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We note that the standard inverse system volume scaling for finite-size corrections at a first-order phase
transition (i.e., 1=L3 for an L × L × L lattice in 3D) is transmuted to 1=L2 scaling if there is an exponential
low-temperature phase degeneracy. The gonihedric Ising model which has a four-spin interaction, plaquette
Hamiltonian provides an exemplar of just such a system. We use multicanonical simulations of this model
to generate high-precision data which provide strong confirmation of the nonstandard finite-size scaling
law. The dual to the gonihedric model, which is an anisotropically coupled Ashkin-Teller model, has a
similar degeneracy and also displays the nonstandard scaling.
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First-order phase transitions are ubiquitous in nature [1].
Pioneering studies of finite-size scaling for first-order
transitions were carried out in Ref. [2] and subsequently
pursued in detail in Ref. [3]. Rigorous results for periodic
boundary conditions were further derived in Refs. [4,5]. It
is possible to go quite a long way in discussing the scaling
laws for such first-order transitions using a simple heuristic
two-phase model [6]. We assume that a system spends a
fractionWo of the total time in one of the q ordered phases
and a fraction Wd ¼ 1 −Wo in the disordered phase with
corresponding energies êo and êd, respectively. The hat is
introduced for quantities evaluated at the inverse transition
temperature of the infinite system, β∞. Neglecting all
fluctuations within the phases and treating the flips between
the phases as instantaneous jumps, the energy moments
become heni ¼ Woêno þ ð1 −WoÞênd. The specific heat
CVðβ; LÞ ¼ −β2∂eðβ; LÞ=∂β then reads

CVðβ;LÞ¼Ldβ2ðhe2i−hei2Þ¼Ldβ2Woð1−WoÞΔê2 (1)

with Δê¼ êd− êo. It has a maximum Cmax
V ¼Ldðβ∞Δê=2Þ2

at βC
max
V ðLÞ for Wo ¼ Wd ¼ 0.5, i.e., where the disordered

and ordered peaks of the energy probability density have
equal weight. The probability of being in any of the ordered
states or the disordered state is related to the free energy
densities f̂o, f̂d of the states,

po ∝ e−βL
df̂o and pd ∝ e−βL

df̂d ; (2)

and by construction the fraction of time spent in the ordered
states must be proportional to qpo. Thus for the ratio
of fractions we findWo=Wd ≃ qe−L

dβf̂o=e−βL
df̂d (up to expo-

nentially small corrections inL [4–7]). Taking the logarithm
of this ratio gives lnðWo=WdÞ≃ ln qþ Ldβðf̂d − f̂oÞ. At the
specific-heat maximum Wo ¼ Wd, so we find by an expan-
sion around β∞

0 ¼ ln qþ LdΔêðβ − β∞Þ þ… (3)

which can be solved for the finite-size peak location of the
specific heat:

βC
max
V ðLÞ ¼ β∞ −

ln q
LdΔê

þ… (4)

Although this is a rather simple toy model, it is known
to capture the essential features of first-order phase tran-
sitions and to correctly predict the prefactors of the leading
finite-size scaling corrections for a class of models with a
contour representation, such as the q-state Potts model,
where a rigorous theory also exists [5]. Similar calculations
give [6,8]

βB
minðLÞ ¼ β∞ −

lnðqê2o=ê2dÞ
LdΔê

þ… (5)

for the location βB
minðLÞ of the minimum of the energetic

Binder parameter

Bðβ; LÞ ¼ 1 −
he4i
3he2i2 : (6)

Normally the degeneracy q of the low-temperature phase
does not change with system size and the generic finite-size
scaling behavior of a first-order transition thus has a leading
contribution proportional to the inverse volume L−d. We
can see from Eqs. (4), (5) that if the degeneracy q of the
low-temperature phase depends exponentially on the sys-
tem size, q ∝ eL, this would be modified. One model with
precisely this feature is a 3D plaquette (4-spin) interaction
Ising model on a cubic lattice where q ¼ 23L on an L3

lattice [9]. This is a member of a family of so-called
gonihedric Ising models [10] whose Hamiltonians contain,
in general, nearest hi; ji, next-to-nearest hhi; jii, and
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plaquette interactions ½i; j; k; l�. These were originally
formulated as a lattice discretization of string-theory
actions in high-energy physics which depend solely on
the extrinsic curvature of the string world sheet [11].
The weights of the different interactions are fine-tuned so

that the area of spin-cluster boundaries does not contribute
to the partition function. However, edges and self-inter-
sections of spin-cluster boundaries areweighted, leading to

Hκ¼−2κ
X
hi;ji

σiσjþ
κ

2

X
hhi;jii

σiσj−
1−κ

2

X
½i;j;k;l�

σiσjσkσl; (7)

where κ effectively parametrizes the self-avoidance of the
spin-cluster boundaries. The purely plaquette Hamiltonian
with κ ¼ 0 that we consider here,

H ¼ −
1

2

X
½i;j;k;l�

σiσjσkσl; (8)

allows spin-cluster boundaries to intersect without ener-
getic penalty. It has attracted particular attention in its own
right, since it displays a strong first-order transition [12]
and evidence of glasslike behavior at low temperatures
[13]. Computer simulation studies of this model were
plagued, however, by enduring inconsistencies in the
estimates of the transition temperature. The dual to this
plaquette gonihedric Hamiltonian can be written as an
anisotropic Ashkin-Teller model [14] in which two spins σ,
τ live on each vertex, with nearest-neighbor interactions
along the x, y, and z axes,

Hd ¼ −
1

2

X
hi;jix

σiσj −
1

2

X
hi;jiy

τiτj −
1

2

X
hi;jiz

σiσjτiτj; (9)

and this too has an exponentially degenerate ground state.
We assume that the exponential degeneracy also extends
into the low-temperature phase for the dual model and
check the consistency of the assumption in the numerical
scaling analysis below.
In the gonihedric model with q ¼ 23L Eqs. (4), (5)

become

βC
max
V ðLÞ ¼ β∞ −

ln 23L

L3Δê
þOððln 23LÞ2L−6Þ

¼ β∞ −
3 ln 2
L2Δê

þOðL−4Þ (10)

and

βB
minðLÞ ¼ β∞ −

lnð23Lê2o=ê2dÞ
L3Δê

þOððln½23Lê2o=ê2d�Þ2L−6Þ

¼ β∞ −
3 ln 2
L2Δê

−
lnðê2o=ê2dÞ
L3Δê

þOðL−4Þ (11)

and the leading contribution to the finite-size corrections is
now ∝ L−2. For the extremal values one expects

Cmax
V ðLÞ ¼ L3

�
β∞Δê
2

�
2

þOðLÞ (12)

and

BminðLÞ ¼ 1 −
1

12

�
êo
êd

þ êd
êo

�
2

þOðL−2Þ: (13)

The inverse temperature where both peaks of the energy
probability density have equal weight, βeqwðLÞ, has a
behavior that coincides with the scaling of the location
of the specific-heat maximum in Eq. (10),

βeqwðLÞ ¼ β∞ −
3 ln 2
L2Δê

þOðL−4Þ: (14)

It can be shown that even the OðL−4Þ terms in Eqs. (10),
(11), and (14) coincide exactly [15]. The leading term in the
scaling behavior of the inverse temperature of equal peak
height, βeqhðLÞ, is also of the form of Eq. (14) but similar to
βB

minðLÞ the higher order corrections start already with
OðL−3Þ and are different.
To overcome supercritical slowing down near first-order

phase transitions where canonical simulations tend to get
trapped in one phase and evade other problems such as
hysteresis, we employed the multicanonical Monte Carlo
algorithm [16]. Our approach is to systematically improve
guesses of the energy probability distribution using recur-
sive estimates [17] before the actual production run with of
the order of ð100 − 1000Þ × 106 sweeps for the original
model and 4 × 106 sweeps for its dual. Rare states lying
between the ordered and disordered phases are then
promoted artificially, decreasing the autocorrelation time
and allowing the system to oscillate more rapidly between
phases. For the original model, Eq. (8), we took measure-
ments only every V ¼ L3 sweeps to reduce the autocorre-
lation time τmeas

int in the actual time series of the
measurements. Simulations were terminated after approx-
imately 500 hours of real time for each lattice individually.
We therefore collected less statistics for larger lattices. Still,
the largest lattice of 273 spins effectively transited more
than 250 times between the two phases during the simu-
lation, even though rare states are suppressed by more than
60 orders of magnitude compared to the most probable
states (see the inset in Fig. 1). For the dual model, we took
measurements every sweep; therefore, the autocorrelation
time τmeas

int is much larger here. Canonical estimators can
then be retrieved by weighting the multicanonical data to
yield Boltzmann-distributed energies. Reweighting tech-
niques are very powerful when combined with multi-
canonical simulations, and allow the calculation of
observables over a broad range of temperatures. Errors
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on the measured quantities have been extracted by jack-
knife analysis [18] using 20 blocks for each lattice size.
Standard observables such as the specific heat [Eq. (1)]

and Binder’s energy parameter [Eq. (6)] have been calcu-
lated from our data as a function of temperature by
reweighting for both the gonihedric Ising model in
Eq. (8) and its dual in Eq. (9). This enables us to determine
the positions of their peaks, βC

max
V ðLÞ and βB

minðLÞ, with
high precision. To obtain the other quantities of interest,
βeqwðLÞ, and βeqhðLÞ, we use reweighting techniques to get
an estimator of the energy probability densities pðeÞ at
different temperatures. βeqw is chosen systematically to
minimize

DeqwðβÞ ¼
� X

e<emin

pðe; βÞ −
X
e≥emin

pðe; βÞ
�

2

; (15)

where the energy of the minimum between the two peaks,
emin, is determined beforehand to distinguish between the
different phases. Similarly, βeqh is chosen to minimize

DeqhðβÞ ¼
�
max
e<emin

fpðe; βÞg − max
e≥emin

fpðe; βÞg
�
2

(16)

as a function of β.
The data and fits for the inverse transition temperatures

are shown in Fig. 1 for the original and in Fig. 2 for the
dual model. Unusually, the estimates for βC

max
V and βeqw fall

together because of the aforementioned equality of the
OðL−4Þ corrections in the scaling ansatz for these quantities
in Eqs. (10) and (14). The fits have been carried out

according to the nonstandard scaling laws with 1=L2

corrections. We have left out the smaller lattices system-
atically, until a goodness-of-fit value of at least Q ¼ 0.5
was found for each observable individually. From error
weighted averages (refraining from a full cross-correlation
analysis [19]) of the inverse transition temperatures βC

max
V ,

βB
min
, βeqw, and βeqh given in Figs. 1 and 2 we find

β∞ ¼ 0.551 291ð7Þ;
β∞dual ¼ 1.313 29ð12Þ

for the infinite lattice inverse transition temperatures of the
original and dual models, where the final error estimates
are taken as the smallest error bar of the contributing β
estimates.
The temperature β∞dual of the dual model is related to the

temperature in the original model, β∞, by the duality
transformation

β∞ ¼ − ln

�
tanh

�
β∞dual
2

��
: (17)

Applying standard error propagation, we retrieve a value of
β∞ ¼ 0.551 43ð7Þ for the original model from dualizing
β∞dual ¼ 1.313 29ð12Þ. The estimated values of the critical
temperature from the direct simulation and the simulation
of the dual model are thus in good agreement, considering
that higher order and exponential corrections [4–7] in the
finite-size scaling were not included. The application of the
nonstandard finite-size scaling laws thus settles the endur-
ing and very puzzling inconsistencies in previous estimates
of the transition temperature for these models.
The great precision of our simulation results and the

broad range of lattice sizes clearly excludes fits to the
standard finite-size scaling ansatz, where the first correction
is proportional to the inverse volume. This is demonstrated
in Fig. 3, where the upper two plots show how the standard

FIG. 1 (color online). Best fits using the leading 1=L2 scaling
obtained for the original model in Eq. (8) using the (finite lattice)
peak locations for the specificheatCmax

V ,Binder’senergyparameter
Bmin; or inverse temperatures βeqw and βeqh, where the two peaks of
the energy probability density are of same weight or have equal
height, respectively. The values for βeqw and βC

max
V are indistin-

guishable in the plot. The omitted corrections which we discuss in
detail in Ref. [15] give the slightly different effective slopes. The
inset shows the energy probability density pðeÞ over e ¼ E=Ld at
βeqh for lattices with linear length L ∈ f13; 14;…; 26; 27g.

FIG. 2 (color online). Same as Fig. 1 but for the dual model,
Eq. (9). Here the inset shows the energy probability density pðeÞ
at βeqh for lattices with linear length L ∈ f12; 14;…; 22; 24g.
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finite-size scaling ansatz leads to poor results. Acceptable
fits are only achieved for a narrow fitting range with almost
no degrees of freedom left. The fits using the nonstandard
laws shown in the lower plots are much better over a broad
range of fitting intervals. Fits carried out using the tradi-
tional inverse volume scaling ansatz led to an inverse
transition temperature of 0.549 987(30) for the original
model (with only 5 degrees of freedom left per fit and
Q ≈ 0.8) and 1.310 29(19) for the dual model (best fits
with 2 degrees of freedom and Q ≈ 0.3 for all fits), which
translates to 0.553 17(11) using the duality relation
Eq. (17). These values are about 30 error bars apart.
Since the dual model clearly displays the nonstandard
scaling behavior this confirms our initial assumption that
the low-temperature phase (and not just the ground state) is
exponentially degenerate in this case also.
We should emphasize that the considerations described

here for the gonihedric model and its dual apply generically
to any models which have a low-temperature phase
degeneracy which depends exponentially on the system
size. Apart from higher-dimensional variants of the goni-
hedric model [20], there are numerous other fields where
the scenario could be realized. Examples range from
ANNNI models [21] to spin ice systems [22] and topo-
logical “orbital” models in the context of quantum
computing [23] which all share an extensive ground-state
degeneracy. It would be worthwhile to explore to what
extent these ground states evolve as stable low-temperature
phases and whether they eventually undergo a first-order
transition into the disordered phase with increasing
temperature. Among the orbital models for transition metal
compounds, a particularly promising candidate is the three-
dimensional classical compass or t2g orbital model [24]

where a highly degenerate ground state is well known and
signatures of a first-order transition into the disordered
phase have recently been found numerically [25]. Due to
the macroscopic degeneracy nonstandard scaling correc-
tions might be expected at its first-order transition point
with periodic boundary conditions.
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