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Structural behavior of a polymer chain inside an attractive sphere
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We analyze the structural behavior of a single polymer chain inside an attractive sphere. Our model is composed
of a coarse-grained polymer and an attractive-sphere potential. By means of extensive multicanonical Monte Carlo
simulations, it is shown that the system exhibits a rich phase diagram ranging from highly ordered compact to
extended random coil structures and from desorbed to partially or even completely adsorbed conformations.
These findings are identified with different structural observables.
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I. INTRODUCTION

The structure formation of polymers and proteins in
different environments is crucial for a wide variety of fields in
interdisciplinary research and nanotechnological applications.
In recent years there have been many applications including,
e.g., the fabrication of biosensors [1], peptide adhesion [2]
to metals [3,4] and semiconductors [5–7]. Therefore, the
understanding of molecular self-assembly near substrates has
recently become a fascinating field in an interdisciplinary
setting. Within this frame, a deeper knowledge starting from
the origin using simplified polymer models is an important
subject. Despite many efforts in the past, due to the complexity
introduced, for instance, by the huge number of sequence
possibilities for proteins and different kinds of environments
in general, many problems are still not well understood. The
understanding of how the conformational space is affected
by the geometric effect that a polymer can experience
attraction inside differently shaped cages depends on external
parameters such as temperature and attraction strength. The
interaction of macromolecules in differently shaped cages is
particularly important for the reconstruction of all biological
processes such as cellular motion, drug delivery, and enzymatic
catalysis. The knowledge of structure formation for a variety
of interfaces has therefore been a challenging research field in
recent years. It is the prerequisite for designing specifically tai-
lored nanostructures in application of nanotechnology and in
different fields such as adhesion, chromatography, biomedical
implant modification, and biosensors [8]. It is interesting to
understand the mechanism by which proteins and polymers
cluster or aggregate on surfaces of different shapes. This
provides insight into the growth behavior of polymer layers and
thus enables the engineering of bioactive shapes with specific
properties.

Our study focuses on a systematic thermodynamic inves-
tigation of a polymer–attractive-sphere cage system using
Monte Carlo computer simulations. The problem considered
in this paper could have practical implications for a broad
variety of applications ranging from protein-ligand binding
and designing smart sensors to molecular pattern recognition
[9–12] and the discovery of new drugs that bind to specific
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receptors. Therefore, the theoretical treatment of the adsorp-
tion of macromolecules within the framework of minimalistic
coarse-grained polymer models in statistical mechanics has
been a long-standing problem [13,14] that still attracts a lot of
interest [15–25].

The rest of the paper is organized as follows. In Sec. II
the model system is described in detail. Then, in Sec. III
the multicanonical Monte Carlo simulation method is briefly
reviewed and the measured observables are introduced.
Section IV presents and discusses the main results for the
system under consideration. Finally, Sec. V concludes the
paper with a summary of our findings.

II. MODEL

The polymer chain is described by a coarse-grained off-
lattice semiflexible model for homopolymers that has also
been used for studies of heteropolymers in the frame of the
hydrophobic-polar model [26]. As on the lattice, the adjacent
monomers are connected by rigid covalent bonds. Thus the
distance is kept fixed and set to unity. The contact interaction
of lattice models is replaced by a distance-dependent Lennard-
Jones (LJ) potential accounting for short-range excluded-
volume repulsion and long-range interaction. An additional
interaction accounts for the bending energy of any pair of
successive bonds. The position vector of the ith monomer, i =
1, . . . ,N , is denoted by �ri . A polymer with N monomers has
N − 1 bonds of length unity between neighboring monomers
and N − 2 bending angles ϑi , defined through

cos(ϑi) = (�ri+1 − �ri) · (�ri+2 − �ri+1). (1)

The LJ potential of nonbonded monomers is of standard
12-6 form. This model was first employed in two dimensions
[27] and later generalized to three-dimensional AB proteins
[26,28], partially with modifications taking into account
implicitly additional torsional energy contributions of each
bond. The energy function for the polymer is thus given by

Ep = 4
N−2∑
i=1

N∑
j=i+2

(
r−12
ij − r−6

ij

) + 1

4

N−2∑
i=1

(1 − cos ϑi). (2)

In this work we assume that the polymer chain is confined
in an attractive sphere. The interaction of polymer chain
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FIG. 1. (Color online) Random start configuration of the simula-
tion. For the sphere radius we choose Rc = 20 to let the polymer with
N = 20 monomers circulate freely inside the sphere.

monomers and the attractive sphere is modeled as

Es = 4εc

πRc

ri

{
1

5

[(
σ

Rc − ri

)10

−
(

σ

Rc + ri

)10]

− ε

2

[(
σ

Rc − ri

)4

−
(

σ

Rc + ri

)4]}
, (3)

where Rc is the radius of the sphere that is a measure of the cage
size, ri = (x2

i + y2
i + z2

i )1/2 is the distance of a monomer to
the origin, xi,yi,zi are the coordinates of monomers, σ = 1.0,
and εc = 1.0. For our simulations the polymer chain length is
N = 20 and we set Rc large enough to enclose the polymer
inside the sphere. We also have done simulations with different
sizes of the sphere Rc = 10,20,30. However, to allow the
chain to circulate freely inside the sphere and also to reduce
the influence on the observables we eventually set it to 20.
The parameter ε in the second term of Eq. (3) defines the
attraction strength of the sphere inner walls and weights
the relative importance of intrinsic monomer-monomer and
monomer-sphere wall interactions. In our simulations ε is
varied between 0.1 and 1.2. The total energy E = Ep + Es of
the system is thus composed of the pure polymer chain energy
and the polymer–attractive-sphere interaction energy. A start
configuration of the simulation is presented in Fig. 1. The ini-
tial configuration of the polymer chain is randomly generated
where the ends have no contact with the sphere attractive walls.
In some theoretical and computational studies the polymer
is attached (grafted) at the surface with one of its ends,
which reduces the entropic degrees of freedom of the system.
However, in many recent experiments of, e.g., peptide-metal or
peptide-semiconductor interfaces, the setup of a freely moving
polymer is considered. This allows for adsorbed conformations
where none of the two polymer ends is in contact with the cage.

III. METHOD

In order to obtain statistical results of sufficient accuracy
we applied the multicanonical Monte Carlo algorithm [29]
(for reviews, see Refs. [30,31]), where the energy distribution

is flattened artificially, allowing, in principle, for a random
walk of successive states in energy space. This flattening
is controllable and therefore reproducible. To this end, the
Boltzmann probability is multiplied by a weight factor W (E),
which in our case is a function of the energy. Then the
multicanonical probability for a state {x} with energy E({x})
reads pM (E) = exp(−E/kBT )W (E). In order to obtain a
multicanonical or flat distribution, the initially unknown
weight function W (E) has to be determined iteratively: In
the beginning, the weights W (0)(E) are set to unity for all
energies letting the first run be a usual Metropolis simulation,
which yields an estimate H (0)(E) for the canonical distribution.
This histogram is used to determine the next guess for
the weights, the simplest update is to calculate W (1)(E) =
W (0)(E)/H (0)(E). Then the next run is performed with
probabilities p

(1)
M (E) = exp(−E/kBT )W (1)(E) of states with

energy E, yielding H (1)(E) and W (2)(E) = W (1)(E)/H (1)(E),
and so on. The iterative procedure is continued until the
weights are appropriate in a way that the multicanonical
histogram H (E) is flat. After having determined accurate
weights W (E), they are kept fixed and following some
thermalization sweeps a long production run is performed,
where statistical quantities O are obtained multicanonically,
〈O〉M = ∑

{x} pM (E({x}))O({x})/ZM with the multicanoni-
cal partition function ZM = ∑

{x} pM (E({x})). The canonical
statistics is obtained by reweighting the multicanonical to
the canonical distribution, i.e., mean values are computed as
〈O〉 = 〈OW−1〉M/〈W−1〉M .

For the determination of the multicanonical weights we
performed 200 iterations with at least 105 sweeps each. In
the production period, 1 × 108 sweeps were generated to
have reasonable statistics for estimating the thermodynamic
quantities. Statistical errors are estimated with the standard
jackknife technique [32,33]. As a result, the error bars of the
energetic and structural quantities and their fluctuations for
T � 1.0 turn out to be smaller than the data symbols used in
the plots. For T � 1.0 they are explicitly displayed in the plots
of Figs. 2(a), 6(a), and 8(a).

To obtain as much information as possible about the canon-
ical equilibrium behavior, we define the following suitable
quantities O. Next to the canonical expectation values 〈O〉, we
also determine the fluctuations about these averages, as repre-
sented by the temperature derivative (〈OE〉 − 〈O〉 〈E〉) /T 2.
We use generic units, in which kB = 1.

In order to identify conformational transitions, the spe-
cific heat (per monomer) CV (T ) = (〈E2〉 − 〈E〉2)/NT 2, with
〈Ek〉 = ∑

E g(E)Ek exp(−E/T )/
∑

E g(E) exp(−E/T ), is
calculated from the density of states g(E). The density of
states was found (up to an unimportant overall normalization
constant) by reweighting the multicanonical energy distribu-
tion obtained with multicanonical sampling to the canonical
distribution. Details are given in Ref. [34].

Apart from the specific heat, several structural quantities
are of interest. In order to check the structural compactness
of conformations or to identify the possible dispersion of
conformations because of adsorption, the radius of gyration
of the conformations is calculated. The radius of gyration
is a measure for the extension of the polymer and defined
by R2

g ≡ ∑N
i=1(�ri − �rc.m.)2/N = ∑N

i=1

∑N
j=1(�ri − �rj )2/2N2,
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FIG. 2. (Color online) (a) Specific heat as a function of temperature T for selected values of ε. (b) Specific heat as a function of the
attraction strength ε of the inner wall of the sphere and temperature T .

with �rc.m. = ∑N
i=1 �ri/N being the center of mass of the

polymer.
Another useful quantity is the mean number of monomers

docked to the surface. A single-layer structure is formed if
all monomers are attached at the sphere; if none is attached,
the polymer is desorbed. The sphere potential is a continuous
potential and in order to distinguish monomers docked to the
sphere inner walls from those not being docked it is reasonable
to introduce a cutoff. We define a monomer i as being docked
if Rc − ri < rc ≡ 1.2. The corresponding measured quantity
is the average number 〈Ns〉 of monomers docked to the inner
wall. This can be expressed as Ns = ∑N

i=1 �(rc − ri), where
�(r) is the Heaviside step function.

IV. RESULTS AND DISCUSSION

Displayed in Fig. 2 are the specific-heat curves CV (T ) as
a function of temperature T for different values of ε. The
specific heat shows two transitions. One is the pronounced low-
temperature transition, which is almost at the same temperature
for all different ε values. This is the freezing transition. Even
though this transition occurs at the same temperature, the
conformations have different characteristic shapes depending
on the attraction strength of the sphere. To describe these
different shapes we will concentrate on structural observ-
ables to be discussed below. The second, weaker transition
signal that can be read off from the specific-heat curves
indicates the adsorption transition, which comes into play at
higher temperatures than the freezing transition and depends
on the sphere attraction strength. This transition separates
desorbed (D) and adsorbed (A) conformations. The phase
structure derived from the specific-heat curves and supple-
mented by further information coming from the structural
observables is summarized in the pseudophase diagram in
the ε-T plane of Fig. 3. Representative conformations that
predominate in the different structural pseudophases labeled
by a letter code adopted from Refs. [22–25] are compiled
in Fig. 4.

In the pseudophase diagram the temperature increases from
bottom to top and the attraction strength of the sphere inner
wall increases from left to right. For low attraction strength, the
polymer behaves similarly to a free polymer where below the
freezing transition compact conformations [desorbed compact
(DC)] are identified and above, globular [desorbed globular
(DG)] ones. At higher temperatures a second transition

FIG. 3. Phase diagram of the homopolymer–attractive-sphere
system as obtained in extensive multicanonical simulations. The
boundaries separate the individual conformational phases. The
bandwidth shows the variation of the peaks of temperature derivatives
of different structural observables that have been analyzed simulta-
neously. As in the description given in the text, DE, DG, and DC
label the desorbed phases of expanded, globular, and crystalline
conformations, respectively. In addition, AE1 denotes completely
adsorbed and AE2 partially adsorbed expanded structures, AG stands
for the adsorbed globular regime, and the crystalline structures
occur in various topologies with a different number of layers:
AC4, adsorbed spherically symmetric; AC3, adsorbed three-layer
structures; AC2, adsorbed two-layer structures; and AC1, adsorbed
single-layer structures. Representative conformations are depicted in
Fig. 4.
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FIG. 4. (Color online) Typical conformations in different regions of the phase diagram: DE, DG, and DC denote the regions where the
homopolymer is desorbed; in the other regions labeled by A conformations are adsorbed (for a detailed description see the text).

(in CV only a shoulder at around T ≈ 1.28 is visible for low
attraction strength) signals the globular to desorbed expanded
(DE) or, in other words, random-coil transition. Increasing
the attraction strength leads to increasing the temperature
of the adsorption transition. The variation of the adsorption
transitions depending on the ε values can also be nicely seen
from the three-dimensional plot of the specific heat that is
drawn in Fig. 2(b) as a function of the attraction strength ε and
temperature T . It is also possible to get an indication from the
peaks in Fig. 2(b) at low temperature that occur at ε ≈ 1.0,0.6
and a smaller bump at ε ≈ 0.4. These values correspond to
the transitions between the compact pseudophases below the
freezing transition.

The radius of gyration parameter provides an excellent
view whether the conformations are compact or not; more
precisely, we can also get insight into the layering structure
of conformations for very high sphere attraction strength.
Figure 5 shows the radius of gyration 〈Rg〉 as a function of
temperature for different ε values that are considered in our
simulations. For small ε values ε = 0.1,0.2,0.3,0.4, the most

compact conformations occur in the low-temperature region
with an average value of 〈Rg〉 ≈ 1.2 and the freezing transition
temperature is in agreement with that already identified from
the specific heat. Additionally, the inflection point of these
curves also confirms the temperature that is observed in the
specific-heat curve as the collapse transition (random-coil
transition). In contrast, slightly increasing the ε value causes
also an increase in the average 〈Rg〉 value to about 1.4.
Although the freezing transition is hardly affected by the
sphere attraction strength, this reveals that there are differently
shaped conformations below the freezing transition depending
on the sphere attraction strength parameter. Increasing the ε

parameter further, 〈Rg〉 jumps to 1.8 at ε = 1.0. Above ε =
1.0, all other ε values yield the typical value 〈Rg〉 = 1.8. From
there on we can conclude that the most pronounced transition
is the layering transition that occurs at ε ≈ 1.0 and separates
the conformational spaces of planar conformations that are
single-layer and totally adsorbed conformations to the sphere
inner wall (AC1, AE1) from two-layer (AC2) or three-layer
(AC3) and adsorbed spherically compact (AC4) conformations
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FIG. 5. (Color online) (a) 〈Rg〉 as a function of temperature T for different values of ε. (b) Three-dimensional plot of 〈Rg〉 as a function of
attraction strength ε and temperature T .

that are seen at ε values lower than ε ≈ 1.0 and additionally
from AG (adsorbed globular), below and above the freezing
transition, respectively. This conclusion is also supported by
the fluctuations of the radius of gyration d〈Rg〉/dT given in
Fig. 6. The biggest deviation in fluctuations occurs at ε ≈ 1.0
(the three-dimensional figure shows this nicely with a sharp
structure in the surface plot for low temperatures). As a result,
Rg and its fluctuations establish the transition between DE and
DG and between AE2 (adsorbed extended, but not completely
adsorbed) and AG and also confirms the freezing transition
and the most pronounced layering transitions (signaled by the
low-temperature dips at ε ≈ 0.6,0.4).

What follows are the low-temperature substructures (AC2,
AC3, and AC4) of adsorbed compact conformations. These
structures occur when the attraction strength is not yet strong
enough to induce one-layer compact structures but sufficiently
high to favor polymer-sphere wall contacts. At higher temper-
ature T , two different pictures can be distinguished depending
on the competition of chain energy and attraction energy. For
low ε values the polymer first desorbs (from AG to DG)

and then expands at even higher temperature (from DG to
DE). For larger ε values the polymer first expands because
it is still adsorbed (from AG to AE2) and then at higher
temperature desorbs (from AE2 to DE). The AE1 phase occurs
for even higher ε values. The scenarios are nicely confirmed
by the observables and are also revealed by the representative
conformations shown in Fig. 4.

Since the adsorption transition typically affects only seg-
ments of the polymer and hence is not dominantly signaled
by the radius of gyration, we calculated the mean number of
monomers docked to the inner wall of the sphere (Fig. 7). Cal-
culating this parameter is the best way to discuss the adsorption
transition. As can be seen in Fig. 7(a), for high temperatures
and small values of ε, the polymer can move freely inside the
sphere and the influence of the attractive sphere cannot be seen.
Thus the average number of monomer contacts for the value
ε = 0.1 is like a straight line at 〈Ns〉 = 0. In contrast, for high ε

values and low temperatures, the polymer has a great tendency
to make surface contacts so that the mean number of monomer
contacts increases. The first signal of this behavior starts at
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FIG. 6. (Color online) (a) d〈Rg〉/dT for selected values of ε and (b) three-dimensional plot of d〈Rg〉/dT plotted against ε and T .
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FIG. 7. (Color online) (a) Mean number of adsorbed monomers 〈Ns〉 at the inner wall of the sphere as a function of temperature T for
selected values of ε. (b) Magnification of the lower left corner of (a) for small values of ε to show the starting point of adsorption, which is
ε ≈ 0.2.

ε = 0.2, which can be considered as the adsorption transition
[Fig. 7(b)]. For a detailed discussion we can concentrate on
the relation 〈Ns〉/N ≈ 1/l for l-layer structures for lattice
polymers [35]. For our three-layer structures this value would
be 1/3. In our simulations where N = 20 we found that the
three-layer structures observed for ε = 0.5 are characterized
by 〈Ns〉 � 7.0. We will discuss this later on when considering
the fluctuations of 〈Ns〉. For the two-layer structures the
expected value is 1/2, which we roughly found for ε � 0.7 as
〈Ns〉 � 10.0, so that approximately above ε = 0.7 two-layer
structures are seen below the freezing transition. The reason for
some deviation of the numerical values is that most compact
multilayer structures are cuboids on the lattice, whereas in our
off-lattice study, the layered conformations are semispherical
and the lower layer contains more monomers than the upper
layers [cf. Figs. 4(g)–4(i)].

Going further to higher ε values, at ε ≈ 1.0, which is
also determined from other structural observables as a more
pronounced layering transition, the single-layer structures

come into play. There the 〈Ns〉 values are 20 (equal to the
chain length) for ε � 1.0. As a result, the most pronounced
transition, the single-layer transition, is a topological transition
where polymer conformations completely adsorb at the inner
wall of the sphere. Also the fluctuations of the mean number
of monomer contacts give clear indications of the adsorption
transition as well as the layering transition [Figs. 8(a) and 8(b)].
With increasing ε the fluctuations of 〈Ns〉 exhibit three clear
deviations that occur at ε ≈ 0.5,0.7,1.0 corresponding to the
AC3, AC2, and AC1 (layering transition) structures. In the
temperature direction the inflection points give the adsorption
transition temperatures, which also depend on the ε value.

One more result is illustrated in Fig. 9, where we plot the
multicanonical histograms H (E,Rg) for different ε values.
For ε = 0.1 the presence of the most compact conformations
(DC) and the others (DG and DE) can be clearly observed.
The phase transition from random-coil structures is directed
toward globular ones and at low temperature there is only
one sharp Rg value. The increase of ε leads to some minimal

-14

-12

-10

-8

-6

-4

-2

 0

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

T

d <Ns>/dT

ε=0.1
ε=0.4
ε=0.7
ε=1.0
ε=1.1
ε=1.2

(a)

 0.2 0.4 0.6 0.8  1  1.2 1.4  0
 1

 2
 3

 4
 5

-14
-12
-10
-8
-6
-4
-2
 0
 2

d <Ns>/dT

ε

T

d <Ns>/dT

-14
-12
-10
-8
-6
-4
-2
 0
 2

(b)

FIG. 8. (Color online) (a) d〈Ns〉/dT for selected values of ε and (b) three-dimensional plot of d〈Ns〉/dT plotted against ε and T .
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FIG. 9. (Color online) Multicanonical histograms of energy E and radius of gyration Rg for different ε values.

change at ε = 0.4 because the low-energy part of state space at
ε = 0.4 is governed by AC4 (adsorbed spherically compact)
and AC3 (three-layer) structures, which are also very close
to a spherical shape and can be better distinguished by the
〈Ns〉 parameter indicating the number of adsorbed monomers.
Note, however, that the minimum energies are also shifted
to much lower energies. This also clearly demonstrates that
the polymer sticks to the wall of the sphere. At ε = 0.7 the
accessible state space broadens while the energies Ep and Es

compete. Additionally, the low-energy part is shifted to higher
Rg values. Further increasing ε causes more broadening in the
conformational space and also more shifting in the Rg values.

All our results obtained from the different observables
are summarized by the pseudophase diagram in the ε-T
plane, which for a convenient overview was already displayed
earlier in Fig. 3. Since our system is a finite system, it is
not possible to determine the transition lines precisely, but
we can clearly identify different pseudophases that show
distinguishing features. Their typical conformations were also
revealed already in Fig. 4. To summarize these findings, we
give a short description of each phase.

Desorbed expanded (DE): Random coil structures with no
surface contacts. These conformations freely circulate inside
the sphere [Fig. 4(a)].

Desorbed globular (DG): Semicompact disordered confor-
mations. These have also no contacts with the sphere wall
[Fig. 4(b)].

Desorbed compact (DC): The compact conformation of the
polymer that is not affected by the attractive sphere. Therefore
these are desorbed and have no position constraint inside the
sphere [Fig. 4(c)].

Adsorbed expanded, single layer (AE1): Completely ad-
sorbed but extended conformations. These are also random-
coil-like structures but lie and fit perfectly on the inner wall of
the sphere [Fig. 4(d)].

Adsorbed expanded, double layer (AE2): Partially ad-
sorbed, extended conformations. The number of adsorbed
monomers depends on how high the attraction strength and
temperature are [Fig. 4(e)].

Adsorbed globular (AG): Partially adsorbed, globular
conformations like a drop on the inner wall of the sphere
[Fig. 4(f)].

Adsorbed compact, spherically shaped (AC4): Partially
adsorbed (only one or two monomer-surface contacts) and
spherically shaped compact conformations [Fig. 4(g)].

Adsorbed compact, three layer (AC3): Partially adsorbed,
compact three-layer conformations. The lower layer of the
conformations is adsorbed and lies on the inner wall of the
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sphere. The other layers stay on top of them to build up
pyramidlike shapes [Fig. 4(h)].

Adsorbed compact, two layer (AC2): Partially adsorbed,
compact conformations. These are two-layer structures. The
lower layer of the conformations is adsorbed and lies on the
inner wall of the sphere [Fig. 4(i)].

Adsorbed compact, single layer (AC1): Completely ad-
sorbed, compact conformations. These single-layer structures
lie on the inner wall of the sphere and fit the sphere wall
perfectly [Fig. 4(j)].

The transition lines in the pseudophase diagram show the
best match of all observables analyzed simultaneously in our
study. In the thermodynamic limit of infinitely long chains
the transitions are expected to occur at sharp values of the
parameters. For finite chains, however, the transition lines still
vary with chain length N and are not well defined because of
broad peaks in the observables that also have small differences
in between. Therefore the locations of the phase boundaries
should be considered as a rough guide. Even for the rather
short chains considered here, a reasonable picture is obtained
and most of the phases are believed to still exist for longer
chains. It is clear that the structural behavior of the small
chains studied is affected by finite-size effects, in particular
in the compact pseudophases. As long as surface effects
are as influential as volume effects, the shapes of compact
adsorbed (but also of compact desorbed) conformations differ
noticeably for polymers with different but small lengths
and a precise classification is difficult. However, for longer
chains, the DE, DG, and DC phases obviously will survive.
Additionally, filmlike (AC1) and semispherical conformations
(AC2, AC3, and AC4), as well as surface-attached globular
(AG) shapes, will dominate the respective phases. Currently,
the simulation of longer chains, aiming at the identification
of all conformational subphases and a quantitative analysis
in the thermodynamic limit, is too challenging. Thus a more
detailed classification within the compact phases for longer
chains is left for future work. In spite of this, the pseudophase
diagram gives a good overview of the structural behavior of

a polymer chain inside an attractive sphere that is dependent
on environmental parameters such as the attraction strength of
the sphere wall and temperature.

V. CONCLUSION

In this paper the structural behavior of polymers within
the framework of a minimalistic coarse-grained homopolymer
model inside an attractive sphere is presented. As the attractive-
sphere potential, a Lennard-Jones–type potential between the
effective monomers and the sphere wall is assumed. The
representative conformations of some structural phases are
shown and some structural parameters of the conformations
are extracted. Finally, all the results gained from different
observables of the polymer–attractive-sphere system that are
dependent on the attraction strength and temperature are
summarized in the pseudophase diagram, which gives a good
overview of the system under consideration. Despite the
simplicity of the model, it is possible to see some basic
characteristics of structure formation in an attractive sphere.
The work considered in this paper could have practical
implications for a wide variety of problems ranging from
protein-ligand binding to designing smart sensors.
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