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TECHICAL DETAILS OF THE SIMULATION

The simulations are performed on finite L × L square
lattices with periodic boundary conditions. Unavoidable
finite-size effects can be mitigated by implementing the
periodic boundary condition via Ewald summation [1].
We replace the couplings which describe the infinite sys-
tem,

Ji,j = J(ri,j) = |rj − ri|−(d+σ)
= r

−(d+σ)
i,j , (1)

from the Hamiltonian (1) of the main article by couplings
which directly incorporate the Ewald summation [2],

JPBC(ri,j) =

∞∑
µ,ν=−∞

J (ri,j + µLêx + νLêy) , (2)

where êx and êy are the unit vectors in x and y direction.
Since Ewald summation preserves translational symme-
try the couplings do not need to be stored for each pair
si, sj but it is sufficient to calculate the couplings once at
the beginning of a simulation for each possible distance
vector ri,j . Thus, these couplings can simply be used
in conjunction with the minimum image convention. In
the following we drop the superscript “PBC” to ease the
notation.

The evolution of the system takes place only through
exchanges of randomly drawn directly neighboring spins,
which constitute the most local configurational changes
conserving the order parameter. The simulation process
is repeated for at least 1000 realizations for L = 256,
400 realizations for L = 512, and 200 realizations for
L = 1024 with different initial configurations and thermal
noise. The simulations proceed by proposing nearest-
neighbor exchanges and accepting them according to the
Metropolis criterion

Pacc = min
(
1, e−β∆E

)
, (3)

where only the change in energy ∆E and the inverse tem-
perature β enter. The energy difference is measured be-
tween proposed new and the old configuration,

∆E = Enew − Eold. (4)

For the energy difference for each single spin pair we have

∆E(si, sj) = Ji,js
new
i snewj − Ji,js

old
i soldj , (5)

which is nonzero only in the case where one of the two
spins is flipped. Exchanging two spins which point in

the same direction does of course not lead to a change in
the configuration and hence neither in the energy of the
system. We discuss the role of parallel spin pairs in the
next section, but now first focus on the exchange of spins
pointing in the opposite direction.

For an exchange of two such spins si and sj pointing
in opposite direction we can write the change in energy
as

∆E = 2
∑

k/∈{i,j}

J(ri,k)s
old
i sk+2

∑
k/∈{i,j}

J(rj,k)s
old
j sk. (6)

In the summation the two exchanged spins are neglected
because the interaction between the two spins which are
flipped does not change during the exchange, as shown
in Eq. (5). Accounting for soldi = −soldj we obtain

∆E = 2soldi

∑
k/∈{i,j}

[J(ri,k)− J(rj,k)] sk. (7)

Using rj,k = ri,k − ri,j yields

∆E = 2soldi

∑
k/∈{i,j}

[J(ri,k)− J(ri,k − ri,j)] sk

= 2soldi

∑
k/∈{i,j}

Jeff
ri,j (ri,k)sk (8)

where

Jeff
ri,j (ri,k) = J(ri,k)− J(ri,k − ri,j). (9)

These effective couplings now have the form of a gener-
alized dipole interaction which in contrast to the origi-
nal couplings loose the strict positivity, decay faster, and
carry a strong anisotropy. As mentioned before, we only
propose spin exchanges along the principal axis of the
lattice between two spins at distance 1. Thus, the vector
rij can be generated from êx by a rotation with an angle
φ ∈ {0, π/2, π, 3π/2},

ri,j = O(φ(j))êx ≡ O(j)êx (10)

where the subscript (j) on the rotation matrix O indi-
cates the dependence of the rotation on the specific ri,j
(the index i is anyway fixed throughout). Then

Jeff
ri,j (ri,k) = J(ri,k)− J(ri,k − ri,j)

= J(ri,k)− J(ri,k −O(j)êx) (11)
= J(O(j)O

−1
(j)ri,k)− J(O(j)(O

−1
(j)ri,k − êx)).
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Even after the Ewald summation the couplings J remain
invariant under the above considered rotations

J(O(j)r) = J(r). (12)

Hence
Jeff
ri,j (ri,k) = J(ri,k)− J(ri,k − ri,j)

= J(O−1
(j)ri,k)− J(O−1

(j)ri,k − êx) (13)

= Jeff
êx

(O−1
(j)ri,k)

which expresses the effective couplings for any of the 4
possible nearest neighbors ri,j in terms of the effective
couplings for ri,j = êx subject to an (inverse) rotation of
ri,k. With theses couplings, we can rewrite (7) as

∆E = 2soldi

∑
k 6=i,j

Jeff
ri,j (ri,k)sk (14)

= 2soldi

∑
k 6=i,j

Jeff
êx

(O−1
(j)ri,k)sk, (15)

which allows us to compute the energy difference ∆E
with a single set of effective couplings

Jeff
êx

(ri,k) = J(ri,k)− J(ri,k − êx). (16)

This helps to minimize the memory requirement of the
simulation which becomes important for the simulation
of very large systems where the couplings and the quan-
tities which are derived from them become very large in
memory.

With this formulation of ∆E in (15), we are now able
to efficiently use the new algorithm [3] for the here consid-
ered conserved long-range Ising model, which was orig-
inally optimized for the nonconserved long-range Ising
model. It uses the observation, that the energy differ-
ence ∆E involved in a proposed spin exchange does not
need to be known exactly and its direct calculation can
be avoided in favor of a decision based on exact lower
and upper bounds [4]. This is achieved by means of a
dynamical tree-like hierarchical data structure, which en-
ables the collective treatment of many interactions at a
time. While the original implementation was optimized
and tested for the nonconserved long-range Ising model,
we are able to carry over all optimizations which were
conceived there. However, for the sake of an efficient
implementation, instead of excluding si and sj from the
summation in (15), it is more practical to set the two
effective couplings Jeff

êx
(0) = Jeff

êx
(êx) = 0 in (16) which

represent the self-interaction of the two exchanged spins
and the interaction between them. This has the addi-
tional advantage of matching the conventions of the al-
gorithm in Ref. [3].

THE ROLE OF PARALLEL SPIN-PAIRS

During the process of phase separation the domains of
aligned spins grow steadily as is evident from the growth
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FIG. 1. Evolution of the fraction of anti-parallel spin pairs
during the phase separation process for (a) σ = 0.8 and (b)
σ = 1.5 and L = 1024.

of the characteristic length `(t). As a direct consequence,
the probability of finding two aligned spins when pick-
ing a random pair of two neighboring spins grows with
proceeding simulation time. The decision about the ex-
change of such a parallel spin pair is, of course, trivial
since it changes neither the configuration nor the energy
of the system. Instead of randomly picking pairs of spin
to exchange, we have opted for an alternative approach
where we maintain a list of anti-parallel neighbor pairs
and propose only spin exchanges from this list [5]. In this
formalism the Monte Carlo time is incremented at each
update by 1/m where m is the length of the list. Thus,
one Monte Carlo sweep corresponds to 2N = 2L2 spin-
exchange attempts, which sets the time scale of the sim-
ulations. With this simple algorithmic trick the overhead
of the trivial spin exchanges is almost completely elim-
inated. Especially for the usual nearest-neighbor Ising
model, the approach speeds up the simulation consider-
ably, particularly in the late stage of the phase-ordering
process.

For a parallel implementation, for example on GPUs
as proposed in Ref. [6], the role of aligned spin pairs is
very different. There, the parallel efficiency relies on the
fact that all updates during one sweep can be treated in
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parallel. By minimizing the penalty of the parallelization
with a clever protocol a 440-fold speedup for the simula-
tion in a very dilute regime was reported. The algorithm
was originally presented for an off-lattice particle system,
but could also be applied to our simulation setting where
a spin exchange in the Ising language would be mapped to
a particle hopping in the particle picture. In the particle
language a spin exchange of two aligned spins represent-
ing particles, corresponds to a particle hopping onto an
occupied lattice site, which is of course forbidden. Also
in the particle picture a pre-rejection scheme would be
trivial in a sequential implementation: Do not calculate
the energy and reject the update (or do not even propose
it as described above), and move to the next update.
Conversely, in a parallel algorithm all the updates need
to be performed simultaneously to exploit all available
resources. Even if the decision about some proposed up-
dates is trivial, the algorithm can only continue to run
once the decisions about all the updates are taken, ren-
dering the trivial updates as expensive as the non-trivial
ones. This issue is also mentioned in Ref. [6], where it is
stated clearly that a “naive pre-rejection strategy on the
GPU implementation cannot improve the performance”.
To investigate the influence of the pre-rejection probabil-
ity on the performance of a parallel implementation with-
out pre-rejection strategy we need to look at the fraction
of neighbors which point into opposite direction defined
as the fraction of the number of anti-parallel and total
number of neighboring spin pairs

P��(t) =
N��(t)

N��(t) +N��(t)
, (17)

where N�� is the number of anti-parallel neighbor pairs
and N�� the number of parallel neighbor pairs. Addition-
ally, we want to investigate the running average of this
quantity

P��(t) =
1

t

∫ t

0

P��(t
′)dt′. (18)

In Fig. 1 we show P��(t) (red circles) and P��(t) (blue tri-
angles) for σ = 0.8 and σ = 1.5 for L = 1024. Most
relevant to the average performance of the algorithm is
the average fraction of anti-parallel spins over the course
of the entire simulation P��(tmax) which shows that dur-
ing the complete time evolution picking a random pair
of neighboring spins yields two anti-parallel spins in only

5% of the cases for σ = 0.8 and 2% of the cases for
σ = 1.5. While for a sequential algorithm, where the cost
of the energy evaluation dominates, this translates into
a speedup of ≈ 20− 50, a parallel implementation would
need the same amount of time as for the rare case where
all the proposed pairs of neighbors are anti-parallel, thus
loosing a large factor in its effective parallel efficiency.

We attribute the dependence of P��(t) on σ (grow-
ing number of anti-parallel spin pairs with decreasing σ)
to the increasing absolute quench temperatures with de-
creasing σ. On average for all σ we find P��(tmax) ≈ 0.04
which translates to a loss in parallel efficiency by a factor
of ≈ 25 for the GPU implementation and thus results in a
remaining speedup of < 20 (instead of ≈ 440) in compar-
ison to a sequential implementation with a pre-rejections
scheme. Our speedup factor of 150 − 450 in the main
text is reported with respect to a sequential implemen-
tation with the same pre-rejection strategy as used for
our new algorithm, which altogether yields a more than
7-fold speedup of our simulation running on a single core
of a CPU compared to a simulation utilizing a full GPU
with the method introduced in Ref. [6].
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