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This supplemental material provides more detailed in-
formation on the algorithms used to generate and analyze
the data. We briefly describe the two used Monte Carlo
method. First the extension of the one-dimensional replica
exchange method to a further parameter, and secondly
the combination of the one-dimensional replica exchange
with the multicanonical method. The data generated by
the two-dimensional replica exchange is an ideal basis for
a two-dimensional weighted histogram analysis method,
which is explained next. Finally, we describe how the
employed knot closure is constructed and compare it with
a different way to connect the two ends of the polymer.

MONTE CARLO ALGORITHMS

The microstates (conformations) of potentially knotted
semiflexible polymers are rather complex. This gives rise
to a very rugged free-energy landscape, severely hamper-
ing standard simulations [1]. To cope with this problem,
we have implemented two sophisticated simulation meth-
ods described below, which are complementary to each
other. As a useful cross-check, all simulations have been
performed with both of them and we carefully checked
that the results agree within statistical error bars.

Two-dimensional replica exchange

The two-dimensional replica exchange method (2D-
RE) is an extension of the standard parallel-tempering
method [2]. The parallel-tempering method simulates m
different replicas at once, each at a different temperature
Tµ = 1/βµ. Every now and then, for two replicas µ
and ν an exchange of their states {r} is proposed. To
ensure detailed balance, these exchanges are accepted
with probability

p
(
{r}µ → {r}ν

)
= min (1, exp (∆β∆E)) , (1)

where ∆β = βµ − βν is the difference in the inverse
temperature and ∆E = Eµ − Eν is the difference in the
energy.

If the simulated system has a Hamiltonian of the form

H = E0 + κE1, (2)

we can construct a two-dimensional replica exchange
method which simultaneously probes the system in T

and κ. This means that instead of simulating m temper-
atures at once, we now simulate m different parameter
pairs (T, κ)m. The exchange probability is then given as

p
(
{r}µ → {r}ν

)
= min (1, exp (∆β∆E0 + ∆ (βκ) ∆E1)) ,

(3)

with ∆ (βκ) = βµκµ − βνκν . In the two-dimensional
parameter space, the simulation can avoid topological
barriers which hinder the flux of the replicas. In principle,
one is not restricted to systems with a Hamiltonian as
in (2), but this form is needed when weighted histogram
analysis is applied to the generated data.

MUCA+RE

The idea behind multicanonical sampling [3] is relatively
simple – the canonical Boltzmann weight is replaced by
an artificial one:

ZCAN =
∑
E

Ω(E) exp (−βE)

→ ZMUCA =
∑
E

Ω(E)W (E). (4)

In principle, the multicanonical weight W (E) can have
arbitrary form, but if it is chosen as the inverse of the
density of states W (E) = Ω(E)−1, the simulation spends
an equal amount of time at each energy, leading to a
constant energy histogram H(E). Thus, the simulation
acts as a random walker in the energy landscape and
samples all regions of the phase space, even if they are
suppressed in the canonical ensemble. To calculate the
canonical expectation value of an observable O one can
reweight the resulting time series of N measurements to
the inverse temperature β via

〈O〉β ≈ Oβ =

∑N
i=1Oi exp(−βEi)W−1(Ei)∑N
i=1 exp(−βEi)W−1(Ei)

, (5)

where Oi and Ei denote the measurements at “time” i.
One problem remains: Since we do not know Ω(E)

beforehand it is not obvious how to construct W (E) such
that the resulting histogram H(E) becomes flat. A pos-
sible approach is a procedure where, for a given weight
Wn(E), one measures the energy histogram Hn(E) and
improves the weight iteratively via

Wn+1(E) =
Wn(E)

Hn(E)
, (6)
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until the resulting histogram is sufficiently flat. The
iteration can be initialized with W0(E) = 1.
This algorithm can easily be parallelized [4]. Instead

of simulating the system only once, one can use m differ-
ent copies that have identical weights but start with a
different seed for the random number generator and thus
realize different Markov chains. After each iteration the
histograms Hi

n(E) of all replicas i = 1, . . . ,m are summed
up and the next weight is calculated from the summed
histograms,

Wn+1(E) =
Wn(E)∑m
i=1H

i
n(E)

. (7)

This enables us to use many CPUs (in the present study up
to 128) for one multicanonical simulation and drastically
reduces the needed wall-clock time.

If the simulated system suffers from suppressed regions
in the phase space which are not reflected in the energy
distribution p(E) (but rather in observables “orthogonal”
to E), the multicanonical simulation can get stuck. As
we have shown in this work, the knotting transitions are
exactly of this kind. A stuck simulation results in his-
togramsHn(E) which do not become flat, even after many
iterations. In most cases this is visible as a large peak
in Hn(E) which tends to persist in the multicanonical
iterations. To cope with this problem we added a replica
exchange in “orthogonal” direction to the multicanoni-
cal method (MUCA+RE). As in the parallel-tempering
method one simulates m different replicas, in our case
each at a different parameter κk, k = 1, . . . ,m. The
underlying method is a multicanonical simulation using
weights Wκ(E) instead of a Metropolis simulation with
weights e−βk(E0+κkE1). The exchange probability thus
becomes

p
(
{r}µ → {r}ν

)
= min

(
1,
Wκ(Eκ

′

µ )Wκ′(Eκν )

Wκ′(Eκ′
ν )Wκ(Eκµ)

)
, (8)

where {r}µ is the state of the replica at κ with weight
Wκ and {r}ν is the state of the other replica at κ′ with
weight Wκ′ . The term Eκµ denotes the energy of state
{r}µ for the Hamiltonian defined by κ.

TWO-DIMENSIONAL WEIGHTED HISTOGRAM
ANALYSIS METHOD

The one-dimensional weighted histogram analysis
method (WHAM) [5] was originally developed for an
optimal combination of data from several canonical sim-
ulations, each at a different inverse temperature βi. By

employing the WHAM equations [5]

Ω(E) =

∑m
k=1 g

−1
k Hk(E)∑m

k=1Nkg
−1
k Z−1βk

e−βkE
, (9)

Zβi
=
∑
E

Ω(E)e−βiE

=
∑
E

e−βiE

∑m
k=1 g

−1
k Hk(E)∑m

k=1Nkg
−1
k Z−1βk

e−βkE
, (10)

one can self-consistently calculate the density of states
Ω(E). One starts with an initial guess of the (a priori)
unknown Zβi and iterates Eq. (10) until the Zβi reach a
fixed point. Then Eq. (9) can be used to calculate Ω(E).
In Eqs. (9) and (10), Hk(E) are the measured histograms
at βk, Nk is the number of data points used to generate
Hk(E), and gk = 1 + 2τk accounts for the integrated
autocorrelation time τk.

With the data obtained from a two-dimensional replica
exchange method on a system with a Hamiltonian of form
(2), one can easily extend the WHAM equations by an
additional parameter:

Ω(E0, E1) =

∑m
k=1 g

−1
k Hk(E0, E1)∑m

k=1Nkg
−1
k Z−1βk,κk

e−βk(E0+κkE1)
, (11)

Zβi,κi =
∑
E0,E1

[
e−βi(E0+κiE1) ×

∑m
k=1 g

−1
k Hk(E0, E1)∑m

k=1Nkg
−1
k Z−1βk,κk

e−βk(E0+κkE1)

]
. (12)

Hk(E0, E1) is now the two-dimensional histogram mea-
sured at (β, κ)k. Having determined the two-dimensional
density of states Ω(E0, E1), the canonical expectation
value of an observable O at any β and κ can be calculated
similarly to (5),

Oβ,κ =

∑
E0,E1

O(E0, E1)Ω(E0, E1)e−β(E0+κE1)∑
E0,E1

Ω(E0, E1)e−β(E0+κE1)
. (13)

KNOT CLOSURES

To identify knots in open polymers one has to apply a
closure prescription. The easiest one would be to draw a
virtual bond connecting the two termini of the polymer,
but this direct closure would result in quite complicated
knots when the polymer is very compact. In this work
we employed the closure CI, which is inspired by tying a
real knot, see Fig. 1. First we connect both termini of the
polymer by a straight line. This connecting line is then
extended in both directions, so that we get two new virtual
points A′ and B′ located far away from all monomers.
We create a third virtual point C on a perpendicular
bisector of the connecting line and also far away from all
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FIG. 1. The closure CI shifts the two termini of the polymer,
A and B, on the line connecting these termini far outside the
polymer to points A′ and B′. A new point C is created on
a line perpendicular to the connecting line and the points A′

and B′ are virtually closed through C.
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FIG. 2. The closure CII shifts the two termini, A and B, to
points far outside the polymer and then closes the new termini,
A′ and B′, virtually.

monomers. The polymer is now closed via straight lines
connecting C with A′ and B′, respectively. For testing
purpose we also implemented a second closure, CII. Here
one virtually increases the bond length of the first and
last bond to two new virtual termini A′ and B′ that are
then connected by a straight line to close the polymer,
see Fig. 2.

Figure 3 shows that the closures CI and CII give qualita-
tively similar results, and are both suitable for identifying
the knotted region. However, with CI all measured states
in the low-temperature region have the identical knot type
K31 which means an identical value of the topological
order parameter D = 9.05463 . . . , and thus, no statistical
fluctuations are observable.
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CIIFIG. 3. Topological order parameter 〈D〉 measured by

employing the closures CI, CII, and a direct closure for a
14mer at κ = 3.0. The errors are on the order of the line
width.
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