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We investigate the aging properties of phase-separation kinetics following quenches from T ¼ ∞ to a
finite temperature below Tc of the paradigmatic two-dimensional conserved Ising model with power-law
decaying long-range interactions ∼r−ð2þσÞ. Physical aging with a power-law decay of the two-time
autocorrelation function Cðt; twÞ ∼ ðt=twÞ−λ=z is observed, displaying a complex dependence of the
autocorrelation exponent λ on σ. A value of λ ¼ 3.500ð26Þ for the corresponding nearest-neighbor model
(which is recovered as the σ → ∞ limit) is determined. The values of λ in the long-range regime (σ < 1)
are all compatible with λ ≈ 4. In between, a continuous crossover is visible for 1≲ σ ≲ 2with nonuniversal,
σ-dependent values of λ. The performed Metropolis Monte Carlo simulations are primarily enabled by our
novel algorithm for long-range interacting systems.
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Phase separation constitutes one of the most funda-
mental processes underlying the ordering process during
the relaxation of systems toward equilibrium. It can be
observed in completely diverse physical settings from
quantum systems [1–4] and biophysics [5–9] to cosmo-
logy [10,11]. Beyond the mere theoretical interest [12–15]
the involved mechanisms are highly relevant to industrial
applications [3,16,17]. From a computational point of
view, the process of phase-separation kinetics attracted
widespread attention, and there are numerous works by
several groups which investigate different aspects of this
complex process for systems with short-range inter-
actions [18–24].
Many realistic physical circumstances, however, involve

long-range potentials [25–32]. Such systems have received
much less attention in computer simulation studies since
their treatment is prohibitively expensive without efficient
algorithms. Recently, we have developed a new algorithm
for fast Monte Carlo simulation of long-range interacting
systems [33], which puts us now in the position to study the
phase-separation kinetics also in presence of long-range
interactions for sufficiently large systems and observa-
tion times.
Here, we focus on the dynamics of phase separation

using the paradigmatic long-range Ising model (LRIM)
with conserved order parameter (COP) dynamics, whose
Hamiltonian is given by

H ¼ −
1

2

X

i

X

j≠i
Ji;jsisj; Ji;j ¼ r−ðdþσÞ

i;j ; ð1Þ

where the spins take values si ¼ �1, ri;j is the distance
between si and sj, d is the dimension, and the parameter σ
describes the spatial decay of the interactions being
reflected in the spin-spin couplings Ji;j > 0. We consider
two-dimensional L × L square lattices for which periodic
boundary conditions are implemented by a precalcu-
lated Ewald summation [34] in combination with the
minimum-image convention. For different values of σ
the system’s behavior will fall into distinct nonequilibrium
universality classes concerning the temporal growth of the
characteristic length scale lðtÞ ∼ tα with α ¼ 1=z, which
can be thought of as the average linear size of the magnetic
domains at time t. In Ref. [35] we observed for the d ¼ 2
case the predicted continuous crossover [36–38] from a
long-range regime (σ < 1) with σ-dependent growth expo-
nent α ¼ 1=ð2þ σÞ to a short-range regime (σ > 1) with a
σ-independent exponent α ¼ 1=3 equal to the nearest-
neighbor (NN) case (corresponding to σ ¼ ∞). This is
similar to the behavior of the LRIM with nonconserved
order parameter (NCOP) dynamics where the corres-
ponding predictions [36–38] have been confirmed numeri-
cally [39,40]: The growth of lðtÞ is described by the
NN exponent α ¼ 1=2 for σ > 1 and by a σ-dependent
exponent α ¼ 1=ð1þ σÞ for σ < 1, being again conti-
nuous at σ ¼ 1.
Another fundamental aspect of phase-ordering processes

is the behavior of two-time quantities, such as the auto-
correlation function
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Cðt; twÞ ¼ hsiðtÞsiðtwÞi − hsiðtÞihsiðtwÞi; ð2Þ

which measures the similarity of the system at time t to
some reference time tw < t. The operator h…i is intended
as an average over different quench experiments, i.e., pairs
of initial configurations and realizations of thermal noise.
The second term in this definition does not contribute since
we are performing conserved order-parameter simulations
with magnetization M ¼ P

i si ¼ 0 (often referred to as
critical mixture) and, hence, trivially hsii ¼ 0. In particular,
as common for phase ordering, we expect physical
aging [14] where dynamical scaling of the autocorrelation
function is observed (becoming a function of y ¼ t=tw) and
its asymptotic decay

Cðt; twÞ ∼ ðt=twÞ−λ=z ð3Þ

is described by a power law with an additional independent
exponent, the autocorrelation exponent λ.
For instance, aging is observed in the two-dimensional

LRIM with NCOP in Ref. [41]. There, for all considered σ
the values of λ are compatible with a jump of λ at σ ¼ 1

from a value λ ≈ 1 ¼ d=2 for σ < 1 to a value of λ ≈ 1.25
(equal to the NN case) for σ > 1. That behavior is in good
correspondence to the observations in the one-dimensional
LRIM with NCOP [42], where λ ¼ 0.5 ¼ d=2 for σ ≤ 1

and λ ¼ 1 (again equal to the NN case) for σ > 1 is found.
Hence, in both dimensions the autocorrelation exponent
does not lead to any further splitting of the dynamical
universality class, while marginally fulfilling the Fisher-
Huse bound of λ ¼ d=2 [43] for σ < 1 and taking the value
of the corresponding NN model for σ > 1.
Aging is also observed in several phase-separating

systems. In Ref. [44] λ ≈ 3.6 was observed for the NN
Ising model with COP. The long-range regime (σ < 1) of
the LRIM with COP was recently investigated in Ref. [45],
where a nontrivial σ dependence of λ ¼ c=α ¼ cð2þ σÞ
with c ≈ 1.1 was reported. Such a slower decay of the
autocorrelation function in the long-range regime would be
in accordance with the observation for the NCOP case
while the nontrivial σ dependence would be a novel feature.
By exploiting our recent algorithm [33], we aim in this

Letter at a comprehensive quantitative assessment of the σ
dependence of λ during phase separation in the LRIM with
COP by performing Monte Carlo simulations for a large set
of σ values, ranging from the true NNmodel (σ ¼ ∞) to the
long-range regime (σ ¼ 0.6). Our large-scale simulations
on square lattices of size up to 20482 and observation times
up to about 108 are compatible with a constant λ ≈ 4 in the
long-range regime σ < 1 and provide evidence for an
extended crossover regime to the NN limit λ ≈ 3.50 from
about σ ¼ 1 to σ ¼ 2, coinciding with the range where also
the equilibrium critical exponents show a nontrivial σ
dependence [46,47]. This suggests a possible, unexpected

connection between aging properties and equilibrium
critical behavior.
For the simulation protocol and the implementation of

the boundary conditions we follow our Ref. [35]. The
phase-separation kinetics is studied by initially placing
equally many up and down spins randomly on a square
lattice (M≡ 0). Subsequently, the system is quenched to
temperature Tq ¼ 0.5Tc, well below the critical temper-
ature Tc [48], where it relaxes through local Monte Carlo
Kawasaki dynamics [49]; i.e., spins are only allowed to
exchange with their direct neighbors, which is the simplest
local update scheme leaving the total magnetization
conserved. Getting sufficiently accurate estimates for λ
required us to simulate even larger system sizes than
considered in Ref. [35] in order to access later finite-size
(FS) unaffected times and thus observe a longer asymptotic
period. In total, we performed 100 runs with different
initial conditions and thermal noises for each σ ≤ 1 with
L ¼ 2048, 400 runs for 1.1 ≤ σ ≤ 2 with L ¼ 1024, 1000
runs for 3 ≤ σ ≤ 10with L ¼ 512, and 400 runs for the NN
case with L ¼ 1024 to push the FS time to more than 107

for all σ, also extending and consolidating our findings for
lðtÞ in Ref. [35]. Despite the efficiency of our novel
algorithm [33], the longest simulations ran up to 9 months
individually on a single CPU core, amounting to a total
runtime of roughly 1000 core years.
After the quench the system relaxes toward equilibrium

(being a phase-separated stripe state with some thermally
excited spins in both phases) through the formation of
domains which grow in time and whose average linear size
is described by the characteristic length scale lðtÞ. This
phenomenon can be visually appreciated from Fig. 1,
where one exemplary temporal evolution of the local

FIG. 1. Evolution of the local autocorrelation for σ ¼ 0.8 and
L ¼ 1024, each row for a different references time tw and each
column for a constant value of the scaling variable y ¼ t=tw. The
red (blue) spins point up (down) at times tw and at t and
contribute with a positive sign to the autocorrelation function.
The green (orange) spins point up (down) at times tw but down
(up) at t, thus, entering with a negative sign. The growth of the
average domain sizes (size of the patches of redþ orange and
blueþ green, respectively) as well as the decay of the autocor-
relation (shrinking area of blueþ red) with increasing time from
left to right are clearly visible.
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autocorrelations for σ ¼ 0.8 and L ¼ 1024 is displayed.
The domains of up spins at time t (redþ orange) and the
domains of down spins (blueþ green) do clearly become
larger with growing t. A more quantitative analysis of the
growth is obtained from lðtÞ, which we measure from the
zero intersect of the spatial correlation function. The repre-
sentation lðtÞ=tα chosen in Fig. 2 highlights the deviation
from the expected growth law. The extended periods of
asymptotic growth (represented by the black dotted lines
which for σ ¼ 1 incorporate the expected logarithmic
correction [36,37]) will be important for the discussion
of the aging properties which we focus on in the following.
In addition to the growth of lðtÞ, Fig. 1 also visualizes

the evolution of the autocorrelation. The time t of an
individual panel in the bottom row and the panel top right to
it are always identical (and thus also the configuration).
Moving from left to right the amount of blue (red)
decreases showing that the value of the autocorrelation
function decreases. Or alternatively, the position of the
domains at time t does correlate less and less with the
domains at tw (leftmost panels). Comparing the top row to
the bottom row (different tw but same y ¼ t=tw), due to
dynamical scaling and the conserved order parameter
dynamics, the total area of all four colors, individually,
should be roughly the same. The larger number of patches
for the earlier tw is compensated by a larger patch size for
the later one, altogether fulfilling the dynamical scaling
hypothesis. For physical aging to occur the relaxation dyna-
mics needs to be slow (subexponential), and Cðt; twÞ needs
to become a function of the scaling variable y ¼ t=tw
(dynamical scaling) instead of being a function of t − tw
(loss of time-translation invariance) [14]. The latter two
points are checked exemplary for σ ¼ 0.8 in Fig. 3, where
for different values of tw one observes a very good collapse

of Cðt; twÞ when plotted as a function of y in the main plot
but no collapse is visible in the inset, where t − tw is chosen
as putative scaling variable.
Asymptotically for tw ≫ 1 and y → ∞ the autocorrela-

tion function is expected to follow a power law Cðt; twÞ∼
y−λ=z. Since asymptotically lðtÞ ∼ tα ¼ t1=z this can be also
understood as Cðt; twÞ ∼ ½lðtÞ=lðtwÞ�−λ ≡ x−λ and one may
either take x or y as a scaling variable for the autocorre-
lation function. If tw is not chosen in the asymptotic regime,
however, the quality of the dynamical scaling is different
for the two different scaling variables since the preasymp-
totic effects in lðtÞ (cf. Fig. 2) can accumulate and manifest
in x. In our setting, we find more consistent dynamical
scaling in y and, therefore, stick to it as scaling variable,
since the asymptotic behavior of λ should be unaffected
by the choice of the scaling variable (see Supplemental
Material [50]).
The autocorrelation exponent can either be extracted

from the instantaneous exponent λi ≡ d lnCðt; twÞ=d ln t or
alternatively by performing a fit to Cðt; twÞ. In the former
case the expectation is that λi for large times reaches a
plateau corresponding to its asymptotic value. Since this is
often not the case, it is common to plot λi as a function
of the inverse of the scaling variable and performing a
(visual) extrapolation of (some subset of) the data to the
ordinate [43,44]. This procedure implicitly assumes some
functional form of the corrections in λi (depending on the
employed scaling variable and the scaling of the axes; see
also the discussion in Ref. [51]) and relies crucially on
choosing a valid subset of the data, which can be a
nontrivial task, particularly due to the often rather noisy
nature of the involved numerical derivative. We hence
opted for the latter alternative by directly fitting Cðt; twÞ

FIG. 2. Characteristic length lðtÞ=tα together with the predicted
growth law (black dotted lines) for all considered values of σ
(the system sizes differ among the different σ, see text). Error bars
indicate twice the standard error of the mean. For σ ¼ 0.6 the
observed growth matches the prediction for little less than a
decade while for all other σ the correspondence extends over
≈1.5–2 decades.

FIG. 3. The autocorrelation function Cðt; twÞ for σ ¼ 0.8 and
L ¼ 2048 for different waiting times tw shows an excellent data
collapse when plotted against t=tw (main plot) while time-
translation invariance is clearly violated (inset). The solid black
line shows the best fit within the final chosen fitting range and the
dotted black line its continuation to larger and smaller values of
y ¼ t=tw (see text for discussion).
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with two different functional forms: (i) f ¼ Ay−λ=z and
(ii) f ¼ Ay−λ=zð1 − B=yÞ. Here, alternative (i) is in principle
conceptually the cleanest solution since it works without any
assumption of the functional form of the involved correc-
tions. Its main drawback is that the purely asymptotic regime
in Cðt; twÞ (corresponding to a plateau in the λi) is usually
too small (often even invisible) in order to allow an unbiased
and accurate quantitative assessment of λ. Our final results
are thus extracted with fits to (ii), including a generic
correction term which has been shown to be justified for
short-range interacting models [14,52] as well as for long-
range interacting models [41], albeit for NCOP dynamics
(for details see Supplemental Material of Ref. [41]).
During the fitting procedure the main challenge lies in

finding the right fitting window ½ymin; ymax� which excludes
the preasymptotic period (which is not fully accounted for
by the assumed correction) as well as the FS-affected
regime. After discarding the data which shows FS effects in
lðtÞ, finding the right cutoff ymax is achieved by observing
that the FS effects for different tw set in at the same time
tmax which can, thus, be determined quite accurately by
directly comparing Cðt; twÞ for a pair of two different
values of tw. The value for ymin is determined by keeping
the previously established ymax fixed and examining the
response of the value of reduced chi-square χ2=d.o.f. of the
fit to a variation of ymin, where d.o.f. stands for the degrees
of freedom. We choose ymin such that it becomes minimal
under the condition that its variation leaves the resulting
χ2=d.o.f. small. For all the considered cases [for the fits to
form (ii), especially] the choice of ymin did not have a
relevant influence on the resulting value of λ; compare
Supplemental Material [50], where we present raw data for
all values of σ together with the fits, and tables containing
the final fit parameters and intervals used for the fits and the
dependence of the fit parameters on ymin. The best fit for
σ ¼ 0.8 is shown in Fig. 3 as a solid black line (the dotted
line being the continuation of the fit outside the considered
fit interval) which describes the data over a very long
interval very well.
The full collection of obtained values of λ from our

analysis is plotted against 1=σ in Fig. 4. In the long-range
regime with σ < 1 we find that λ ≈ const ≈ 4 (black solid
line) is more conceivable than the hypothesis raised in
Ref. [45] that λ ¼ c=α ¼ cð2þ σÞ (dashed line, where
we manually adjusted the prefactor to c ¼ 1.42 instead of
c ¼ 1.1 from Ref. [45] to be more plausible and fully fit
into the plot). For the NN Ising model, we find λ ¼
3.500ð26Þ which is similar albeit slightly smaller than
the value previously reported in Ref. [44]. In the white
region (σ-independent NN equilibrium critical exponents) λ
stays compatible with its NN value. Over the (light) gray
shaded area (where σ-dependent equilibrium critical behav-
ior is observed and/or expected [46–48,53–56]) there is a
continuous crossover to the long-range value λ ≈ 4 visible
in the dark gray region (σ-independent equilibrium

mean-field critical exponents). At an intermediate value
of σ ¼ 1.5 (1=σ ¼ 2=3) the value of λ ≈ 3.745ð48Þ is
neither compatible with the NN value of λ ≈ 3.50 nor with
the long-range value of λ ≈ 4.
These findings are in contrast to what was observed for

aging in the NCOP case [41] in two major ways: (i) There,
λ takes two distinct values, i.e., λ ¼ 1 in the long-range and
λ ¼ 1.25 in the short-range regime with a more jumplike
crossover behavior [57]. The location of the crossover,
happening around σ ¼ 1, coincides with the crossover
from short- to long-range growth of lðtÞ [37,40]. Here,
in the COP case, we find an extended crossover covering
the intermediate range 1≲ σ ≲ 2. In this regime, where also
the equilibrium critical exponents depend nontrivially on σ,
λ assumes σ-dependent values, insinuating a possible influ-
ence of the former on the latter. (ii) Unexpectedly, the value
of λ ≈ 4 observed in the long-range regime is larger than
λ ≈ 3.50 observed for the NN case. The phase-separation
process is, thus, in a sense “less efficient” in presence of
long-range interactions, since a faster decay of the autocor-
relation function indicates that more “mass” has to be
transported in order to achieve the same growth in lðtÞ.
This is in contrast to the reasoning in Ref. [42] where for
NCOP it was argued that the asymptotically dominant,
nondiffusive component of the motion of the domain walls,
leading to an enhanced growth for σ < 1, may also be
responsible for the lower value of the autocorrelation
exponent, thus implying a “more efficient” ordering process
in the long-range regime.
To conclude, we have investigated aging and per-

formed a quantitative analysis of the behavior of the auto-
correlation function during the phase separation in the

FIG. 4. The autocorrelation exponent λ plotted against the
inverse of the exponent σ of the power-law interaction. For large
values of σ we find λ ≈ 3.50. In the long-range regime (σ < 1) the
solid line represents the weighted average 4.038(56) with error
bars indicated by the dash-dotted lines. The crossover happens
continuously over an extended range 1≲ σ ≲ 2. The lines refer to
the nonequilibrium behavior while the shading of the background
encodes the equilibrium critical behavior (see text for discussion).
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two-dimensional long-range Ising model. The results were
obtained by means of large-scale Metropolis Monte Carlo
simulations enabled by our recent algorithm for the simu-
lation of long-range interacting systems [33]. As expected,
we find evidence of physical aging for all considered values
of σ. For the nearest-neighbor Ising model (corresponding
to σ ¼ ∞) we have determined the autocorrelation expo-
nent λ ¼ 3.500ð26Þ with unprecedented accuracy. As in the
case of phase ordering without conservation of the order
parameter [41,42] we observe a short- as well as a long-
range regime with two distinct values of λ. Intriguingly,
we find compelling numerical evidence for a nontrivial
and novel crossover behavior of λ in the regime where
also the equilibrium critical exponents show a nontrivial
σ-dependence.
An interesting extension of this study could be quenches

of off-critical mixtures or mixtures of a larger number of
different components [58], since for sufficiently low con-
centration of the minority species only the transport of
particles through evaporation and deposition on other
droplets remains, for which the arguments presented
in [39] predicting a σ-independent growth law may be
valid and, hence, also a different behavior of the autocor-
relation function can be expected.
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