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First-order phase transitions in the real microcanonical ensemble
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We present a simulation and data analysis technique to investigate first-order phase transitions and the associated
transition barriers. The simulation technique is based on the real microcanonical ensemble where the sum of
kinetic and potential energy is kept constant. The method is tested for the droplet condensation-evaporation
transition in a Lennard-Jones system with up to 2048 particles at fixed density, using simple Metropolis-like
sampling combined with a replica-exchange scheme. Our investigation of the microcanonical ensemble properties
reveals that the associated transition barrier is significantly lower than in the canonical counterpart. Along the line
of investigating the microcanonical ensemble behavior, we develop a framework for general ensemble evaluations.
This framework is based on a clear separation between system-related and ensemble-related properties, which
can be exploited to specifically tailor artificial ensembles suitable for first-order phase transitions.
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First-order phase transitions are ubiquitous in nature. At
the transition point two or more phases coexist, separated
by highly suppressed transition states. This suppression is
described by a free-energy barrier which governs the transition
rate between the coexisting phases. With increasing system
size, the free-energy barrier increases and the probability for
a transition decreases exponentially. The result is a rapidly
growing relaxation time. As a consequence, canonical Monte
Carlo methods such as the Metropolis algorithm [1] fail to
sample the full probability distribution, being at risk to remain
stuck in a single phase. Of course, generalized-ensemble
methods such as multicanonical [2,3], Wang-Landau [4],
or statistical-temperature Monte Carlo [5] simulations avoid
double-peak distributions and hence allow for a precise
estimation of equilibrium properties. However, this comes at
the cost of a sophisticated iterative procedure.

In this work, we show that replica-exchange simulations
in the “real” microcanonical ensemble are a competitive and
iteration free alternative to generalized-ensemble simulations
at first-order phase transitions. The microcanonical ensemble
itself has gained considerable interest in recent years [6–19].
One application is a complementary investigation and classi-
fication of phase transitions [10,11,17]. Not uncommonly the
microcanonical ensemble is described with constant potential
energy Ep. Considering this “conformational” microcanonical
ensemble originates most likely from classical spin systems
where the kinetic energy Ek is usually not defined in the
Hamiltonian. Here we consider instead the real microcanonical
(NVE) ensemble with constant total energy E = Ek + Ep,
as discussed in any textbook on statistical mechanics. The
integration of the momentum part of the microcanonical
partition sum can be done analytically [9], similarly to
the canonical case. Therefore the simulated phase space is
reduced to the configuration part and the Metropolis scheme is
straightforward to adapt. In Ref. [12], Martin-Mayor noticed
that the real microcanonical ensemble is well suited to study
first-order phase transitions for the q-state Potts model with
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a large number of spins. We generalize this observation
by applying the NVE ensemble to the test case of the
droplet condensation-evaporation transition in a continuous
Lennard-Jones (LJ) system [20–22]. The method is extended
to replica-exchange microcanonical simulations (RE NVE)
combined with the weighted histogram analysis method
(WHAM) [23,24] adapted to the NVE ensemble [25–27],
enabling the estimation of the density of states. Within a
proposed analytical framework we discuss the advantageous
sampling behavior of the NVE ensemble at temperature-driven
first-order phase transitions. The developed framework is
based on a generalized equal-area rule and further allows us
to evaluate the behavior of physical or arbitrary ensembles for
general first-order phase transitions. This framework may be
used to optimize an ensemble for replica-exchange techniques.

When the momenta are integrated out, the microcanonical
ensemble with fixed total energy E, particle number N , and
volume V is represented by the partition function

�NVE = C

∫ ∞

−∞
dEp�(Ep)WNVE(Ep), (1)

where C is a normalization constant, �(Ep) is the density of
states, and

WNVE(Ep) = (E − Ep)
3N−2

2 �(E − Ep) (2)

is the configuration weight with the Heaviside step function
�(E − Ep). The Metropolis acceptance probability is then
naturally adapted to the NVE ensemble:

Pacc(A → B) = min
{
1,WNVE

(
EB

p

)
/WNVE

(
EA

p

)}
. (3)

Note that a simulation for total energy E has to start from a
potential energy Ep � E since Ep > E has zero probability
in this ensemble.

This can be combined with a replica-exchange scheme,
where parallel simulations at different total energies exchange
their configurations with the probability

Pexc(A ↔ B) = min

{
1,

WNVEB

(
EA

p

)
WNVEA

(
EB

p

)
WNVEB

(
EB

p

)
WNVEA

(
EA

p

)
}

. (4)

Afterwards, NVE WHAM can be applied to estimate the
density of states �(Ep). This is an ensemble-independent
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FIG. 1. Caloric curve for 512 LJ particles. Error bars are smaller
than the data symbols.

property of the simulated system and allows one to estimate
observables in other ensembles, e.g., the canonical NVT
ensemble [25,27].

As an example for a first-order phase transition we
studied droplet condensation-evaporation in a LJ system with
N ∈ {384,512,640,768,1024,2048} particles at density ρ =
N/V = 0.01. The particle-particle interaction is modeled by
the LJ potential

ULJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (5)

where ε = 1 and σ = 2−1/6. A cutoff was introduced at rc =
2.5σ with a potential shift such that ŨLJ(r) = ULJ(r) − ULJ(rc)
for r < rc and ŨLJ(r) = 0 else. This enables the use of a
domain decomposition. The RE NVE simulation with M

replicas involved two simple shift moves with different update
ranges. Every 20 sweeps M replicas were randomly picked to
propose an exchange with a neighboring total energy replica. A
sweep is here defined as N Monte Carlo steps. For each total
energy we gathered a statistics of 106 measurements taken
every second sweep after thermalization.

In a first step, we compared the NVE sampling with parallel
multicanonical (MUCA) simulations [28] for 512 particles
as in Ref. [22] to validate our method (see Fig. 1), where
reweighting between the ensembles is performed on the level
of the density of states [27]. While the temperature is a fixed
parameter in the canonical ensemble, it is an observable in the
microcanonical ensemble measured as kBTNVE = 2/[(3N −
2)〈 1

E−Ep
〉] [29]. The results are within each other’s error

ranges, computed by the Jackknife procedure [30].
Since both RE NVE and MUCA simulations give us

a handle on the density of states, we are able to cal-
culate the canonical probability distribution PNVT(Ep) ∝
�(Ep) exp(−Ep/kBT ) which, as expected for a first-order
phase transition, exhibits a pronounced double peak at the
droplet condensation-evaporation transition (see Fig. 2). For
finite systems, the transition point can be defined as the
temperature Teqh where the two peaks are of equal height.
The potential-energy distribution in the real microcanonical
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FIG. 2. NVT and NVE histograms for 2048 LJ particles at
equal-height temperature Teqh = 0.6175 and equal-height total energy
Eeqh/N = 0.6849, respectively.

ensemble PNVE(Ep) ∝ �(Ep)WNVE(Ep) can be either ob-
tained directly from the NVE simulation data or from the
density of states. As in the NVT ensemble, one obtains
also in the NVE ensemble double-peak potential-energy
histograms for certain total energies. In Fig. 2 we show
the equal-height probability distribution which is realized at
the transition total energy Eeqh. By comparing the NVT and
NVE equal-height distributions we notice that the suppression
in the NVE histogram is much lower than that in the NVT
ensemble. This corresponds to a much lower barrier BNVE 	
BNVT, each defined by

B = ln
[
P eqh(E±

p )/P eqh
(
E0

p

)]
, (6)

where P eqh(Ep) is the equal-height potential-energy distribu-
tion in the respective ensemble, E±

p refers to the location of the
two maxima, and E0

p refers to the location of the minimum in
between. Figure 3 shows the canonical and microcanonical
barriers of the considered system sizes together with the
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FIG. 3. The sampling barrier in the NVT and NVE ensembles,
accompanying the LJ droplet condensation-evaporation transition,
with a comparison to results from MUCA simulations [31].
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expected leading N
1
2 scaling behavior according to Ref. [31]

and in comparison to independent results from MUCA simula-
tions. For the largest investigated system (N = 2048) we found
barriers BNVT = 42.4 and BNVE = 4.7. This means that in the
canonical ensemble the maxima of the equal-height probability
distribution are 2.6 × 1018 more likely to be sampled than the
minimum. This ratio is only 110 in the real microcanonical
ensemble. In this manner, importance sampling in the NVE
ensemble is of the order of 1016 times more efficient than in
the canonical counterpart for this transition.

With increasing system size the barriers increase. Eventu-
ally, one reaches a point where simple Metropolis-like sam-
pling in the NVE ensemble suffers analogous problems to the
canonical counterpart. For the present example microcanonical
simulations for N = 4096 particles were no longer feasible.
Alternatively, one could apply a generalized multicanonical-
like modification of RE NVE between the peaks or deploy the
later discussed tailored ensembles with no barriers.

We will follow up with a detailed analytical description
of the NVE sampling by giving a general picture of the
sampling behavior in an arbitrary ensemble. This will give
us the opportunity to arrive at conclusions about NVE
barriers in comparison to NVT barriers and the barriers of
arbitrary ensembles for general temperature-driven first-order
phase transitions. A common approach to define a canonical
transition temperature is the equal-area construction in the
conformational microcanonical ensemble with fixed potential
energy [7,8,10,11]:

BNVT =
∫ E0

p

E−
p

dEp

[
1

kBTeqa
− K(Ep)

]

=
∫ E+

p

E0
p

dEp

[
K(Ep) − 1

kBTeqa

]
, (7)

where kBK(Ep) = ∂S/∂Ep is the potential-energy deriva-
tive of the conformational microcanonical entropy S =
kB ln �(Ep), being the inverse temperature in the confor-
mational microcanonial ensemble. It is known that K(Ep)
shows for a first-order phase transition a typical S shape
[6]. The resulting transition temperature Teqa is established
to be identical to the canonical equal-height temperature Teqh

[8]. Here we generalize this equal-area rule for an arbitrary
ensemble where the configuration weight may be written as a
function of the potential energy. The logarithmic probability
distribution can then be expressed as

ln P (Ep) = ln �(Ep) + ln W (Ep), (8)

where W (Ep) is the probability for a configuration with
potential energy Ep in a given ensemble (see Table I). Because
the extrema of the distribution are the zeros of its derivative,
they are trivially related to the intersection points of the
derivative of the components in Eq. (8). Thus the general
equal-height condition for the potential-energy distribution can
be reformulated into a general equal-area rule by integrating
the derivative of Eq. (8) in the ranges [E−

p ,E0
p] and [E0

p,E+
p ].

TABLE I. Configuration weights W (Ep) and their (negative)
logarithmic derivatives D(Ep) of the canonical (NVT), microcanon-
ical (NVE for Ep � E [32]), multicanonical (MUCA), and multiple
Gaussian modified (MGM) ensembles.

Ensemble W (Ep) D(Ep)

NVT e−Ep/kBT 1/kBT

NVE (E − Ep)
3N−2

2 (3N − 2)/2(E − Ep)
MUCA �(Ep)−1 K(Ep)
MGM e−B(A−Ep )2 −2B(A − Ep)

Using Eq. (6), we then obtain the relation to the barrier

B =
∫ E0

p

E−
p

dEp[D(Ep) − K(Ep)]

=
∫ E+

p

E0
p

dEp[K(Ep) − D(Ep)], (9)

where the two areas are enclosed between D(Ep) =
−∂ ln W (Ep)/∂Ep, containing the ensemble dependency of
the equal-area rule, and K(Ep), capturing the purely system-
dependent properties. In the canonical case with DNVT(Ep) =
1/kBT , one recovers Eq. (7).

Equation (9) provides us with an illustrative and graphical
way to determine the barrier in an arbitrary ensemble. As
a typical example for the S shape at a first-order phase
transition we will use the K(Ep) from the N = 2048 LJ
system. For the NVT and NVE ensembles we constructed
in Fig. 4 two enclosed areas of equal size by determining
the specific transition temperature and transition total energy,
respectively. The intersection points correspond to a minimum
or maximum of P (Ep) in Fig. 2. We notice that the enclosed
area and hence the barrier in the NVE ensemble (turquoise
blue area) is much smaller than in the NVT ensemble (hatched
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FIG. 4. The potential-energy derivative of conformational en-
tropy K(Ep) for 2048 LJ particles and the (negative) logarith-
mic derivative of the ensemble weights, DNVT(Ep) = 1/kBT and
DNVE(Ep) = (3N − 2)/2(E − Ep), at Teqh and Eeqh as in Fig. 2, and
DMUCA(Ep) = K(Ep).
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magenta area). This reconfirms the observed advantage of the
presented simulation technique. In general one obtains for the
NVE ensemble a smaller range of transition potential energies
as well as a smaller barrier than in the NVT ensemble. This is
inevitable for a K(Ep) with the mentioned S-shape behavior
at a first-order phase transition.

The general equal-area rule allows us to arrive at further
conclusions regarding earlier publications and the behavior of
additional ensembles. In Ref. [27] the barrier in the NVE en-
semble was observed to vanish completely in an investigation
of aggregation of a polymer system. This becomes clear in the
picture of the NVE equal-area rule since depending on K(Ep)
one might not observe three intersection points with DNVE(Ep)
for any total energy. Therefore the barrier can vanish in the
NVE ensemble which is impossible in the NVT ensemble
(due to the S shape). Hence, RE NVE is identified as a good
candidate for simulating aggregation transitions. In general
it can be argued that an ensemble where the function D(Ep)
is strictly monotonically increasing has to have a smaller
enclosed area than the canonical ensemble or even no enclosed
area at all. Therefore any ensemble with a monotonically
increasing D(Ep) should show a better sampling behavior
than the canonical one. It would be interesting to investigate
further specific ensembles such as the Creutz demon [33].

The construction of D(Ep) for an ensemble without any
barrier would need, e.g., as little as a linear function with a
slope larger than or equal to the largest slope of K(Ep) to obtain
a single intersection point and therefore avoid an enclosed
area. Such a linear assumption leads directly to the multiple
Gaussian modified ensemble [34] or similarly the generalized
replica-exchange method [35]. A large slope, however, would
cause a small width of sampled potential energies in this
ensemble. The histogram width is determined by the separation
between K(Ep) and D(Ep) around the intersection point Ei

p

due to

ln

(
P (Ep)

P
(
Ei

p

)
)

=
∫ Ep

Ei
p

dE′
p[D(E′

p) − K(E′
p)] (10)

and is often dominated by the intersection angle of these
functions. The different histogram widths are also observed
for the canonical left-hand-side and right-hand-side peaks in
Fig. 2 since they correspond to the different intersection angles
of DNVT(Ep) with K(Ep) in Fig. 4. For the linear D(Ep) the
controllable width for different replicas then allows control
over the amount of sampling for separate potential-energy
regions. In this manner one could tailor an ensemble for an
enhanced sampling in the phase-crossing region to increase
tunneling events between the phases. With this reasoning
it becomes clear that, e.g., the multiple Gaussian modified
ensemble needs a careful determination of the optimal slope
and offset parameters. One might also consider other nonlinear
forms for D(Ep) which may be used to determine the complete
shape of the potential-energy histogram according to Eq. (8).

Alternatively, generalized ensemble simulations such as
MUCA and Wang-Landau avoid barriers (or enclosed areas)
by D(Ep) = K(Ep). In this manner flat-histogram methods
are of course the best way to sample the complete potential-
energy region, however, at the cost of a computationally
expensive iterative estimate of K(Ep). In comparison, RE

NVE has the advantage that it just requires an appropriate
choice of the total energies used in the replica-exchange
Metropolis sampling. Therefore it has an advantage in terms
of the parameter number to the multiple Gaussian modified
ensemble and an implementation-time and simulation-time
advantage to MUCA and Wang-Landau simulations due to
the absence of the iteration procedure. It is remarkable that the
presented NVE versus NVT barrier difference is a physical one
and not restricted to computational considerations. Physical
microcanonical signatures might be approximately observed
in astrophysics or extremely isolated systems on earth where
the barrier difference should show up as well.

The presented analytical framework and the conclusions
about barrier reductions are not restricted to ensembles at
constant volume and particle number. The framework may
be formulated equivalently to deduce a barrier reduction
for the comparison of the grandcanonical (μVT) and its
microcanonical-like counterpart, the μVL ensemble with
constant L = E − μN [25]. Yet another possibility is a
barrier reduction between the barostatic-isothermal (NPT)
and isobaric-isoenthalpic (NPH) ensemble [25] for which we
observed the expected barrier reduction in preliminary tests. A
modified framework may also be used to tailor configuration
weights to avoid barriers in field-driven phase transitions.
Here one would have to start, e.g., from the magnetization
double-peak distribution to derive the modified framework.

We conclude that the NVE sampling method is a powerful
tool for the investigation of a wide spectrum of first-order
phase transitions, as demonstrated on the example of LJ
droplet formation. Systems with strong canonical first-order
phase transitions show in the microcanonical ensemble only
a weaker first-order or even crossover signal [12,27]. As a
consequence this enables one to efficiently apply replica-
exchange methods similar to the original formulation of
parallel tempering. This simple technique yields an estimate
of the density of states with multihistogram reweighting
and gives direct access to canonical free-energy barriers
and the associated transition rates. Equivalently, one could
apply the same framework to energy-conserving molecular
dynamics simulations since they are closely related to the
NVE ensemble [9,27,36]. Considering the NVE ensemble
has thus potential applications for molecular dynamics and
Monte Carlo simulations estimating free-energy barriers at
first-order phase transitions. The here presented framework
allowed us to compare the sampling in the canonical ensemble,
microcanonical ensemble, multicanonical ensemble, and the
multiple Gaussian modified ensemble. Additionally, it bears
the potential to construct perfectly tailored ensembles for the
investigation of first-order phase transitions.
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