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Tricritical Points in Three-Dimensional XYModel with Mixed Action
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We present theoretical arguments (using mean fields and strong-coupling graphs) for a line of
first-order phase transitions in the three-dimensional XF model with the mixed action
P cos('7,8) + icos(2V,H), where yC (0.35, 0.40), and verify its existence by a Monte Carlo simu-
lation.
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plex Higgs field and three real gauge fields) both simu-
lations were unable to determine the important tricriti-
cal ratio of the two length scales.

It is obvious that, just as in four dimensions, it will
be easier to investigate the tricritical behavior in the
dual form of the theory which has only one fluctuating
angular variable 8 & (0, 2n ). This is the planar spin, or
XY model. In its standard form, this model is known
to have a continuous phase transition. Thus, if we
want to study first-order transitions, the standard form
needs some modification. From an analysis of the
strong-coupling expansion which describes an ensem-
ble of nonbacktracking random loops we know'2 that
we have to enhance the loops of strength 2, making it
easier for them to condense. The intertwining of the
strength-1 and strength-2 loops is what drives the tran-
sition first order.

The desired enhancement is made possible by use of
a mixed energy

PE = X„,—[P cos('7,8) + y cos(2'7,8) ] (1)

[i«his notation, Vp =8(x+i) —&(x) are the lattice
gradients across the links i] with positive y. Qur
analysis is confirmed by the observation6 that positive
y increases the discontinuity of the transition in the
U(1) lattice gauge theory (which is similarly driven by
the intertwining of random surfaces of strengths 1 and
2).

In order to see what is happening in the present case
and to estimate which value of y is relevant, it is use-
ful to re~rite the partition function associated with the
energy (1) as a field theory of two complex fields ui
and u2 and the~r conjugates oi and a2. ' ' The fluc-
tuating energy is simply

i) +c.c.] —(ai ui+n2u2+ c c )+ Inl.o(.2ni, 2n2),

According to a well-known and often cited argument
by Coleman and Weinberg, ' the Abelian Higgs model
in four dimensions should always undergo a first-order
phase transition if the mass parameter turns negative.
Some time ago it was pointed out by one of us2 that
the Monte Carlo finding3 of a continuous transition in
the pure U(1) lattice gauge model suggested, via duali-

ty arguments, 4 the existence of a tricritical point in the
Abelian Higgs model. Thus there are unforeseen
subtleties in the Coleman-Weinberg argument which
are worth investigating. This suggestion was taken up
in a number of recent papers5 6 which by now seem to
agree that such a tricritical point does indeed exist.

In the three-dimensional Abelian Higgs model, the
same argument was put forward once more by Hal-

perin, Lubensky, and Ma. 7 Here, the experimental
smoothness of the smectic-A-nematic transition in
liquid crystals gave rise to first doubts about its validi-
ty. s The doubts were confirmed by Monte Carlo stud-
ies of the so-called lattice superconductor which
showed clearly a continuous transition of the (invert-
ed) )i. type. 9

Making use of the duality of the Abelian Higgs
model and the XYmodel, one of the authors'e found a
theoretical explanation for these simulation data and
predicted, in addition, the presence of a tricritical point
whenever the two length scales of the model, penetra-
tion depth and coherence length, have a ratio smaller
than 0.2.

The predicted tricritical point was subsequently ob-
served in two different Monte Carlo simulations of the
Abelian Higgs model. " Unfortunately, as a result of

t

the large number of fluctuating variables (one com-

pE= X„X,—,
' [pu, (x—) u,f (x+i) +yu, (x) u2i (x+

where lo(2ni, 2e2) is a generalization of the modified Be

lo(2ai, 2a 2) = Jt (d8/2n )exp(ai U+ n2 U + c c.),

(2)

ssel function,

(3)

with U= e'a.
The fields ui and u2 have a simple physical meaning. They are the disorder fields' of the nonbacktracking ran-

dom loops of strengths 1 and 2, respectively. If they have a nonzero expectation value, this signals the presence of
a condensate of such loops. In the case of ( ui) a0 this also implies that there are infinitely long loops of strength
1. If (u2) is nonzero, this has a somewhat more indirect meaning. Remembering that t (u2) t is also the txt
limit of the correlation function (u2(x) u2 (0) ) we see that (u2) a0 is related to the finiteness of the tx t ~ lim-
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it which is caused by the repeated splitup and recombination of finite pieces of lines of strength 2 into long pairs of
lines of strength 1. It is the propagation of the latter which causes I (u2) I2 to be nonzero.

We shall now demonstrate how the coupling between these two sets of lines causes the model to have two tricrit-
ical points. The position of one, which lies at low y, is found quite easily by expansion of

ln10(2ai, 2~2) =
I 1~iI' ——,

' 1~iI'+ —,
' [~2i~2+c c]+ I~21' + —,

' l~, I' ——,
' lail'l~', ~', +c c]+.. . I

+ 0 (cl i, 0!i lx 2, A i lx 2, lx i lx 2, cl 2 ),8 6 4 2 2 3 4x

which, after elimination of the fields ui, u2 via the field equations ui =~i/Dp, u2= ~2/Dy, leads to a Landau type.
of free energy, at constant fields, '6

Pf = (1/D p —1) l~i I'+ ( 1/Dy —1) I~21'+ —,
' l~i I' ——,

' [~2i~2t+ c c.] —
9 l~i I'+ 3 l~i I'[~l~t2+ c c.] + . . "

Minimizing in n2 gives

a2= —,
' (1/Dy 1) '—[cx2i ——', Ini I'a2i+. . . ],

and the free energy takes the form

Pf = (1/Dp —1)1~iI'+ c4(y) 1~iI'+ c6(y) 1~iI'+. . . , (7)
with

1 4Dy —1'6'y'=9 1-D'y,
1 1 2Dy-

c4(y) =—
4 1 —Dy

revealing the point (p, y)„=(1/D, 1/2D) as the de-
sired tricritical point [where (1/Dp„—1) =0, c4(y„)
=0, c6(y„) )0]; It obviously belongs to the univer-
sality class of a comp/ex I Q I6 theory with vanishing I Q I'
coupling.

In the random-loop interpretation, the generation of
the tricritical point is easy to understand. For small y
and small p, the loops of strength 2 are frozen out. If
p exceeds the critical value 1/D, the loops of strength
1 grow in a continuous k transition and ~i becomes
nonzero. We now observe that because of the cou-
pling (aiaia2+c. c.), the condensate of strength 1

loops acts as a source (approximately equal to the mag-
netic field) for the strength-2 line pieces (which might
be split along their way into pairs of strength-1 lines).
In Feynman-diagram language, the term uinia2 corre-
sponds to the merging of two lines of strength 1 into a
bound state of strength 2.

As y approaches the tricritical value 1/2D, the
number of links occupied by such bound states in-
creases dramatically. This has the consequence that,
for y & 1/2D, the energy can be lowered even before p
hits the second-order transition point 1/D. [There is a
certain similarity with the joint condensation of dislo-
cation and disclination lines in the melting process,
which is strongly of first order (the former being
bound states between two of the latter lines). '7] At
this precocious point, both types of lines condense in
an avalanchelike discontinuous phase transition.

The analysis of the upper tricritical point is some-
what more in~ol~ed. Here y & 1/D, and the high-
temperature phase is one in which loops of strength
2 are condensed from the beginning with moo
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FIG. 1. The phase diagram of the mixed-action XYmodel
as obtained from the Monte Carlo simulations on 16 lattices
as well as from our mean-field analysis (the latter curves are
rescaled in the P and y directions by a factor 0.45i0.333 in
order to account heuristically for the fluctuation correc-
tions). The thickness of the mean-field curve is graded ac-
cording to steps of hs =0.1. The region ~here d s is maxi-
mal at the mean-field level is studied further in Figs. 2 and 3
and is found to have a first-order transition, also after in-
cluding fluctuations.

t = Dyli (2aPi)/10(2oP~). In this background the dis-
order field of loops of strength 1 changes its symmetry
properties. If aPi is chosen to be real, ai is coupled
via aPi(a2i+ ni2), and hence pairs of equally oriented
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lines can emerge at and disappear into one site, thus
changing the orientational properties of these lines.
For large y, the transition is of second order and
therefore in the same universality class as the loops of
the high-temperature expansion of the Ising model.
The usual symmetry argument relies on the reduction
of the U(1) symmetry at e'aat to the Ising sym-
metry ot —crt via o) (o.i+ot ). [Notice that pre-

(P, y),„=(3/D) (Q.2293, Q.3749). (9)
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It turns negative at y = Q.3749. Using c2(P, y)
= —,'(I/DP —1 —qi) we locate the upper tricritical
point at

viously near the lower tricritical point, the same cou-
pling (o2ot+o2rxt ) did not destroy this symmetry
since the a2 field was fluctuating symmetrically around
the origin. ] When y is no longer large, the expectation
of the a2 field decreases. It is easy to verify that this
leads to a decrease in the quartic term in ai. In fact,
this term can be expressed via the ratio of modified
Bessel functions q„= I„(2a)0))/Io(2nP)) as follows:

(8)

Clearly, this tricritical point is in the same universality
class as the real/6 field theory with vanishing iti4 term.

The full mean-field diagram is shown in Fig. 1. We
have dilated it by a factor P,/PM"=1. 35 so that the
pure XI' phase-transition points on the P and y axes
agree with the known values P, =Q.45 and y, =Q.45,
respectively.

In the neighborhood of yM"=Q. 275 (y=Q.37) the
mean-field entropy jump is maximal (b sM" = Q.3).

In order to confirm the calculated phase structure,
we have studied the model by Monte Carlo techniques
in the crucial regime yC(Q. 3, Q.4), PG(Q. 3Q, Q. 35)
(using the heat-bath algorithm). In Fig. 2, we have
shown various cycles over the internal energy which
exhibit a hysteresis in the same region in which hs was

P = O.Sa, y = O.3485
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F16. 2. (a) Thermal cycles in P for various fixed y show-
ing a hysteresis at y =0.30-0.40 as a rough indication for a
first-order transition. (h) Thermal cycles in y for various
fixed p showing a hysteresis at p = 0.30—0.35.

FIG. 3. The time evolution of the internal energy on a 16
lattice at three different points (p, y) near the transition
line. They show the jumping back and forth between two
minima separated by a barrier typical for a first-order transi-
tion. At the right end of each evolution diagram we show
the corresponding histograms displaying clearly the double
peak of a first-order transition.



VoLUME 57, NUMaER 3 PHYSICAL REUIEW LETTERS 21 JULY 1986

found to be large at the mean-field level. In order to
verify that hs is nonzero we have iterated ordered and
random initial configurations 20000 times and ob-
served the metastability of these states (see Fig. 3).
On the basis of these data we claim evidence for a
first-order transition in the range (P, y) = (0.30,
0.40)-(0.33, 0.35) with a small entropy jump of
b, s = 0.1. Thus we conclude that in three dimensions,
fluctuations are still moderate enough to allow for the
survival of part of the mean-field jump (remember
that for D ~, mean-field results are exact'4).

Similar runs in two dimensions did not show any
sign of a discontinuity.
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