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We investigate the conditions which determine the shape of a particle condensate in situations when it

emerges as a result of spontaneous breaking of translational symmetry. We consider a model with particles

hopping between sites of a one-dimensional grid and interacting if they are at the same site or at

neighboring sites. We predict the envelope of the condensate and the scaling of its width with the system

size for various interaction potentials and show how to tune the shape from a delta peak to a rectangular or

paraboliclike form.
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Condensation phenomena are ubiquitous in nature.
Originally, they referred to a change of the physical state
from a gaseous to a liquid phase. In a broader sense,
however, they appear in many equilibrium systems as
well as in systems driven far from equilibrium. In equilib-
rium, examples range from Bose-Einstein condensation in
momentum space to certain phenomena in space-time of
quantum gravity [1]. In nonequilibrium systems, the con-
densation manifests itself in microscopic (intracellular)
and macroscopic (highway) traffic jams [2], granular
flow [3] and clustering [4], or gelation in networks [5]
where a single node takes a finite fraction of all links.

Many of these systems can be modeled as a set of
particles occupying discrete levels or ‘‘boxes’’. The balls-
in-boxes model (B-in-B) [6], or its nonequilibrium version,
the zero-range process (ZRP) [7], are well-known ex-
amples. In these models, condensation happens along
with a spontaneous breaking of translational symmetry: a
finite fraction of particles goes to one randomly chosen
box. Although very simple, these models serve as para-
digms since the stationary state can be derived analytically.
The knowledge of the steady state gives access to many
quantities which can be compared, at least qualitatively,
with experiments on condensation phenomena. The possi-
bility of analytical predictions relies on a full factorization
over boxes, viewed as sites of a certain graph [8], which
follows from the ultralocal (‘‘zero-range’’) rules assumed
to govern the dynamics of particles.

As a natural consequence of the lack of interactions
between particles at neighboring sites, the condensates in
the B-in-B or ZRP models always occupy a single box. The
question then arises of how the shape of the condensate
changes in the presence of interactions between sites that
tend to flatten out the condensate’s profile but still preserve
translational symmetry and conserve the current. In this
Letter we study this problem in a model similar to the one
proposed in Ref. [9]. It is related to a solid-on-solid (SOS)
model [10,11] supplied with dynamical rules that drive the
system out of equilibrium. Here, the steady state factorizes
over pairs of sites which allows for nearest-neighbor in-

teractions while making the system analytically solvable.
We shall show that although for a broad class of hopping

rates the condensate becomes extended to W � ffiffiffiffi
N

p
sites,

where N is the total number of sites, it is possible to obtain
any scaling W � N� with 0 � � � 1=2. We shall also
predict the shape of the condensate for some special cases.
Possible applications to surface science will be mentioned
in the conclusions.
We consider a ring with N sites and M particles of unit

mass placed randomly on the sites. Each site i can carry an
arbitrary number mi ¼ 0; . . . ;M of particles. The dynam-
ics is divided into two steps. As a first step, a particle
may leave a randomly chosen site with probability
uðmijmi�1; miþ1Þ which depends on the state of neighbor-
ing sites. As a second step, the particle chooses a target to
the right site with probability r, or to the left one with
probability 1� r. One can show [12] that when the hop-
ping rate has the form

uðmijmi�1; miþ1Þ ¼ gðmi � 1; mi�1Þ
gðmi;mi�1Þ

gðmi � 1; miþ1Þ
gðmi;miþ1Þ ;

(1)

with gðm; nÞ being a symmetric non-negative but otherwise
arbitrary function, the steady state factorizes over pairs of
sites according to

Pðm1; . . . ; mNÞ ¼
YN
i¼1

gðmi;miþ1Þ�
�XN
i¼1

mi �M

�
; (2)

where the ring geometry implies mNþ1 � m1. The differ-
ence as compared to the model of Ref. [9] is that there r ¼
1 and no assumption on the symmetry of gðm; nÞ was
made. The parameter r changes only the net current of
particles. When r ¼ 1=2, the current is zero and the system
is in equilibrium. Since the steady state (2) does not depend
on r, its static properties can be calculated by formally
treating the system as if it was in equilibrium with the
probability of a microstate given by Eq. (2).
The criterion for condensation was analyzed in Ref. [9]

by means of the grand-canonical partition function
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ZNðzÞ ¼
X
fmig

z
P

i
mi
Y
i

gðmi;miþ1Þ ¼ TrTN; (3)

where Tmn � zðmþnÞ=2gðm; nÞ and z is the fugacity. ZNðzÞ
must have a finite range of convergence zc. The critical
value of the density � ¼ M=N then follows from

�c ¼ lim
N!1;z!z�c

z

N

@ lnZNðzÞ
@z

¼
P

m m�2
mP

m �2
m

; (4)

where � is an eigenvector of Tmn to the largest eigenvalue
�max, for z ¼ zc. At the critical point, ZN ffi �N

max for large
N. In what follows we assume that gðm; nÞ has been
rescaled so that zc ¼ 1; hence, the critical density can be
obtained by diagonalizing Tmn ¼ gðm; nÞ.

To investigate how the introduction of site-site inter-
actions influences the properties of condensation, we stick
to the following choice:

gðm; nÞ ¼ Kðjm� njÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðmÞpðnÞ

q
: (5)

When KðxÞ ¼ 1, gðm; nÞ factorizes and we recover the
ZRP. Here we assume that both KðxÞ and pðmÞ are some
positive, decaying functions of x and m, respectively. The
choice (5) is motivated by studies on the SOS model in the
context of surface roughening [10,11] and corresponds
to the energy E¼� lnKðjm�njÞ� ð1=2Þ½lnpðmÞþ
lnpðnÞ� of the interface in a 1þ 1 dimensional surface
(where the surface refers to the envelope of occupation
numbers). In Ref. [9], the following choice was proposed:

KðxÞ ¼ e�Jx; pðmÞ ¼ eU�m0 ; (6)

with parameters J and U generating an effective surface
stiffness and a pinning potential, respectively. For the
weights (6), we obtain

�c ¼ eJ0 � 1

ðeJ0 � e�2ðJ�J0ÞÞðe2ðJ�J0Þ � 1Þ ; (7)

with J0 ¼ U� lnðeU � 1Þ. In the limit J ! J0, this agrees
with the asymptotic result in Ref. [9]. For J ¼ U ¼ 1,
Eq. (7) gives �c � 0:2397, which we also confirmed nu-
merically. If J < J0, the critical density is infinite.

The generic case.—For the weight functions (6), the
width W was estimated in Ref. [9] by a random-walk

argument to be proportional to
ffiffiffiffi
N

p
. Here we use a different

approach which allows to calculate not onlyW but also the
envelope of the condensate in the case when KðxÞ decays
exponentially or faster in x, and pðmÞ ! 1 for m ! 1.
First of all, one cannot use the partition function (3),
because it is not defined in the condensed state. We assume,
however, that the system can be split into the condensate
which extends over W sites occupied by M0 ¼ M� N�c

particles on the average and where average occupation
numbers hmii grow with N, and a uniform background
with hmii ¼ �c. Since fluctuations in the background are
finite and have no long-range correlations, the mass M0

cannot fluctuate more than � ffiffiffiffi
N

p
so that we treat it as

constant. We can therefore assume that the probability of

having the condensate extended to W sites factorizes:

PðWÞ�ZbðWÞZcðWÞ/ expð�W ln�maxþ lnZcðWÞÞ; (8)

where ZbðWÞ ¼ �N�W
max is the partition function (3) for the

background at the critical point � ¼ �c and ZcðWÞ is the
partition function of the condensate extended over W sites
and having exactly M0 particles. The average extension W
can be determined by the maximum of Eq. (8). Because
pðmÞ ! 1 for large m, we can neglect the contribution
from pðmÞ to ZcðWÞ. We have

ZcðWÞ ffi X
fmkg

YWþ1

k¼1

Kðjmk �mk�1jÞ�
�XW
k¼1

mk �M0
�
; (9)

where we assumed that m0 ¼ mWþ1 ¼ 0, because occupa-
tion numbers at the boundaries are small. For large sys-
tems, we suppose that the delta function forces the majority
of occupation numbers mk to be much larger than zero.
Assuming this to be true, we allow for negative mk and
change the summation over fmkg into a summation over
fdkg, where dk ¼ mk �mk�1. Later we will see that indeed
all hmni> 0. Defining the generating function

GðW; ~uÞ ¼ X1
d1¼�1

� � � X1
dW¼�1

YW
k¼1

KðjdkjÞedkuk

	 �

�
�XW

k¼1

kdk �M0
�
�

�XW
k¼1

dk

�
(10)

with auxiliary fields ~u ¼ fu1; . . . ; uWg, we can rewrite

Eq. (9) as ZcðWÞ ffi GðW þ 1; ~0Þ. The first delta function
in Eq. (10) implements the mass conservation in the con-
densate, the second delta reflects fixed-boundary condi-
tions. Using integral representations of both deltas, the
generating function (10) can be evaluated in the saddle

point as GðW; ~uÞ � eFðz;v; ~uÞ, where

Fðz; v; ~uÞ ¼ �M0zþ XW
k¼1

ln ~Kðuk þ v� kzÞ: (11)

The variables z ¼ zð ~uÞ, v ¼ vð ~uÞ are determined from the
saddle-point equation @zFðz; v; ~uÞ ¼ @vFðz; v; ~uÞ ¼ 0, and
the function ~KðxÞ is defined by

~KðxÞ ¼ X1
d¼�1

KðjdjÞedx: (12)

If KðxÞ decays slower than exponentially, the above sum
does not converge and the saddle-point approximation is
not valid. Here we assume that this sum exists, as it does for
the case (6). From the definition of GðW; ~uÞ, hdki ¼
d
duk

Fðz; v; ~uÞj ~u¼0. The symmetry of the averaged peak im-

plies that hdki ¼ �hdW�ki and hence z ¼ ð2=WÞv. We
obtain

hdki ¼ ~K0ðxÞ= ~KðxÞjx¼vð1�2k=WÞ: (13)

In addition, from the conservation law
P

kkhdki ¼ �M0 we
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have for large systems

1

2v2

Z v

0

x ~K0ðxÞ
~KðxÞ dx ¼ 1

w2
; (14)

where we defined the reduced extension w � W=
ffiffiffiffiffiffi
M0p

.

Now, since lnZcðWÞ ffi Fð2v=ðw ffiffiffiffiffiffi
M0p Þ; v; ~0Þ, we can re-

write Eq. (8) as a function of v:

lnPðWðvÞÞffiffiffiffiffiffi
M0p ¼ �w ln�max � 2v

w
þ w

v

Z v

0
ln ~KðxÞdx; (15)

having in mind that w is not an independent variable but is
bound to v through Eq. (14). Taking the derivative with
respect to vwe find after some calculations that PðWÞ has a
maximum for v0 ¼ ~K�1ð�maxÞ. The corresponding width

W ¼ w0

ffiffiffiffiffiffi
M0p

of the condensate can be determined from
Eq. (14) by calculating w0 numerically. Since w0 is inde-

pendent of the system size, we have thus shown that W �ffiffiffiffiffiffi
M0p � ffiffiffiffi

N
p

.
To calculate the envelope of the condensate, it is conve-

nient to define hðtÞ � hmni=
ffiffiffiffiffiffi
M0p

in a rescaled variable t ¼
2n

w0

ffiffiffiffiffi
M0p � 1, which removes the dependence on the system

size. In Fig. 1 we show that the Monte Carlo (MC) data
points, obtained for different sizes, collapse onto a single
curve that looks like a parabola. To calculate it analytically,
we note that hmni ¼

P
n
k¼1hdki. Changing the summation

into integration, we find

hðtÞ ¼ w0

2v0

ln
~Kðv0Þ
~Kðv0tÞ

: (16)

For the special case of Eq. (6), one obtains

hðtÞ ¼ w0

2v0

ln

�
coshJ � coshv0t

coshJ � coshv0

�
; (17)

with w0, v0 being functions of the parameters J, U. The
formula for v0 is particularly simple, v0 ¼ J � J0. The
comparison between Eq. (17) for J ¼ U ¼ 1, which gives
v0 ¼ 0:5413 and w0 ¼ 2:2005 [from Eq. (14)], and MC
simulations in Fig. 1 shows a very good agreement, apart
from the edges, where the MC envelope flattens out due to
finite-size effects, which result mainly from small fluctua-

tions of the width W. A detailed discussion will be pre-
sented elsewhere [12].
The envelope from Eq. (16) is nonuniversal, contrary to

what one could expect invoking the similarity with a

Brownian excursion [9]. Indeed, if one forced M0 / W3=2

as in the Brownian excursion case, then v ! 0 and by
applying Taylor expansion to Eq. (16) one would obtain
a universal curve hðtÞ ¼ ð6=4wÞð1� t2Þ. But because we
have here M0 / W2, this never happens.

Extension different from
ffiffiffiffi
N

p
.—So far we considered the

situation which, in the language of the SOS model, corre-
sponds to interactions between neighboring sites which
strongly suppress differences in heights, and the pinning
potential lnpðmÞ localized near zero. In this case, the

extension scales generically as � ffiffiffiffi
N

p
. We will now show

that the exponent � in the extensionW � N� can be tuned
to � � 1=2 for the following choice of the weight func-

tions: KðxÞ � e�x� and pðmÞ � e�m�
with �, � > 0. Such

weights translate to the SOS energy E ¼ P
ijmi �

mi�1j� þm�
i . The exponent � ¼ 1 corresponds to a con-

stant, e.g., a gravitational field [11] acting on the envelope,
while � < 1 and � > 1 corresponds to some attractive
force, decreasing or increasing with m, respectively.
Although the series (12) is convergent, limm!1pðmÞ !
0, so that we cannot use the previous method. However,
we can proceed as follows. From the condensation crite-
rion we obtain that for � > 1 there is no condensation. The
condensate emerges above some �c only for � < 1, the
value of � does not matter. If the condensate was localized
at a single site, its statistical weight would be P1 �
NcN�1pðNÞK2ðNÞ. Here c stands for the contribution of
background sites. For a two-site condensate, both sites will
be almost equally occupied because every difference � is
suppressed as Kð�Þ, and we have P2 � NcN�2K2ðN2Þp2ðN2Þ.
We thus obtain lnðP1=P2Þ � �c�N

� þ c�N
� with some

constants c�, c� > 0 for � < 1. This means that for � > �,

the ratio P1=P2 ! 1 as N ! 1 and the condensate is
localized. However, for �< �, the contribution from the
two-site condensate is larger. Similarly, one can show that
the contribution Pn for an n-site condensate grows with n,
so the condensate must be extended. Denoting by PðWÞ the
probability for an extensionW, we can estimate lnPðWÞ as
follows, dropping inessential constants. First, there is a
negative �W term that accounts for the W excluded back-
ground sites [cf. Eq. (8)]. An analogous term comes from
fluctuations (we assume that the entropy is additive).
Second, every site in the condensate contributes as
pðN=WÞ (because M0 � N), so there is a �WðN=WÞ�
term. The third term comes from the weight factor KðxÞ
and depends on the condensate shape. As originally sug-
gested by numerical experiments, we only have to distin-
guish two types (see below). For shapes with a smooth
envelope hðtÞ, the contribution is

�W
Z

lnKð2Nh0ðtÞ=W2Þdt��WðN=W2Þ�; (18)

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 1. Comparison between the envelope of the condensate
from Eq. (17) and rescaled MC data for the weights (6) with J ¼
U ¼ 1 for N ¼ 1000, � ¼ M=N ¼ 1 and 3 (circles, squares)
and N ¼ 4000, � ¼ 1, 3 (diamonds, triangles).
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while for a rectangular shape, where hðtÞ has a disconti-
nuity at the borders, the contribution is

� 2 lnKðN=WÞ � �ðN=WÞ�: (19)

Taking all terms together, the extension W follows by
searching the maximum of the larger of the two values
PðWÞ:

lnPsmooth ��W �WðN=WÞ� �WðN=W2Þ�; (20)

lnPrectangular ��W �WðN=WÞ� � ðN=WÞ�: (21)

Assuming W � N�, this gives �rect ¼ ð�� �Þ=ð�� �þ
1Þ for the rectangular, and �smooth ¼ ð�� �Þ=ð2�� �Þ
for the smooth condensate, respectively, a nontrivial ex-
ponent that reminds of finite-size scaling at second-order
phase transitions. Mixed shapes, partially smooth but with
some discontinuities, would give a contribution which is
always smaller than the larger value of Eqs. (20) and (21).
Thus we can have only these two types of extended shapes,
and a localized one, depending on the values of � and �. In
Fig. 2, we present the full phase diagram.

A similar reasoning can be applied to other weight
functions. For instance, for KðxÞ / x�	 and pðmÞ ¼
eU�m0 , the corresponding probabilities are

lnPsmooth ��W � 	W lnðN=W2Þ; (22)

lnPrectangular ��W � 	 lnðN=WÞ; (23)

and the latter probability is always larger, provided that
W � const, so the shape turns out to be always rectangular.
Similarly to finite-size scaling at first-order transitions, the
height scales with N, while the width stays approximately
constant, corresponding to a correlation length for first-
order transitions that stays finite. For another choice,
KðxÞ / x�	 and pðmÞ / m�b, one can show that the con-
densate emerges only if b > 0 and 	 > 1� b=2, as follows

from Eq. (4), applied to the eigenvector �m �m�b=2�	. If
the condensate exists, it is always localized, because the
ratio P1=P2, calculated as before, behaves as �Nb and
grows to infinity for b > 0. Even if one performs the sum

over the difference � in occupation numbers, P1 is still

larger than P2 by a factor of at least Nb=2. Details are
postponed to Ref. [12]. Interestingly, from experimental
observations of the shape and the scaling of the width with
the system size, one can trace back the class of hopping
interactions that are compatible with the observations.
To summarize, we have shown that a condensate which

emerges in a PFSS as a result of spontaneous symmetry
breaking, can be either extended or localized, depending
on the competition between local and ultralocal interac-
tions, and that its extension and the envelope can be
calculated analytically. Let us close the Letter with a re-
mark on possible applications. When atoms condense on a
crystal surface, they can migrate and build extended is-
lands. As experiments on the deposition of clusters [13] or
fabrication of quantum dots [14] show, the islands can be
extended in the direction perpendicular to the surface. It
would be interesting to check if the PFSS model could be
used to predict shapes and typical sizes of islands of atoms
obtained in this way. Also problems like mass transport on
arbitrary networks could be addressed within the PFSS
formalism.
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Note added.—Recently, we learned about work [15] in

which a partition function very similar to Eq. (10) was
already evaluated and some of the subsequent formulas
were derived.
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FIG. 2 (color online). Phase diagram for KðxÞ � e�x� and
pðmÞ � e�m�

. The exponent �rect ¼ ð�� �Þ=ð�� �þ 1Þ for
rectangular and �smooth ¼ ð�� �Þ=ð2�� �Þ for smooth con-
densates. The dotted lines show � ¼ 0:05; 0:1; . . . ; 0:45 (from
left to right).
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