]

PE, =(I/P)g, (-,' [[I/(I+ v)](V;A ) ——' [(1—v)/(1+ v)l(V;A;) I+(I/8I )(V h —e A ) ),
with v=k/(2@+X) =Poisson ratio, and h, A; being integer-valued stress gauge fields (to be summed over in the parti-
tion function). The other, dual representation is

/3E =P'4tr (1+v)g, ri(V V) ri+4tr (2I )g, [e( —V V) '8+V;b;( —V V. [1 —I V V]) 'Vjbi] ', (4)

where b; and 0 are integer-valued dislocation and disclination densities, and g=e;~V;b~+8 is the so-called defect
density. The partition function involving /3E, is a generalization of the Laplacian roughening (LR) model
PELR=[1/4P(1+v)]g„(V.Vh) to which (3) reduces for /=0 (with the associated first-order melting transition ).
The other partition function generalizes the dual defect version of it, PEg, t =/34tt (1+v)g, ri(V. V) ri, with the parti-
tion function being summed over all integer ri. In the opposite limit of large I, at fixed Pl, (3) reduces to the discrete
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Gaussian (DG) model PEoG=P g, (Vh) with P =I/8P1 . For P= 1, (3) becomes at v=1

pEDo =(1/8p)/[A;( —V V)A;+(1/I )A;(1/ —V. V)( —V;VJ)AJ+ ].
The purpose of this Letter is to present the full phase di-

agram of this model in the simplest case for v=1 as ob-
tained by Monte Carlo simulations of the partition func-
tion Z, -giI, ~,l exp( /jE—„),with E, taken in the
roughening representation of Eq. (3). We apply the
standard Metropolis algorithm with trial values for h(x)
and A;(x) chosen randomly from one above or one below

the current value at each site. Periodic boundary condi-
tions were used. The transition points were found by our
measuring first the specific heats, for an estimate, and
afterwards the correlation functions, for a precise deter-
mination.

The specific heat (per site) is defined as C = T
x(8 /8T )lnZ, /L where L is the number of sites of
the square lattice. Using this definition, we can compare
directly with the limiting cases for large I (DG model)
and small l (LR model) (omitting constant factors and

trivial background terms of the Dulong-Petit type). The
correlation functions are defined by

c"(x —x') —= —,
' L([h (x) —h (x')] '),

c,"(x—x') = —,
' L&Q;(x) —A;(x')]'), i =1,2,

where the angular brackets denote thermal averages with

respect to Z„,and the bars denote a configuration aver-

age along one column; e.g., h(x) =L 'g~-~ h(x, y). In
k space, these averages are equivalent to a projection on

the k~ axis, leading to simple one-dimensional Fourier
representations for c"(x) and c~(x) (which, in the free
field case, can be evaluated analytically even on finite

lattices).
Let us briefly summarize the theoretically expected

behavior of these correlation functions, assuming a large
enough 1 to avoid degenerate situations to be discussed
later. In the low-temperature solid phase, there are very
few defects, and the discrete variables h, A; can be treat-
ed effectively as massless continuous fields. The dilute

gas of bound defects manifests itself only in a renormal-

ization of the temperature, i.e., P P, whose effect is

exponentially small because of the finite activation ener-

gies, i.e., low fugacities. The two-dimensional versions of
the correlation functions (5) may then be read off direct-

ly from Eq. (4) (if we interpret 2@0,2mb; as fixed exter-
nal sources and replace P by P ), yielding

c"(x) = —4Pn[(1+ v)/2] [64(x)

+ [2l /(1+ v) ]6 (x )],

c) (x) = —4P'6,""'(x),

c~p (x ) = —4P ~[(1+v)/2]Gp~o'(x ),

where Gq and G4 are given by

62 (x)=—g, , k= n(m) 1 e' "—1 2z
L n i 2(1 —cosk)+m' '

c"(x) 4P I 62 '(x), (8)

which is exactly the behavior in the massless phase of the
DG model [with respect to h(x)]. Since in this phase
the field A is frozen to an almost uniform constant
value, the DG approximation is expected to be excellent,
suggesting a second phase transition where the h correla-
tions also become massive. In the defect picture, this
can be interpreted as an unbinding transition of disclina-
tion pairs held together by the interaction potential (8)
(in the two-dimensional unprojected form which is of the
usual Coulomb type).

As long as these transitions are well separated (which
is certainly the case for large l 2), the standard
Kosterlitz-Thouless argument shows that the renormal-
ized stiffness constants P have the following universal
values: at the first transition P (P~t'~) I/x —2/(1+v),
and at the second transition P (P, ) =I/2+i . Thus,
plotting in the low-temperature phase c2 (x) versus
—62' ~(x), we expect a straight line for all P &P,t'~
with a limiting minimal slope 4P"(P, ' )
x(1+v)/2 (P ) ' 4/~ at P," . For P&P,", the
correlation length (=inverse mass) is finite, which, in

such a plot, is signaled by a downward curvature for
large distances. If the lattice size is smaller than this
finite correlation length, then the curve still appears
straight, but now with a slope smaller than 4/n. By a
comparative finite-size scaling analysis of the ordinary
DG model transition (which appears in the limit I ~),
we have checked that this "slope criterion" gives reliable
estimates of P, with practically no finite-size dependence
for lattices larger than 16X 16.

In this work, we have measured the correlation func-
tions on 32X 32 lattices using 500000 configurations for
the thermal averages, after discarding 100000
configurations for equilibration. Using the above slope
criterion, we have determined the transition points (for
v 1) shown in the l -T phase diagram of Fig. 1 as open
circles. The solid lines are an interpolation of these data.

e lkz

64(x) -—gL.-i [2(1 —cosk)]'

Then, with increasing temperature, we expect that the
fields A become effectively massive at some point as a
two-dimensional disorder version of the Meissner effect'
in superconductivity. As a consequence, the h correla-
tions are screened at long range to
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FIG. 1. The phase diagram of the lattice-defect melting
model for v 1. The abscissa is the square of the length scale
of rotational stiffness, and the ordinate, the temperature. The
transition points are determined from measurements of correla-
tion functions on 32&32 lattices. In the hot phases we have in-
dicated the roughness of the integer field configurations h, A;
and the defects as in Ref. 7. The lower phase contains very few
defects and is completely rough in h and A;. On the right-
hand margin we have indicated the position of the specific-heat
peak and the Kosterlitz-Thouless transition for I . At finite
I, the transition temperatures are lower by a factor of about 2
since the longitudinal mode has only a finite range I and does
not contribute to the critical limit of the renormalization Aow.

The peak in the specific heat has only small 1/l2 corrections.
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FIG. 2. The specific heat vs temperature of the defect melt-
ing model on a 16X16 lattice with increasing length scale of
rotational stiffness l. In all plots, the temperature scale is the
same. The arrows indicate the transition points which, for
I & 1, lie clearly below the peaks. It is not necessary to plot
the peaks for larger I since they follow quite well the ap-
propriately rescaled specific-heat curves of the ordinary DG
model. The data are averages over 5000 configurations, after
discarding 1000 configurations for thermalization.

The dotted line with slope 5.4 shows what we would ex-
pect in a pure DG model. Since T=8p ol and from
the comparative study P, =0.677+ 0.010, we calculate
the slope 0.677x8=5.42, in excellent agreement with
the data. The filled circles show the location of the
peaks of the specific heat, p~,k, measured on 16X16 lat-
tices. For a few characteristic l, we have plotted the
specific-heat curves over a wide temperature range in

Fig. 2. To determine the precise location of the maxima,
we have performed additional runs near the tip of the
peaks with much higher statistics. Furthermore, we have
studied the finite-size scaling behavior for l =0.2, 0.5,
1.0, and 3.0 (using lattices up to 64&64) to make sure
that there is no significant shift of P~,k on larger lattices.
The dashed line with slope 6.9 is the peak position ex-
pected from the pure DG model, where the comparative
study gave p~, k =0.861 ~ 0.005 and thus the slope
0.861 x 8 =6.89.

For I ~ 2, the peak heights depend only weakly on L,
proving that the correlation length ( under the peak is
finite (g =3a). The transition points, where the correla-
tion length becomes infinite, lie about 20%-25% below
the peaks. This is a clear evidence for two Kosterlitz-
Thouless transitions. Around I = 1 the two peaks
merge into a single one, while we still observe two transi-
tions. The lower one stays almost constant around T =3.
The upper one moves closer and closer to the peak loca-

tion until around l =0.5 a difference is hardly detect-
able. Simple extrapolations of these transition lines sug-
gest that they meet around l2 =0.1-0.2. Since we know
from earlier work6 that at l 0, there is a single first-
order transition at T=2.45 (with an entropy jump of
M =0.2 per site), we expect that the transition remains
first order at least up to the separation point around
l =0.1-0.2. For larger l, it is conceivable that the
lower transition changes immediately to the Kosterlitz-
Thouless type, while the upper one remains first order up
to some I between =0.2 and =0.5. This would ex-
plain the very small separation between peak location
and transition point. This picture is partly confirmed by
our simulations at l 0.2. Here, we observe a clear
hysteresis in the energy and a pronounced finite-size
scaling of the peak height of the specific heat with in-
creasing L, indicating indeed a first-order transition
(with hs per site still =0.2). On the other hand, at
l =0.5 we do not observe a reliable hysteresis, and the
peak height depends only weakly on L (up to L =32).
At this I it is, however, very dif5cult to disentangle a
possible singular part of C from the large background
contributions due to the lower, Kosterlitz-Thouless-type
transition (whose specific-heat peak could be just shifted
above the second transition).

For simplicity, all calculations have been done at v =1
where the A part of the energy is easiest to handle and
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theoretical predictions were available. Since the forces
between the defects at large separations maintain their
qualitative features also for v&l, we do not expect any
dependence of the universality class on v.

In conclusion, we see that the new model of defect
melting with a length scale of rotational stiffness is ap-
parently the simplest lattice model rich enough to in-
corporate the various experimental two-dimensional
melting processes.
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