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We study self-avoiding walks on three-dimensional critical percolation clusters using a new exact
enumeration method. It overcomes the exponential increase in computation time by exploiting the clusters’
fractal nature. We enumerate walks of over 104 steps, far more than has ever been possible. The scaling
exponent ν for the end-to-end distance turns out to be smaller than previously thought and appears to be the
same on the backbones as on full clusters. We find strong evidence against the widely assumed scaling law
for the number of conformations and propose an alternative, which perfectly fits our data.
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The self-avoiding walk (SAW) [1] is a fundamental
model in statistical mechanics and crucial for our under-
standing of the scaling behavior of polymers [2].
Asymptotically, it is characterized by universal exponents,
which are related to the critical exponents of spin systems
and assumed to describe long, flexible polymers in good
solvent condition. While much is known about SAWs on
regular lattices, their behavior in disordered environments,
such as porous rocks or biological cells, is less understood.
The paradigmatic model for such systems are SAWs on
critical percolation clusters [3,4]. Here the walks can only
visit a random fraction of sites, whose concentration is
equal to the percolation threshold of the lattice. This critical
concentration may not be realistic, but it represents an
important limiting case, and the effect of the critical
clusters’ fractal structure is particularly intriguing [5].
One usually considers quenched disorder averages, here

denoted by square brackets: On each disorder realization
(“cluster”), one takes the average over all walk conforma-
tions of length N. Each such conformational average
contributes equally to the disorder average. It is assumed
that the average number of conformations ½Z� and their
mean squared end-to-end distance ½hR2i� follow asymptotic
scaling laws similar to those for normal SAWs:

½Z� ∼ μNNγ−1; ð1Þ

½hR2i� ∼ N2ν ¼ N2=df : ð2Þ

γ and ν are universal scaling exponents, df is the SAW’s
fractal (Hausdorff) dimension, and μ is a lattice-dependent
effective connectivity constant. While the effect of the
fractal disorder on γ and μ is still very controversial, there is
convincing evidence that ν is different than on regular
lattices [6]. However, there is uncertainty concerning the
actual value despite a considerable amount of work
dedicated to the system. Analytical works, employing
real-space and field-theoretical renormalization group

methods, have yielded conflicting results [6–12], while
accuracy and reliability of numerical investigations have
been poor due to modest system and sample sizes. In most
numerical studies (see for instance [13–17]), exact enu-
meration was used to determine the conformational aver-
ages. Owing to exponentially increasing computation
time [see Eq. (1)], the length of the walks was restricted
to 30–50. Chain-growth Monte Carlo methods may allow
for more than a hundred steps [18–22], but they add
statistical uncertainty and the danger of biased results [23].
We recently developed a new algorithm for exact

enumeration of SAWs on two-dimensional critical perco-
lation clusters [24], which we have now generalized to
higher dimensions. By making use of the clusters’ fractal
properties, it overcomes the exponential increase in com-
putation time that usually affects exact enumeration meth-
ods. Walks of over 104 steps are now accessible, permitting
a much more refined investigation of the system. Indeed,
we think that the true asymptotic behavior may now be
revealed for the first time.
Our method exploits the self-similar nature of the

clusters to factorize the counting problem hierarchically,
drawing on the ideas of renormalization group theory. The
key lies in the observation that the connectivity of a critical
percolation cluster is extremely low on any length scale.
This is best appreciated by looking at the backbone of a
cluster (Fig. 1), the part that remains when all singly
connected “dangling ends” are removed. We define it as the
largest biconnected component, i.e., the largest piece from
which nothing can be disconnected by removing a single
site. The fragile structure of the backbone, which is the
most connected part, suggests that the whole cluster can be
decomposed into separate regions by removing only a
small number of sites [25]. This applies on all length scales,
so that we can organize the cluster into a hierarchy of
nested “blobs” as sketched in Fig. 2. Each blob should have
very few ½≈Oð1Þ� external connections and should not
contain too much mass (colored areas in Fig. 2) that is
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not encapsulated in smaller blobs. We create the blob
hierarchy by repeatedly fusing regions with many inter-
connections, aiming for an optimal balance between the
two requirements.
The principle idea now is to factorize the enumeration

procedure by treating walk segments through different
blobs separately. The self-similarity of the system suggests
a “renormalization” approach: We start by enumerating all
walk conformations within smallest blobs (“children”) that
are contained within larger ones (“parents”). We use the
standard backtracking routine [13–17] for this but distin-
guish different classes of paths depending on the external
connections they are linked to. When we later generate the
paths through the parents, the children are treated as
single sites, but we note by which links they are accessed
and left. This information is needed to properly match the
paths to the segments through the children once the
counting within the parents is done. Now we can delete
all information concerning the children and proceed
on to the “grandparents.” This can be regarded as an
exact renormalization procedure with adaptive cells
(blobs): Internal degrees of freedom are “integrated out”
(enumerated) and cells decimated to pointlike sites. It is

repeated up to the largest blob—the region accessible
within the maximum number of SAW steps.
These main ideas are simple, but defining the blob

hierarchy and matching the path segments is technically
challenging. The gain, however, is significant: On a
present-day 3 GHz processor, the number of conformations
for a 104-step SAW (typically 101200) and their mean end-
to-end distance are determined in about ten minutes on
average using our current implementation. The exponential
complexity has vanished, and we empirically find a
polynomial time increase with an exponent around 2.4.
While the method works in any dimension, we here

focus on the physically most relevant case of D ¼ 3. To
generate the clusters, we used a depth-first growth algo-
rithm known as the Leath method [26]. We only consider
clusters that percolate according to the “wrapping” criterion
[27,28]. The backbones were identified using Tarjan’s
algorithm [29]. To avoid correlations, independent sets
of clusters were used for walks of different lengths, which
we increased by factors of

ffiffiffi

2
p

fromN ¼ 25 to N ¼ 12 800.
Thanks to the method’s efficiency, we could afford samples
of at least 5 × 104 clusters for each length.
The average squared end-to-end distance as a function of

N is shown in Fig. 3 on a double-logarithmic scale. To
enhance visibility, the values are divided by N1.33, which is
close to N2ν according to previous studies. The curves
appear straight initially, but around N ≈ 150 they notably
start to slump, crossing over to a slightly different slope. We
hence have to use a lower cutoff, Nmin, when estimating ν
via a least-squares fit of Eq. (2). On the whole (“incipient”)
clusters (ic), the χ2 value of the fit becomes close to 1
(χ2 ¼ 1.3) if we choose Nmin ¼ 800. This yields a value of

FIG. 1 (color online). Backbone of a critical percolation cluster
on a cubic lattice of 3003 sites. The two ends are connected via
periodic boundary conditions; coloring indicates shortest-path
distance to the origin.

FIG. 3 (color online). Mean squared end-to-end distance vs
number of steps for SAWs on incipient critical clusters (red) and
backbones (green) on a log-log scale. The lines show the results
from different least-squares fits. f1: Eq. (2) withN ¼ 800–12 800
(ic) and N ¼ 1131–12 800 (bb); f2 (inset): Eq. (2), N ¼ 13–100;
g: Eq. (3), N ¼ 25–12 800. The factor N−1.33 (≈N−2ν) serves to
magnify the differences.

FIG. 2 (color online). Schematic picture of a tree hierarchy of
nested blobs. The starting position for the walks is marked
black. Walk segments through the blobs are generated in the
order E → A.
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νic ¼ 0.6433ð4Þ. The fit is shown as dotted red line f1 in
Fig. 3. For the backbones (bb), we get a decent fit
(χ2 ¼ 3.4) with Nmin ¼ 1131 (dotted green line), which
yields a similar result: νbb ¼ 0.643ð1Þ. Note that the values
of χ2 are meaningful since the data points are uncorrelated
and the errors are purely statistical.
It has often been claimed [16,30–32] that the asymptotic

statistics are determined by the backbone alone as a
dangling end can only support finite SAWs. As noted in
Ref. [19], this argument is questionable since dangling ends
come in all sizes and have a larger fractal dimension than
the backbone. Still, our results provide strong evidence that
νic ¼ νbb is indeed correct. As demonstrated in Fig. 3, this
becomes manifest only for sufficiently long walks. The
initial slope on the backbone is slightly larger, and the rate
of convergence is lower. This is somewhat surprising: If the
effects of the dangling ends vanish with N, it should be the
other way around, unless they happen to cancel out other
finite-size effects.
The fact that νbb appears larger initially explains why

results for ν from the most recent numerical studies, which
only considered the backbones, are significantly larger than
ours [0.662(6) [16], 0.667(3) [22]]. The discrepancy is
clearly due to the limited system sizes that had been
accessible (30 and 80 steps, respectively). To verify this
claim, we used an upper cutoff of Nmax ¼ 84. Since
calculations in this regime are swift, we afforded a few
more data points and increased the sample sizes to 5 × 105.
As can be seen in the inset of Fig. 3, a simple power law
nicely fits this data (χ2bb ¼ 2.0, χ2ic ¼ 2.6); one could hardly
suspect a different asymptotic behavior from this perspec-
tive. The resulting backbone exponent νbb ¼ 0.6646ð2Þ is
consistent with previous findings, though νic ¼ 0.6547ð2Þ
is slightly (but significantly) smaller.
Some of the finite-size effects may be explained by

higher-order corrections to Eq. (2). Better fit results over
a larger range can indeed be obtained by including the
next-to-leading confluent correction term, N2ν−Δ. In
practice, we fit

½hR2i� ¼ aðN þ δNÞ2ν½1þ b=ðN þ δNÞΔ� ð3Þ

as was done for the full-lattice SAW in Ref. [33]. The small
shift, which we set to δN ¼ 1=2, provides for a smoother
convergence of the fit but has little effect on the actual
results. From the range N ¼ 25–12 800 we thus obtain
aic ¼ 1.13ð2Þ, bic ¼ −0.44ð3Þ, abb ¼ 1.25ð5Þ, bbb ¼
−0.60ð1Þ, and

νic ¼ 0.644ð2Þ; Δic ¼ 0.51ð5Þ; ð4Þ

νbb ¼ 0.640ð3Þ; Δbb ¼ 0.34ð4Þ ð5Þ

as our final estimates [for comparison, νfull ¼ 0.587597ð7Þ
and Δfull ¼ 0.528ð12Þ were found for the regular

simple-cubic lattice [33]]. The fits are shown as continuous
curves g in Fig. 3. The χ2 values are 1.2 (incipient clusters)
and 1.6 (backbones). These estimates for ν are consistent
with those from the simple fits and again support νic ¼ νbb.
We also obtained similar (but less precise) estimates by
extrapolating the successive slopes, as was done in
[15,16,18]. In terms of the fractal dimensions, df ¼ 1=ν,
the results are df;ic ¼ 1.553ð5Þ and df;bb ¼ 1.563ð7Þ.
We now turn to the number of conformations, Z. Here we

only discuss the results for the incipient clusters; those for
the backbones are qualitatively the same. The distribution
of Z resembles a lognormal as can be seen in Fig. 4
where we have plotted the measured frequencies of lnZ
for various N alongside normal distributions with the
same mean and variance. As noted before [20], such a
“multifractal” distribution can be explained by the fact that
Z is roughly a product of random variables, namely, the
average coordination numbers at each step. Indeed, we find
for the variance of lnZ,

σ2lnZ∼AN2χ ; A¼ 0.1667ð3Þ; χ¼ 0.500ð1Þ; ð6Þ

which supports this picture. A similar result ½χ ¼ 0.49ð1Þ�
had been reported previously [15], but there appears yet to
be no theoretical explanation why χ ¼ 1=2 should hold
exactly.
These large deviations make it hard to obtain unbiased

estimates for ½Z�: The value is easily underestimated if the
sample size is too small. We managed to obtain reliable data
for N ≤ 200 by pushing the number of analyzed clusters to
107. According to Eq. (1), μ and γ can be estimated by
fitting

ln½Z�=N ¼ ln a=N þ ln μþ ðγ − 1Þ lnN=N ð7Þ

FIG. 4 (color online). Measured probability densities of the
entropy lnZ for various lengths. The dashed lines are normal
distributions with the same mean values and variances (no fit
involved).
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as was done in [16,32]. Trying this for different ranges
within N ≤ 200, we found that the estimates for μ (γ)
systematically decrease (increase) with the upper cutoff
Nmax. This suggests that the asymptotic behavior is not
reached (which would not be surprising given our expe-
rience with ν). From our observations one might hence only
infer the following bounds:

μ < 1.440ð4Þ; γ > 1.9ð1Þ; ð8Þ

obtained from a fit over N ¼ 25–200. However, such a
large value for γ is very different from previous results (see,
e.g., Table 4 in Ref. [32]) and would be highly unusual.
For longer chains, we can only approximate ½Z� by

assuming the distribution of Z to be lognormal:

½Z� ≈ e½lnZ�þσ2lnZ=2 ≕ ½Zlogn�: ð9Þ

½Zlogn� can be estimated more easily since the “entropies,”
lnZ, are better behaved. In Fig. 5 we have plotted ½lnZ�=N,
ln½Z�=N, and ln½Zlogn�=N vs N. As can be seen, ½Z� ≈
½Zlogn� is fulfilled well for small N. For larger N, ln½Z�
appears to approach ½lnZ�, which is a consequence of the
aforementioned bias.
The exponential of the mean entropy, ½Z0� ≔ e½lnZ�, is

supposed to follow a scaling law similar to Eq. (1) [16].
Here we have reliable data up to N ¼ 12 800, which
should, in principle, allow for accurate estimates of the
“zeroth moments,” μ0 and γ0. However, a fit analogous to
Eq. (7) for ½lnZ�=N yields poor results, which remain
strongly dependent on the fit range. (We made a similar
observation for the two-dimensional case [24].) The data
are much better described by a function of the form

½lnZ�=N ¼ ln a=N þ ðln μ0Þð1þ bN−ζÞ ð10Þ

as can be seen in the inset of Fig. 5. Using Eq. (10), the fit
results stabilize around Nmin ≈ 800, which is consistent
with the findings for ν. From the rangeN ¼ 800–12 800we
obtain a ¼ 0.7ð4Þ, ln μ0 ¼ 0.2715ð3Þ, ζ ¼ 0.48ð3Þ, and
b ¼ 1.3ð3Þ with χ2 ¼ 0.52. This would imply

½Z0� ∼ μNð1þb=NζÞ
0 with μ0 ¼ 1.3119ð3Þ; ð11Þ

rather than a scaling law of the form of Eq. (1). There might
still be a factor Nγ0−1, but we found no numerical evidence
for it. Unfortunately, we cannot do a similar fit for ln½Z�=N
for lack of reliable data points. However, if Eq. (11) is
correct for ½Z0� and assuming Eq. (6), we can infer a similar
law for ½Zlogn� with μlogn ¼ eln μ0þA=2 ¼ 1.4260ð6Þ. ½Z� ≈
½Zlogn�would then suggest a scaling law like Eq. (10) for ½Z�
as well. That approximation is not well founded, so Eq. (1)
might still be correct, but we think that the empirical
evidence against it is significant. In fact, there is also little
theoretical foundation for Eq. (1) other than the analogy to
the regular-lattice case where numerical and analytical
support for such a scaling law is strong. The unusual
correction term in Eq. (11) may arise from the non-self-
averaging properties of the critical clusters. A similar law,
but with b < 0, has been found for conformations of
random walks on percolation clusters [34].
In any case, our results clearly disprove that μ results as

the undiluted value [35] times the critical concentration
[36], μ ≈ pcμfull ¼ 1.459 583ð3Þ, claimed in [16,19,32].
By restricting the range of N, we again get a similar value,
which is probably due to finite-size effects: Initially, the
lattice defects and the self-avoidance act independently;
only with increasing N does their interplay and the top-
ology of the clusters become relevant. The asymptotic
behavior might, for instance, be affected by the distribution
of loop sizes on the cluster (backbone), or by the spatial
distribution of regions that contribute disproportionately to
the entropy, which cannot be gauged by short walks.
In summary, we have presented a method to exactly

enumerate SAWs of over 104 steps on three-dimensional
critical percolation clusters. This enabled a firm analysis of
the asymptotic scaling behavior of the end-to-end distance
with unprecedented accuracy. We revised the established
estimate for the leading scaling exponent, verified the
hypothesis νic ¼ νbb, and gave a first estimate for the
confluent correction exponent Δ.
Direct investigation of the average number of confor-

mations ½Z� was hampered by large deviations, rendering
our results less conclusive here. The nature of the distri-
bution of lnZ, which resembles a Gaussian whose variance
we found to increase linearly with N, suggests that
information can be gleaned from the mean entropy,
½lnZ�. Surprisingly, ½lnZ� does not behave as expected,

FIG. 5 (color online). Mean entropy (red triangles), logarithm
of the average number of conformations (green squares), and
lognormal approximation (blue diamonds) vs N on a log-linear
scale. The estimates for ln½Z� are biased for N > 200 due to large
deviations. The inset shows fits of ½lnZ� using Eq. (7) (dotted)
and Eq. (10) (continuous), respectively.
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which puts the commonly assumed scaling law for Z
[Eq. (1)] into question as well.
Our findings show that the true asymptotic scaling

behavior cannot be observed from system sizes accessible
with other numerical tools. This observation may serve as a
general lesson of caution regarding numerical studies
of systems with strong (fractal) disorder, and calls for
further applications of our new method. These may include
other types of walks or media (or both). The SAW can
be furnished with short-range interactions to model
Θ-polymers [37,38], possibly under stretching force
[17,39]. One can also add bending stiffness to study
semi-flexible polymers [40,41]. The underlying idea of a
scale-free partitioning is not even restricted to walk models
but could be transferred to spin systems or transport
processes. Of course, the necessary condition is that the
medium has a weakly connected, self-similar geometry.
One can obviously study percolation clusters of different
dimensionality, even beyond the upper critical dimension
of D ¼ 6, to gain deeper understanding of the role of the
medium’s fractal dimensions. For p > pc, the efficiency of
our method eventually deteriorates, but it can still beat other
methods near the critical concentration [23]. Further
applications could include Ising and Potts clusters, diffu-
sion limited aggregation (DLA) clusters, and possibly
certain types of quantum gravity graphs [42] or real-world
fractal networks [43].
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