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Using Monte Carlo computer simulations, we investigate the kinetics of phase separation in the two-
dimensional conserved Ising model with power-law decaying long-range interactions, the prototypical
model for many long-range interacting systems. A long-standing analytical prediction for the characteristic
length is shown to be applicable. In the simulation, we relied on our novel algorithm which provides a
massive speedup for long-range interacting systems.
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Phase separation is relevant not only for many practical
applications [1–3] but also from a theoretical point of view
[4–6] and is one of the most fundamental processes that
leads to pattern formation. It is observed in fields ranging
from quantum physics [1,7–9] and biological science
[2,10–14] to cosmology [15,16], spanning all relevant
length and interaction scales. In many of these fields,
the involved forces are inherently long range [17–24]. To
understand the underlying processes and the most funda-
mental scaling laws, we focus here on the kinetics of phase
separation in the two-dimensional long-range Ising model
(LRIM) with conserved order parameter, which is a
prototype model for binary mixtures with long-range
interactions. It has the Hamiltonian

H ¼ −
X
i<j

Ji;jsisj; Ji;j ¼ r−ðdþσÞ
i;j ; ð1Þ

where si ¼ �1 are spins and ri;j is the distance between si
and sj. Here, d is the dimension, and the parameter σ can be
used to tune the power-law decay of the couplings Ji;j > 0,
enabling one to investigate systems belonging to different
universality classes.
To study the phase-separation kinetics in this model,

initially, equally many up and down spins are randomly
placed on a square lattice (magnetization m≡ 0), corre-
sponding to an equal volume fraction in a particle picture.
Subsequently, the system is quenched below the critical
temperature and evolved through local Monte Carlo
Kawasaki dynamics [25]. In this type of dynamics, the
spins are only allowed to exchange the position with one of
their nearest neighbors, keeping the overall order parameter
conserved.
Since with long-range interactions all spins interact with

each other, a priori, one has to take into consideration ∼N
interactions at every proposed spin exchange to reach a
decision according to the Metropolis criterion. This has
hitherto hindered the investigation of large systems which

in the presence of long-range interactions need to be even
larger than for short-range interacting systems due to
stronger finite-size effects. In the past there have been
several algorithmic developments to mitigate the problem
stemming from the inherent OðN2Þ computational com-
plexity. One category comprises Monte Carlo algorithms
that circumvent the calculation of the energy differences
involved in the updates [26–29] which, however, do not
reproduce the desired Metropolis dynamics. Other algo-
rithms directly speed up the evaluation of the energy
difference needed for the decision about the attempted
updates [30–32] and are thus in principle applicable for
the simulation with Metropolis dynamics. In our recent
work [33] we discuss these algorithms in comparison to our
newly developed hierarchical and adaptive algorithm,
which we will be employing in this study. The new
algorithm reproduces identical trajectories as conventional
Metropolis simulations. Originally, the method was opti-
mized for the simulation of the LRIM with nonconserved
order parameter and single spin flips. The necessary
adaptation for the simulation of the LRIM with conserved
order parameter and nearest-neighbor exchanges can be
encoded into the set of couplings which is used for the
simulation, without any need of further adjustments [34].
The algorithm is characterized by a reduced computational
complexity and small prefactors which together lead to
massive speedup factors ranging from ≈150 for σ ¼ 0.6 to
≈450 for σ ¼ 1.5 compared with a direct summation of all
interactions, for the simulated systems here with N ¼ L2 ¼
10242 spins. For technical details, see the Supplemental
Material [34]. Another approach is the use of hardware
accelerators. In Ref. [38] an efficient implementation on
GPUs was proposed which we expect to yield a speedup of
< 20 for our application [39].
Even though the order parameter remains constant, the

system becomes more ordered, which is reflected in an
increase of the characteristic length lðtÞ with time t. The
characteristic length is of interest in two ways: For one
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thing, it is needed to check for dynamical scaling, the
foundation of the theory of phase-ordering kinetics [4–6].
The other important aspect is the scaling behavior of lðtÞ,
which for many models can be described by a power law:
lðtÞ ∼ tα with the growth exponent α. Based on determin-
istic continuum models [40,41], there exist predictions for
the growth laws for general OðnÞ models [42–44] with
conserved and nonconserved order parameter. In particular,
for the LRIM with conserved order parameter dynamics the
prediction in the asymptotic limit of large t based on the
Cahn-Hilliard [41] approach reads as [42–44]

lðtÞ ∼ tα ¼

8>><
>>:

t1=3 σ > 1

ðt ln tÞ1=3 σ ¼ 1

t1=ð2þσÞ σ < 1

; ð2Þ

independently of the dimension. For σ > 1 (the potential
decays comparatively rapidly) one recovers the Lifshitz-
Slyozov exponent α ¼ 1=3 known for short-range interact-
ing models from theory [4,45], simulations [46–53], and
experiments [54]. At the crossover point σ ¼ 1 a multipli-
cative logarithmic correction to the growth is expected. For
σ < 1 (slower decaying potential) a faster growth is
predicted, which can be understood qualitatively by addi-
tional pseudoforce contributions leading to an effective
drift of the domain walls toward each other [55,56]. In
equilibrium for d ¼ 2, one observes three regimes [57,58]:
For σ ≤ d=2 ¼ 1 the mean-field regime, for d=2 < σ ≤
2 − ηsrðdÞ ¼ 7=4 the intermediate regime with σ-dependent
critical exponents, and for σ > 2 − ηsrðdÞ the short-range
regime [59].
The correspondence between deterministic continuum

models and stochastic lattice models is in general rather
good, but there are some exceptions. One example is the
nonconserved nearest-neighbor Ising model quenched to
zero temperature, where one finds t1=2 in contrast to ln t as
obtained in the continuum theory [4]. Recently, such
deviations have also emerged in case of long-range inter-
actions: While for quenches of the nonconserved LRIM to
finite temperatures the corresponding continuum prediction
[42–44] was confirmed [32,56], for quenches to zero
temperature a deviation from the prediction was found
[56,60,61], leading to a σ-independent growth law with
nontrivial exponent. For the one-dimensional conserved
LRIM, it was argued in Ref. [56] that the underlying
mechanism of domain growth is completely different in
deterministic continuum and stochastic discrete models.
There, analytical considerations and simulations of a sim-
plified model at low temperatures lead to a σ-independent
growth with short-range-like behavior ∼t1=3. In this light, it
is therefore of particular interest to check the predic-
tion [Eq. (2)] obtained via the deterministic continuum
Cahn-Hilliard equation [41] for the two-dimensional con-
served LRIM.

A visual impression of the growing characteristic length
lðtÞ during phase separation in a quench to T ¼ 0.5Tc is
given in Fig. 1, where one exemplary time evolution is
shown for σ ¼ 0.8 in the upper panels and one for σ ¼ 1.5
in the lower panels. From these snapshots, it appears that
the dynamics is faster for σ ¼ 0.8 than for σ ¼ 1.5, which is
consistent with the prediction [Eq. (2)], although no state-
ment about prefactors is made there.
For a quantitative investigation, we first check the main

feature underlying the kinetics of phase separation [4–6],
i.e., dynamical scaling. Dynamical scaling is reflected in
the observation that the circular and thermal average of the
two-point correlation function

Cðr; tÞ ¼ hsiðtÞsjðtÞi ð3Þ

becomes a function of the scaled distance r=lðtÞ only:

Cðr; tÞ ¼ f

�
r

lðtÞ
�
; ð4Þ

where r ¼ jri;jj. Dynamical scaling is demonstrated for our
simulations in Fig. 2, where we plot Cðr; tÞ versus r=lðtÞ
using different times [62] for (a) σ ¼ 0.8 and (b) σ ¼ 1.5
with system size L ¼ 1024. Here, the characteristic length
lðtÞ is self-consistently extracted from the first zero
crossing of Cðr; tÞ. The quality of the data collapse is
excellent, confirming the dynamical scaling hypothesis.
The insets show the same data, but unscaled, i.e., Cðr; tÞ
versus r. For increasing times, Cðr; tÞ crosses zero at larger
distances, reflecting the growing length scale. In both plots,
in contrast to the results with nonconserved order parameter
[32], an oscillating behavior of the correlation function can
be observed. This is in qualitative agreement with the phase
separation in the nearest-neighbor model [53].
A related observable is the structure factor Sðk; tÞ ¼R
drCðr; tÞeikr defined as the Fourier transform of the

correlation function, which is plotted in its scaled form
Sðk; tÞlðtÞ−d vs klðtÞ in Fig. 3 for (a) σ ¼ 0.8 and

FIG. 1. Snapshots of exemplary time evolutions for L ¼ 512,
T ¼ 0.5Tc. It is very apparent that the phase separation happens
faster for σ ¼ 0.8 (upper row) than for σ ¼ 1.5 (lower row).
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(b) σ ¼ 1.5 using the same times and the same definition of
lðtÞ as for the correlation function. While in both plots the
large k behavior follows Porod’s law [63], i.e.,
Sðk; tÞ ∼ k−d−1, the small k behavior differs for the two
σ. For small k, one expects Sðk; tÞ ∼ kβ, where β ≥ 4 from
the short-range Cahn-Hilliard equation [64–66]. Our data
seem to be best described by effective exponents β ≈ 3.4 for
σ ¼ 0.8 and β ≈ 3.0 for σ ¼ 1.5, i.e., values that are not
compatible with this bound. A precise and safe assessment
of β is difficult since the available range of relevant k values
is quite small and does not approach sufficiently small k
(which are limited by 2π=L). The observed discrepancy
from the expected value of β ¼ 4 is, however, not surpris-
ing, since for the nearest-neighbor Ising model even smaller
values of β ≈ 2.5 were observed [50].
After the confirmation of the dynamical scaling we now

test the deterministic continuum prediction for the LRIM
considered here. For this purpose, we plot lðtÞ for different
σ on a log-log scale in Fig. 4(a). The solid lines are drawn
according to Eq. (2) where the time ranges always start after
an initial crossover period and stop at the onset of finite-size
effects. For all σ there is a time period over which the data is

compatible with the prediction. In the short-range-like
regime with σ ¼ 1.5 and 1.1 the range in which the
prediction agrees with the data is substantial. Also for σ ¼
1 the observed length scale is very well described by the
corresponding functional form in Eq. (2) when admitting an
additive logarithmic correction whose strength is deter-
mined via an additional constant c leading to lðtÞ ∝
½t lnðctÞ�1=3. The solid line for σ ¼ 1 in Fig. 4(a) with c ¼
200 turns out to be quite insensitive to the chosen value of
c. In the long-range dominated regime with σ < 1, the
asymptotic regime is still well observable for σ ¼ 0.9 and
0.8, but the range in which the data follow the prediction
becomes shorter. This shows the importance of the large
system size L ¼ 1024, a fact which is highlighted in the
inset of Fig. 4(a). There, for σ ¼ 0.8 the length scale
divided by the predicted growth law lðtÞ=tα for different
lattice sizes L is shown. A flat region in this plot
corresponds to a time period where the measured growth
matches the prediction. For the lattice sizes L ¼ 256 and
512 there is no region where the data show a plateau,
meaning that only for L ≥ 1024 the asymptotic behavior
can be observed. For σ ¼ 0.6 the situation becomes even
more difficult. It is apparent from Fig. 4(a) that the region

(a)

(b)

FIG. 2. The correlation function Cðr; tÞ versus the scaled
distance r=lðtÞ for system size L ¼ 1024 at different times for
(a) σ ¼ 0.8 and (b) σ ¼ 1.5. The black dotted lines are inter-
polations which serve as a guide to the eye. In the insets the same
data for the unscaled distance are shown.

(a)

(b)

FIG. 3. Scaled structure factor Sðk; tÞlðtÞ−d versus klðtÞ for
system size L ¼ 1024 at different times for (a) σ ¼ 0.8 and
(b) σ ¼ 1.5. In the insets the same data on unscaled axes are
shown.
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compatible with the prediction is relatively short, which can
be attributed to even stronger finite-size effects than for the
previous two σ values. To emphasize the deviation from the
short-range-like growth, we show in Fig. 4(b) the same data
and solid lines as in (a) but divided by t1=3. For σ ≤ 1, the
data are well compatible with the solid lines showing the
predicted asymptotic growth law and clearly incompatible
with the horizontal dashed lines corresponding to a t1=3

behavior. With our data, we can thus rule out a hypothetical
short-range-like growth as obtained for the one-
dimensional LRIM model for all σ > 0 in Ref. [56].
Thus the confirmation of the prediction in Eq. (2)

required the simulation of a system with more than a
million spins (and thereby more than 1011 interactions) for
more than 107 sweeps, enabled by our new algorithm [33].
Simulations with conserved dynamics are in general
significantly more difficult than simulations with non-
conserved order parameter since the crossover to the

asymptotic growth law happens at very late times. This
fact cannot be compensated for by the drastic speedup of
rejection-free algorithms [50,56] because the low temper-
atures needed for those approaches to work efficiently shift
the crossover to the asymptotic regime to even later times
[50]. Furthermore, the simplifications made in Ref. [56] for
the one-dimensional model cannot be carried over to higher
dimensions, and therefore cannot be applied here. With our
new algorithm we are not restricted to low temperatures
anymore and do not need any simplifications of the model.
Nonetheless the investigation of the phase-separation
process remained a big challenge, since for L ¼ 1024
the simulation for each of the 1200 realizations (200 for
each σ) took more than half a year of wall-clock time to
complete. This corresponds to a total CPU time of more
than 600 core years with the new algorithm and would have
involved more than 100000 core years with a direct
summation of the interactions using the same resources.
To dispel any last doubts about the growth exponent for
σ ¼ 0.6, where the observation period of the asymptotic
behavior is rather short, one would need to simulate
L ¼ 2048, which is at the verge of feasibility even with
our new algorithm.
To conclude, we have for the first time observed the

asymptotic scaling prediction in Eq. (2) for the growth of
the characteristic length lðtÞ during phase separation in the
two-dimensional LRIM with conserved order para-
meter. Key to this finding was our newly developed
algorithm [33] which allows for a very efficient simulation
of the LRIM in a nonequilibrium setting. As outlined
above, Corberi et al. [56] recently found that Eq. (2) does
not properly describe the growth of lðtÞ in the one-
dimensional case. They argued on general grounds that
the good correspondence between noiseless continuum
approaches and the discrete Ising model in the noncon-
served case does not hold for conserved dynamics because
in the latter setting the dynamics in the lattice model is
intrinsically stochastic and hence may not be captured by a
deterministic continuum theory [56]. In light of their
finding for the one-dimensional system, the speculation
emerges that the predictions obtained from noiseless
continuum approaches may in general not transfer to the
discrete Ising model with conserved order parameter. Our
observation that lðtÞ does match the prediction for the two-
dimensional LRIM thus rules out the hypothesis of a
general breakdown of this correspondence.
A future perspective is the investigation of the early time

behavior during the phase separation of the LRIM at low
temperatures, as performed, e.g., in Ref. [56], or the study
of phase separation during quenches to the critical temper-
ature [67]. Another possible extension is the investigation
of two-time quantities with a focus on aging [67] for which
no analytical predictions exist. As recently observed for the
nonconserved model in Ref. [68], we expect to find a
nontrivial aging exponent.

(a)

(b)

FIG. 4. (a) Characteristic length lðtÞ versus time t for σ ¼ 0.6,
0.8, 0.9, 1.0, 1.1, and 1.5 and lattice size L ¼ 1024 on a log-log
scale. The solid lines show the prediction [Eq. (2)]. The dashed
line corresponding to t1=3 highlights the deviation between short-
and long-range growth. In the inset we show the data for σ ¼ 0.8
divided by the expected growth tα ¼ t1=2.8 for three different
system sizes. The horizontal black line is drawn over the same t
range as the solid line in the main plot. (b) Same data as in (a) but
divided by t1=3 highlighting the deviation from the short-range
growth behavior, represented by the horizontal dashed lines.
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