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This Supplemental Material contains the raw
data for the autocorrelation function. For these
data the dynamical scaling for the two most
common scaling variables y = t/tw and x =
`(t)/`(tw) is presented. Additionally, details on
the fitting procedure for the chosen scaling vari-
able y are discussed, where in particular the
choice of parameters of the fits and the resulting
fitting parameters are presented. Finally, the
influence of the inclusion of an asymptotic cor-
rection term into the fit ansatz is investigated.

LOSS OF TIME-TRANSLATION
INVARIANCE AND DYNAMICAL

SCALING

One main aspect of aging is the loss of time-
translation invariance of the autocorrelation
function C(t, tw), i.e., C(t, tw) shows no scal-
ing as a function of t − tw. Instead one ob-
serves dynamical scaling in terms of y = t/tw or
x = `(t)/`(tw). For the scaling variable y, this
is demonstrated in Fig. S1, where for all the
considered values of σ and the nearest neigh-
bor model (NN) the autocorrelation function
C(t, tw) is shown for different waiting times.
The main plots show C(t, tw) as a function of y
and the insets show the same data as a function
of t − tw. The plots contain also data which is
finite-size affected (see next section) for which
deviations from the master curve are expected.
For a facilitated distinction of the finite-size af-
fected data, we have plotted the corresponding
points transparently.

While clearly time-translation invariance is
broken, as visible from the inset, the data col-

lapse in the main plots is excellent for all σ and
the NN model. The earliest waiting time was
chosen in such a way that it is minimal but
without affecting the quality of the dynamical
scaling. For the fits in the next section, only the
data for this earliest tw is taken since it offers
the longest period of finite-size unaffected data.
The other waiting times were chosen in such a
way that dynamical scaling is clearly visible.

Using the same values of tw as in Fig. S1, the
quality of the dynamical scaling for the variable
x is investigated in Fig. S2, where another il-
lustration of the broken time-translation invari-
ance is not provided but the finite-size affected
data are again plotted transparently. With an
appropriate zoom into the figure, it is clearly
visible, that the quality of the dynamical scal-
ing for most values of σ is noticeably compro-
mised. Due to the more consistent dynamical
scaling in y we will only perform the fits using
y as scaling variable.

FITTING PROCEDURE

Now that the prerequisites for aging are
checked, the autocorrelation exponent can be
extracted from the data. In the following, we
present a detailed discussion of the fitting pro-
cedure for the two different ansätze where first
a simple (asymptotic) power law

f(y) = Ay−λ/z (S.1)

is used. Additionally, an ansatz

f(y) = Ay−λ/z(1−B/y) (S.2)
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is considered which includes a low-order correc-
tion term, accounting for preasymptotic effects.
The growth exponent z is always kept fixed to
its theoretical value z = min(2 + σ, 3). At the
crossover point σ = 1 both the equilibrium crit-
ical behavior as well as the asymptotic growth
of the characteristic length scale `(t) carry log-
arithmic corrections. Since the autocorrelation
function C(t, tw) for σ = 1 does not show any
peculiarities indicating a possible logarithmic
correction, however, we do not include any log-
arithmic correction term into the fitting ansatz
for σ = 1 either.

As discussed in the main text, the fitting in-
terval [ymin, ymax] is chosen in the following way:
First all data for which noticeable finite-size ef-
fects in `(t) are visible (cf. Fig. 2 in the main
text) are discarded. The ymax is determined
roughly from the deviations of the autocorrela-
tion functions for the chosen tw and the next
larger tw. In some cases, however, the fluctua-
tion of C(t, tw) are already quite strong, even for
y < ymax, in which cases we reduced the value of
ymax further. This avoids an increase in statis-
tical errors and the accumulation of systematic
errors. The values of ymin were chosen in such a
way that the fit interval is maximal with the re-
striction that no strong systematic trend in the
resulting fit parameters is visible and the value
of χ2/dof does not show any strong increase.
Note that the value of χ2/dof has no absolute
meaning since the data are correlated. How-
ever, a strong ramp remains an indication that
the ansatz becomes inappropriate for the data.
The above procedure is illustrated in Figs. S3
and S4 for the ansatz without and with correc-
tion term, respectively, showing the dependence

of χ2/dof and the fitting parameters on ymin.
Both ansätze show a sharp increase of χ2/dof
for decreasing ymin, which is accompanied also
by an onset of stronger trends in the resulting fit
parameters. Especially for the fits including the
correction term in Fig. S4, there are very pro-
nounced plateaus in the resulting fit parameters
which underscore the robustness of the ansatz.
We have thus decided to present the values of λ
obtained from the fits with the correction term
in the main text, since they seem to be more
robust and thus less prone to systematic errors.

The resulting fits, together with the fitted
correlation function are presented in Fig. S5 and
Fig. S6 without and with correction term, re-
spectively. The fits with correction term de-
scribe the data over a significantly longer in-
terval compared to the corresponding fit with-
out correction, explaining the enhanced stabil-
ity of the resulting fit parameters. In Tables S1
and S2 the input parameters for the fits and the
parameters of the outcoming best fitting curves
are reported for convenience such that the in-
terested reader can better compare the different
settings and results. Finally, the dependence
of λ on σ is compared for the two ansätze in
Fig. S7. There it is clearly visible that the fits
with and without correction are for most values
of σ in very good qualitative agreement. The
statistical errors which we assess by Jackknif-
ing over the different realizations (initial con-
ditions and thermal noises) tend to be reduced
upon introducing the correction term. While in-
creased statistical errors would be expected due
to the additional fitting parameter, the signif-
icantly extended fitting ranges overcompensate
this effect, enabling a clear statement about the
crossover behavior in the regime 1 . σ . 2.
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FIG. S1: Illustration of dynamical scaling with respect to y = t/tw (main plots) and loss of
time-translation invariance (insets).
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FIG. S2: Illustration of dynamical scaling with respect to x = `(t)/`(tw). For most σ the data
collapse is considerably worse than for the scaling variable y used in Fig. S1.
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FIG. S3: Illustration of the influence of the choice of the lower fit boundary ymin on χ2/dof and
the resulting fit parameters for the asymptotic fit ansatz f(y) = Ay−λ/z with y = t/tw using the
smallest tw for each σ (cf. Fig. S1). The vertical dotted lines indicate the finally chosen ymin.
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FIG. S4: Same as Fig. S3 for the fit ansatz f(y) = Ay−λ/z(1−B/y) with correction term.
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FIG. S5: Plots of the asymptotic fits f(y) = Ay−λ/z to C(t, tw) where the data for the smaller tw
are fitted in the previously chosen intervals [ymin, ymax]. The solid lines indicate the fitting range
and the dotted lines represent the continuation of the fits beyond the fitting interval.
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FIG. S6: Same as Fig. S5 for the fits f(y) = Ay−λ/z(1−B/y) with correction term.
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Table S1: Fit parameters for the asymptotic fit f(y) = Ay−λ/z.

input results
L σ tw tmin tmax `(tw) `(tmin) `(tmax) χ2/dof λ A

2048 0.6 1.50× 105 4.35× 106 1.32× 107 60.2 200.1 304 0.04 4.03(39) 4.9(2.6)

2048 0.8 1.50× 105 3.47× 106 1.22× 107 46.8 136.9 214 0.06 3.90(17) 3.70(74)

2048 0.9 2.00× 105 4.96× 106 1.22× 107 46.2 137.9 191 0.11 4.04(18) 3.83(79)

2048 1 2.00× 105 4.71× 106 2.00× 107 42.2 122.2 204 0.11 3.98(14) 3.49(55)

1024 1.1 2.00× 105 6.15× 106 1.02× 107 38.9 121.8 145 0.03 3.93(17) 3.60(69)

1024 1.5 3.00× 105 4.98× 106 2.43× 107 34.4 86.3 148 0.34 3.604(64) 2.79(19)

1024 2 3.00× 105 4.59× 106 3.03× 107 28.3 68.4 129 0.08 3.455(42) 2.56(11)

512 3 3.00× 105 4.61× 106 3.33× 107 23.3 55.7 109 0.21 3.357(45) 2.42(11)

512 10 5.00× 105 1.09× 107 6.25× 107 20.6 55.7 101 0.09 3.431(59) 2.62(18)

1024 NN 8.00× 105 1.76× 107 1.21× 108 20.4 56.0 108 0.09 3.367(39) 2.49(11)

Table S2: Fit parameters for the fit with correction f(y) = Ay−λ/z(1−B/y).

input results
L σ tw tmin tmax `(tw) `(tmin) `(tmax) χ2/dof λ A B

2048 0.6 1.50× 105 1.46× 106 1.32× 107 60.2 134.1 304 0.05 4.06(26) 5.5(1.9) 2.71(88)

2048 0.8 1.50× 105 8.20× 105 1.22× 107 46.8 82.7 214 0.10 3.974(89) 4.26(41) 1.77(16)

2048 0.9 2.00× 105 9.80× 105 1.22× 107 46.2 78.2 191 0.09 4.082(75) 4.24(30) 1.68(11)

2048 1 2.00× 105 1.61× 106 2.00× 107 42.2 84.3 204 0.05 4.12(11) 4.42(53) 2.06(31)

1024 1.1 2.00× 105 1.01× 106 1.02× 107 38.9 65.9 145 0.14 3.867(53) 3.49(18) 1.487(89)

1024 1.5 3.00× 105 1.86× 106 2.43× 107 34.4 62.0 148 0.38 3.772(58) 3.58(23) 1.60(14)

1024 2 3.00× 105 1.72× 106 3.03× 107 28.3 49.4 129 0.32 3.626(40) 3.29(14) 1.494(85)

512 3 3.00× 105 1.61× 106 3.33× 107 23.3 39.4 109 0.45 3.518(41) 3.07(13) 1.424(83)

512 10 5.00× 105 5.43× 106 6.25× 107 20.6 44.2 101 0.10 3.540(83) 3.12(34) 1.39(42)

1024 NN 8.00× 105 4.40× 106 1.21× 108 20.4 35.2 108 0.26 3.500(26) 3.056(81) 1.399(54)
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FIG. S7: Comparison of the σ-dependence of λ for the two considered fit ansätze.


