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We discuss how various models of scale-free complex networks approach their limiting properties when the
size N of the network grows. We focus mainly on equilibrated networks and their finite-size degree distribu-
tions. Our results show that the position of the cutoff in the degree distribution, kcutoff, scales with N in a
different way than predicted for N→�; that is, subleading corrections to the scaling kcutoff�N� are strong even
for networks of order N�109 nodes. We observe also a logarithmic correction to the scaling for degenerated
graphs with the degree distribution ��k��k−3. On the other hand, the distribution of the maximal degree kmax

may have a different scaling than the cutoff and, moreover, it approaches the thermodynamic limit much faster.
We argue that kmax�N�� with an exponent ��=min�� ,1 / ��−1��, where � is the exponent in the power law
��k��k−�. We also present some results on the cutoff function and the distribution of the maximal degree in
equilibrated networks.
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I. INTRODUCTION

Recent progress in understanding the structure and func-
tion of complex networks �1� has been largely influenced by
the application of statistical methods of modern physics. The
statistical mechanics of networks �2–8�, if restricted to struc-
tural properties, deals with two classes of problems. In the
first one, one considers networks being in a sort of equilib-
rium �2,4–6� where the concept of statistical ensembles ap-
plies in a natural way. Oppositely, growing networks are usu-
ally treated by rate-equation formalism �7,8�. Both
approaches, however, share one common thing: the majority
of considered models is analytically solvable only in the
thermodynamic limit. This causes several difficulties. First of
all, a question arises about the statistical equivalence of dif-
ferent ensembles of networks such as canonical or grand-
canonical ensemble �2�. Second, considering dynamical pro-
cesses on networks, one can ask how they are influenced by
approaching the thermodynamic limit in different ways �9�.

The third question, which we want to address in this pa-
per, is how fast is the convergence towards the limiting val-
ues of some network features, for different models? This
question is much more important than the analogous ques-
tion in more traditional physics dealing with atoms or mol-
ecules, where the number of degrees of freedom is typically
of order 1023. Here, on the contrary, the largest observed
system is the World Wide Web �WWW� with N�109–1010

nodes. Many real networks are much smaller than this, typi-
cally having only 103–104 nodes. Therefore, finite-size cor-
rections to solutions obtained in the thermodynamic limit are
much stronger and in many situations cannot be neglected.

As a most prominent example we will consider the degree
distribution ��k�, which is of most importance for character-
izing the network as well as many dynamical processes tak-
ing place on it. Finite-size effects are especially strong for
scale-free networks, for which ��k��k−� exhibits a power
law. Examples are the Internet, the WWW and many social

and biological networks. Since the power law cannot extend
to infinity for finite size N, the degree distribution ��k� must
decrease rapidly above some characteristic value k=kcutoff.
The cutoff scales typically as kcutoff�N�, where the exponent
� depends on the network type. For 2��	3 when the sec-
ond moment is divergent in the limit of large N, the cutoff
appears either directly, or via moments of ��k� in many ap-
plications, for instance, in percolation or infection spreading
�10�, transport models �11�, synchronization processes, and
others �see Ref. �12��. Because qualitative differences may
show up for various values of �, it is important to know the
proper scaling of kcutoff with N.

For a growing network such as the Barabási-Albert �BA�
model �13� or its generalization, the growing network with
redirection �GNR� model �8�, the scaling is well established
�14,15�: for any �
2, the exponent �=1 / ��−1�. Moreover,
it can be shown that for N large enough ��k� can be approxi-
mated as ���k�w�k /N��, where ���k� is the degree distribu-
tion for N→� and w�x� is some function independent of N.
This approximation holds even for quite small networks of
order 103 nodes because the convergence towards the limit-
ing distribution is fast.

The situation is not so clear for equilibrated networks;
that is, networks in which evolution is governed by rewiring
of existing connections rather than by adding new nodes, and
thus can be regarded as being in a sort of equilibrium. Al-
though the scaling exponent � has been estimated for some
models �16–19�, the cutoff function w�x� has not been deter-
mined so rigorously as for growing networks.

In this paper we will show that the predicted scaling is far
from being true even for quite large networks. The paper is
organized as follows. In Sec. II we discuss three models of
equilibrated networks whose large-N behavior we want to
study. Section III starts with basic concepts of how to calcu-
late finite-size degree distributions and how to extract the
behavior of the cutoff function. Then we consider two mod-
els, for which precise, semianalytical results are available for
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sizes up to N�109. In Sec. IV we discuss a more compli-
cated model and show how to simulate it on a computer.
Section V is devoted to a relation between the cutoff and the
maximal degree. The paper is closed with a short summary
in Sec. VI.

II. MODELS AND THEIR PROPERTIES IN THE
THERMODYNAMIC LIMIT

We shall start from defining three different models of
equilibrated networks, whose finite-size properties will be
further examined. The word “equilibrated” means that net-
works �graphs in mathematical language� are maximally ran-
dom under given constraints. These constraints are what de-
fines the statistical ensemble of networks. The statistical
ensemble consists of a set of states—graphs �gi�, and a set of
their statistical weights �W�gi��. This means that every graph
g has a probability of occurrence proportional to W�g�. Every
physical quantity X is then defined to be the average over the
set of graphs: �X	=
gW�g�X�g� /
gW�g�. Changing the set
of graphs and/or the weights, one can obtain different models
of random graphs. Three such ensembles will be considered
in this paper and are defined below. In all cases, we assume
that the graphs are undirected, have labeled nodes, fixed
number of nodes N and links L, and that the weight W�g� of
every labeled graph has a product form

W�g� = �
i=1

N

p�ki� , �1�

where ki is the degree of the ith node of graph g and p�k� is
some arbitrary node weight function. The product measure
�1� turns out to be very convenient to obtain the desired
degree distributions in the thermodynamic limit by tuning
the function p�k�. In what follows, we will assume that all
models have the same distribution ��k� in the thermody-
namic limit. Different models will be specified by restricting
the set of possible graph shapes and/or p�k�.

Equilibrated simple graphs. We consider graphs without
self- and multiple connections. Denoting by ���k� the degree
distribution for N→�, we have

���k� =
p�k�
k!

eA+Bk, �2�

as follows from Refs. �2,20�. The constants A ,B are chosen

to have 
k���k�=1 and 
kk���k�=2L /N= k̄. Equation �2�
can be used in two different ways. First, it tells us what

���k� would be for given p�k� and the average degree k̄.
Second, it allows us to calculate the weight p�k�, which will
produce the desired degree distribution �des�k� in the thermo-
dynamic limit. In the latter case, if N ,L are chosen so that the

average degree k̄ is equal to �k	=
kk�des�k�, then B=0 and
the choice p�k�=�des�k�k! implies that ���k�=�des�k�.

Equilibrated multigraphs. We again assume the product
weight �1�, but now we also accept degenerated graphs; that
is, graphs with multiple and self-connections. It can be
shown �2,17,21� that the partition function of the system,
being the sum over all configurations, assumes the form

Z�N,L� = 

k1=0

�

¯ 

kN=0

�
p�k1�
k1!

¯

p�kN�
kN!

�2L,k1+. . .+kN
, �3�

so it is equivalent to that of the balls-in-boxes model �22� or
the zero-range-process model �23� with weights p�k� /k!. The
same formula �2� as for simple graphs holds for the degree
distribution in the limit N→�.

Equilibrated trees. This ensemble consists of all labeled,
connected tree graphs with N nodes. In addition, we assume
that one node is distinguished by a “stem” attached to it,
which is convenient from a mathematical point of view, but
it does not change the large-N behavior. Such “planted” trees
can be treated in a special way and a number of quantities
can be calculated analytically �19,24�. For instance, in the
thermodynamic limit the degree distribution is given by

���k� =
p�k�

�k − 1�!
eA+Bk. �4�

Note that we have �k−1�! in the denominator, in contrast to
Eq. �2�. Now, the desired degree distribution �des�k� can be
obtained only if 
kk�des�k�=2, because the average degree
for trees approaches 2 for N→�. When this criterion is ful-
filled, then assuming p�k�=�des�k��k−1�!, one obtains
���k�=�des�k�.

All these models share one common property: the degree
distribution ���k� in the thermodynamic limit is proportional
to p�k�. Therefore, by choosing p�k��k!k−� �for graphs� or
��k−1�!k−� �for trees�, one can make these networks scale-
free. In this paper we shall stick to the following choice for
the degree distribution in all models

���k� =
�� − 1���2� − 3�

��� − 2�
��k + � − 3�

��k + 2� − 3�
� k−�, �5�

for k
0, and ���0�=0. This is precisely the degree distri-
bution ���k� in the GNR model of a growing tree mentioned
above. The average degree for this distribution is �k	=2,
therefore the equilibrated trees will approach ���k� in a natu-
ral way if p�k�=���k��k−1�!. As to equilibrated simple
graphs and multigraphs, one then has to ensure that p�k�
=���k�k! and k̄=2L /N→2 for N→�, which can be simply
done by assuming L=N. The purpose of choosing this par-
ticular distribution is that since finite-size effects in the GNR
model are known �15�, we can compare what happens if
networks are equilibrated but have the same ���k� as grow-
ing ones.

III. DEGREE DISTRIBUTION FOR A FINITE NETWORK

In the previous section we discussed the behavior of the
three models in the thermodynamic limit. Now we shall ask
what the degree distribution looks like for N��. Assume
that �N�k� and ���k� are degree distributions for finite N and
N→�, respectively. It is convenient to write the finite-size
distribution �N�k� as a product of ���k� being N indepen-
dent, and some cutoff function w�N ,k� depending explicitly
on the size N,
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�N�k� = ���k�w�N,k� . �6�

The function w�N ,k� is model dependent. In Ref. �15� it has
been found that for the GNR model, moments of w�N ,k�
scale as follows:

m � 

k

w�N,k�km � N��m+1��1 + O�N−��� , �7�

with the cutoff exponent � defined in the Introduction and
equal to �=1 / ��−1�. This means that for sufficiently large N
the cutoff function depends effectively on a single rescaled
variable x=k /N�,

w�N,k�  w�k/N�� . �8�

For the GNR model, it is possible to find an explicit form of
w�x� for some values of �. It is usually complicated, but it
always has the large-x behavior

ln w�x� � − x1/�1−�� = − x�, �9�

where we defined the exponent �=1 / �1−��. Formulas
�7�–�9� were verified numerically �21� for N of order
103–104, and an excellent agreement has been found. In this
paper we ask: to what extent these relations are valid for
equilibrated networks? In particular, if the scaling �8� still
holds, the moments m will behave as m�N��m+1� for very
large networks. The convergence towards this asymptotic be-
havior can be, however, different from that of growing net-
works. Therefore, we can relax the constraint that the sub-
leading term decays with the power � and generally expect
the following large-N behavior:

m�N�  aN��m+1��1 + bN−�� , �10�

with some constants a
0, b�0, and �
0, so that the sub-
leading correction decays like N−� with � not necessarily
equal to �, as it was in Eq. �7�.

A. Multigraphs

We shall start from multigraphs. As we said, we assume

that the average degree k̄ is chosen to ensure 
kk���k�= k̄.
This means that for a given number of nodes N, the number
of links L=L�N� is fixed. In the case of the distribution �5�,
L=N. The partition function �3� becomes a function of N
only and can be rewritten as

Z�N� = � dz

2�i
z−1−Nk̄FN�z� , �11�

where the contour of integration encircles zero and F�z� de-
notes the generating function for ���k�,

F�z� = 

k=0

�

���k�zk. �12�

The degree distribution for finite N can be calculated as fol-
lows �24�:

�N�k� =
p�k�

NZ�N�
�Z�N�
�p�k�

= ���k�
� dz

2�i
zk−1−Nk̄FN−1�z�

� dz

2�i
z−1−Nk̄FN�z�

� ���k�w�N,k� , �13�

where the cutoff function w�N ,k� is given by the above ratio
of contour integrals. The integrals cannot be, in general, per-
formed analytically for arbitrary N. However, the integration
can be easily done numerically for different distributions
���k� and sizes N as follows. We choose the contour of
integration to be z=rei�, with �� �−� ,�� and r smaller than
the radius of convergence of F�z�. Because the integrated
function becomes concentrated around zero for large N, one
does not need to integrate over the whole range of �. We
have written a procedure in MATHEMATICA, which finds the
value of r, for which the integrated function has the broadest
maximum at �=0. This speeds up the convergence of nu-
merical integration. Then, the procedure searches for �max
for which the function falls to a sufficiently small part �typi-
cally 10−10� of its maximal value. Then the function is inte-
grated by means of the adaptive method over the range
�−�max,�max�. Let us consider first the distribution �5� for
�=3, when it reduces to

���k� =
4

k�k + 1��k + 2�
, �14�

for which

F�z� =
z�3z − 2� − 2�z − 1�2 ln�1 − z�

z2 , �15�

so that the radius of convergence is one. Using the above
numerical procedure we have calculated w�N ,k� for N
=100,200, . . . ,51 200, shown in Fig. 1�a�. The theoretical
value of �, predicted for this model, should be 1 /2 �17�; the
same value comes from the correspondence to the zero-range
process �25�. Therefore, for large N, plots of w�N ,k� for
different sizes should collapse into a single curve in the res-
caled variable x=k /N�=k /N1/2. To check how fast the scal-
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FIG. 1. �a� Plots of w�N ,k� for multigraphs of sizes between 100
�the narrowest peak� and 51 200 �the widest peak�. �b� The same
data but plotted against the rescaled variable x=k / �N ln N�1/2. The
highest peak shows data for N=100.
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ing is approached when N grows, instead of using the cutoff
function directly, it is better to consider its moments m,
which can be calculated as follows:

m�N� =
� dz

2�i
z−1−Nk̄FN−1�z�fm�z�

� dz

2�i
z−1−Nk̄FN�z�

, �16�

where the auxiliary function fm�z� is defined as

fm�z� = �z
d

dz
�m 1

1 − z
. �17�

We evaluated numerically the integrals in Eq. �16� using the
same procedure as for the cutoff function, for m=1,2 ,3 and
sizes N= �1,2 , . . . ,219��1000. The maximal value of N is
�5�108. In Fig. 2 we show plots of m�N� /N�m+1�/2, where
the subleading behavior has been exposed by dividing the
data by the asymptotic form of m�N��m+1�. Since N spans
several orders of magnitude, the horizontal axis has a loga-
rithmic scale in order to make all points visible. The first
moment 1�N� /N for the GNR model of the growing tree
network, calculated as in Ref. �15�, is also plotted for com-
parison. It approaches its maximal value as �N−0.5, which
agrees with Eq. �7�. But the moments for the degenerated
graph show quite distinct behavior, namely, they grow with
ln N linearly or faster. This means that the subleading, pow-
erlike term N−� from Eq. �10� might turn into a leading be-
havior, which takes place for �→0 and leads to a multipli-
cative, logarithmic correction. To check this, we fitted the
formula

m�N�/N�m+1�/2 = Am�ln N�Cm + Bm �18�

to data points in Fig. 2. The fits are represented there as solid
lines. The ratio of obtained values C1 :C2 :C3
=1.07:1.54:2.08�1:1.5:2 suggests that the moments be-
have as

m�N� � �N ln N��m+1�/2. �19�

In other words, the cutoff scales as ��N ln N�1/2. This is also
confirmed in Fig. 1�b� where the cutoff function is plotted in
the rescaled variable x=k / �N ln N�1/2. According to our
knowledge, this logarithmic correction has not been ob-
served before. Its origin cannot lie in the distribution ���k�
only, because the growing networks with the same ���k� do
not have it, but it is the property of equilibrated graphs.
Indeed, one can predict this scaling analytically, studying the
cutoff function

w�N,k�  W�N,k�/W�N,0� , �20�

where

W�N,k� = � dz

2�i
zk−1−Nk̄FN�z� , �21�

with k̄=2 and F�z� given by Eq. �15�. Following the lines of
Sec. VI from Ref. �25� one can argue that the function under
the integral is localized around z=1 and can be expanded at
this point. Choosing the contour of integration z=ei� we ob-
tain

W�N,k�  �
−�

� d�

2�
exp�N� ik�

N
+ �2�3 − i� + ln �2��� ,

�22�

with � small enough. Inserting now k=x�N ln N�1/2 and �
= t�N ln N�−1/2 we have

W„N,x�N ln N�1/2
…  �N ln N�−1/2� dt

2�
eitx−t2+¯, �23�

where higher terms are of order ln ln N / ln N and can be ne-
glected for large N. Then the above formula becomes a
Gaussian integral and hence the cutoff function reads

w�N,k� � exp�−
1

4
� k

�N ln N�1/2�2� , �24�

with the predicted scaling.
Let us now go to �
3. In this region, the exponent �

should again be 1 /2 �25�. We calculated the first three mo-
ments m�N� for �=3.5 from Eq. �16� for the same sizes N
as previously. Next, we fitted formula �10� to the data points.
The best fit gives ��0.24 for all three moments. This value
is significantly greater than zero, thus the correction is now
clearly of the powerlike type. But the exponent ��1 /4 is
small enough to produce large corrections even for
moderate-size networks. For example, if N=104, the correc-
tion is of order 0.1b, with b being usually much larger than 1.
But � grows with �, thus the convergence to the thermody-
namic limit becomes faster, e.g., for �=4 we have estimated
�
0.4.

We also investigated the range 2���3. Again, we cal-
culated moments for different values of N, for �=2.5 and
fitted the formula �10�. The theory �25� predicts �=1 / ��
−1�=2 /3 for this case. The agreement between the data and
Eq. �10� is very good for ��0.33.
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FIG. 2. Plots of m�N� /N�m+1�/2 calculated from Eq. �16�
�squares�, for degenerated graphs with �=3 and for the GNR tree
network with the same ���k� for comparison. Solid lines display
functions: Eq. �10� for lower-right panel, and Eq. �18� for other
panels, with parameters fitted to data points.
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At last, in order to check whether the formula �9� for the
large-x behavior of the cutoff function holds for multigraphs,
we fitted a function A+ln�1+Bx�− �x /C�D to ln w�x� ob-
tained from numerical integration for N=100,200,51 200,
for �=2.5,3 ,3.5. The assumed form of w�x� approximates
the measured cutoff functions very well. The D’s obtained
for different sizes N tend to some limiting values, which we
found to be DN→�=2.0 for �=2.5,1.9 for �=3, and 3.1 for
�=3.5, with uncertainties of order 0.1. These values are in
good agreement with the exponent �=1 / �1−�� from Eq. �9�,
which gives 2, 2, and 3, respectively, and with theoretical
results for the equivalent model in Ref. �25�.

To summarize our findings for the degenerated graphs:
For �=3 we have observed logarithmic corrections to the
scaling kcutoff�N�. The point �=3 is the critical one; for �
�3, corrections are powerlike, with the exponent approach-
ing zero for �→3. The corrections are thus very strong for
��3, even for very large networks. We have also examined
the large-x behavior of the cutoff function w�x� and showed
that it agrees with Eq. �9� derived for growing networks. This
suggests some universality, but we will see later that it does
not hold for simple graphs.

B. Equilibrated trees

In Ref. �24�, the partition function Z�N� for equilibrated
trees is found to be

Z�N� = � dz

2�i
z−N−1ZGC�z� . �25�

Here ZGC�z� is a grand-canonical partition function obeying
the equation

ZGC�z� = zF̃„ZGC�z�… , �26�

with

F̃�z� = 

k=0

�

���k + 1�zk, �27�

assuming that in the thermodynamic limit we want to obtain
the degree distribution ���k�. With help of Eq. �26�, the par-
tition function �25� can be rewritten as

Z�N� = � dz

2�i
z−NF̃N−1�z��F̃�z� − zF̃��z�� . �28�

Because we assume ���0�=0, the function F̃�z� equals
1
z F�z�, with F�z� as in Eq. �12� for multigraphs. This in turn
leads to the following formula for Z�N�:

Z�N� =
1

N
� dz

2�i
z−2NFN�z� , �29�

which is, up to a factor 1 /N, equivalent to the partition func-

tion �11� for multigraphs with k̄=2−1 /N. This proves the
equivalence between equilibrated multigraphs and trees, pro-
vided that the average degree is properly tuned, which has
been already reported �22�. In our case, when L=N for mul-

tigraphs and therefore k̄=2, a small difference in the values

of moments m arise. This does not, however, change the
fact that in the thermodynamic limit both models become
fully equivalent, and that for any finite N the difference can
be neglected.

This means that the degree distribution for equilibrated
trees behaves exactly as for multigraphs; that is, we again
have logarithmic corrections to the moments m�N� for �
=3, and power-law corrections for ��3. This indicates also
that the cutoff exponent �=1 /2 for ��3 and �=1 / ��−1�
for ��3.

IV. MULTICANONICAL SIMULATIONS OF SIMPLE
GRAPHS

So far we have considered equilibrated multi- and tree
graphs. But real-world networks are usually simple graphs;
that is, they do not have multiple and self-connections, and
have loops. Unfortunately, for these reasons simple graphs
are not accessible with the technique used before, because
one does not know how to write the partition function as a
single contour integral. Therefore, to obtain �N�k� one needs
to turn to Monte Carlo �MC� techniques. Let us shortly de-
scribe here the general method, which serves for this pur-
pose. Details can be found elsewhere �4,26�. We simulate
graphs with a fixed number of nodes N and links L. Each
new graph gt+1 is generated from the previous one gt by
rewiring a single link. The move is accepted with the Me-
tropolis probability

P�gt → gt+1� = min�1,
W�gt+1�
W�gt�

� , �30�

which ensures that graphs are generated with correct weights
W�g� from Eq. �1�. In order to restrict to simple graphs we
reject moves introducing self-or multiple connections. This
method allows for estimating ��k� with good accuracy for N
of order thousands, which is, however, too small for our
purpose. Larger networks are not accessible in a reasonable
computer time. To show this, assume that ��k��k−� and that
we start from a network with all k’s much smaller than
kcutoff�N�. We assume that to obtain the experimental dis-
tribution �exp�k� with an acceptable level of noise, in the
course of simulation each node has to change its degree be-
tween 1 and kcutoff many times. Let us denote by T the first-
passage time from k=1 to k=kcutoff. Our algorithm changes k
by �1 every step, so the process can be treated as a biased
random walk in a potential V�k�=−ln ��k�. Then T can be
estimated as T�N���+1� for �
2, which is nothing more
than the Arrhenius law T�exp�V�kcutoff�� with an additional
correction factor.

If, however, one could “flatten” ��k� by appropriate re-
weighting of graphs, then instead of a biased random walk
one would deal with a simple random walk where T�N2�.
This is always better than the previous estimate for the inter-
esting range of �. Moreover, by increasing the probability of
graphs with k
kcutoff, one could measure �exp�k� far above
the cutoff. Here comes the idea of multicanonical simula-
tions �MUCA� �27�; a similar idea has already been applied
to graphs �28�. To apply MUCA in our case, we modify the
weight function from Eq. �1� to
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W�g� =
r�k1�

���k1��i=1

N

p�ki� , �31�

where r�k1� is some function depending on the degree of one
node, say the first one, and is chosen so that the distribution
�flat�k�, measured now only for the first node, is flat. The
factor 1 /���k1� gives an additional advantage of flattening
the distribution at no cost for k�kcutoff. To obtain the true
distribution �exp�k� one multiplies �flat�k� by ���k� /r�k�.
Since all nodes are statistically equivalent in equilibrated
graphs, this procedure must give the same result as standard
MC simulations. The only question is to find the optimal
r�k�. In our simulations, we applied the iterative method
from Ref. �29�, which calculates r�k� “on the fly” from
sampled data. Because changing r�k� during the simulation
violates detailed balance and thus can change statistical
weights, after obtaining a sufficiently flat histogram of

�flat�k� we fix r�k� and perform a simple MC run with W�g�
given by Eq. �31�. To speed up the simulation we divide the
whole range of k, for which we want to determine ��k�, into
overlapping subranges of size �50 and then glue results. We
validated the method for graphs by comparing it with direct
MC simulations for N	1000 �see Fig. 3� and for multi-
graphs by comparing with the exact results from Sec. III A.

To check how the cutoff scales with N, we simulated
graphs with N=625,1250,2500, . . . ,40 000 nodes, and �
=2.5,3 ,3.5, for the same ���k� as before. In each case we
performed 1010 to 1011 MC steps �in units of single-link re-
wirings� for every subrange of k, after fixing r�k�. Each
simulation was repeated three to four times in order to esti-
mate statistical errors. We then calculated the moments m of
the cutoff function and checked if one can fit a simple power
law maN��m+1� to data points. The results are shown in
Table I, left, together with reduced �2 values and significance
levels �“Q” values� for the fits. We see that none of these
cases can be accepted with the confidence level 0.05, which
is commonly used in hypotheses testing. On the other hand,
if we assume a more sophisticated form of m�N� with the
subleading correction from Eq. �10� and, according to Ref.
�16�, with ����3�=1 /2,���=2.5�=1 / �5−��=0.4, the
agreement is very good �see Table I, right�. We thus conclude
that the subleading term plays an important role for moderate
sizes. In Fig. 4 we show plots of 1�N� and both fitted func-
tions. The subleading correction coefficient b is very large.
For instance, for �=3.5 the correction is of order 0.1 for N
�106, much larger than for multigraphs, perhaps due to
much stronger structural constraints. Therefore, simple
graphs approach the thermodynamic limit even slower than
equilibrated trees or degenerated graphs.

Finally, we examined the large-x behavior of w�x� using
the same method as for multigraphs. We found that the ex-
ponent � in Eq. �9� is not 1 / �1−�� as for multigraphs but
approximately 2.0 for all values of �. This agrees with the
results of Ref. �16� that the cutoff is always Gaussian in
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FIG. 3. Example of ��k� for simple MC �squares� and MUCA
�dotted line� for simple graphs with N=103 and �=3. The solid line
shows ���k�. Inset: The same for a broader range of k. MUCA
simulation allows one to estimate the tail of �N�k� much better than
simple MC.

TABLE I. Results of fitting of the two different power laws �without and with a correction� to the
measured moments m for simple graphs. For each �, three consecutive rows present results for m=1,2 ,3.
“Parameters” indicate the set of free parameters during the fitting procedure; Q is the significance level of the
fit. If � is marked as “fixed,” its value is 0.4 for �=2.5 and 0.5 for the two other cases.

�

m=aN��m+1�

parameters a ,�
m=aN��m+1��1+bN−��

parameters a ,b ,�, fixed �

� Reduced �2 Q � b Reduced �2 Q

2.5 0.366 4.5 �0.001 0.39 5.4 2.40 0.05

0.373 3.5 0.004 0.42 8 1.99 0.09

0.376 2.9 0.013 0.44 11 1.72 0.14

3 0.392 2.64 0.021 0.34 30 0.94 0.44

0.400 2.41 0.034 0.40 80 0.87 0.48

0.405 2.34 0.039 0.47 200 0.86 0.49

3.5 0.409 6.1 �0.001 0.38 22 1.09 0.36

0.420 6.8 �0.001 0.48 56 0.73 0.57

0.428 9.2 �0.001 0.56 125 0.51 0.72
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simple graphs, but it means also that � is not universal.

V. CUTOFFS AND THE DISTRIBUTION
OF MAXIMAL DEGREE

So far we have studied the cutoffs in the degree distribu-
tion averaged over the ensemble of random graphs of a cer-
tain kind. The value kcutoff�N� tells where the power law
ends and �N�k� starts to fall off rapidly. One can also pose
the question: how does the maximal degree, kmax, scale with
N? Let � and �� be exponents in the power laws kcutoff

�N� and kmax�N��, respectively. The exponents � ,�� may,
but do not have to be equal, which has not been emphasized
strongly enough in the literature on complex networks. To
show this, let us consider the hypothetic network where all
degrees k1 , . . . ,kN are independent random variables taken
from the distribution p�k��k−�. The degree distribution ��k�
is then equal to p�k�. In a real, finite network, degrees are �at
least slightly� correlated due to structural constraints and
��k� has a cutoff. In our simplified model, we can mimic
these constraints by introducing the cutoff explicitly: p�k�
�k−�w� k

N� �, with some exponent �. Let us focus on a par-
ticular form of the cutoff,

w�x� = exp�− ax�� , �32�

with parameters a ,�. This form of the cutoff function seems
to be very general: In the case of growing networks it is an
asymptotic behavior for large k, we also checked numerically
that it holds for equilibrated graphs. For large N, the distri-
bution P�kmax� of the maximal degree,

P�kmax� � Np�kmax���
1

kmax

p�k�dk�N−1

, �33�

takes its maximal value at k
max
* being a solution to

p��kmax
* ��

1

�

p�k�dk  − Np2�kmax
* � , �34�

which for the assumed cutoff gives

kmax
* ��N1/��−1�, � �

1

� − 1

N��ln N�1/�, � �
1

� − 1
.� �35�

This means that, modulo the logarithmic correction, ��
=min(� ,1 / ��−1�). One can also show that P�kmax� for �

1 / ��−1� is given by the Fréchet extreme value distribu-
tion: P�x��x−�e−x−�+1

, while it approaches the Gumbel dis-
tribution: P�x��e−x−e−x

for ��1 / ��−1�, in the properly res-
caled variable x=A+Bkmax. Because these two distributions
are narrow, k

max
* approximates also the mean value �kmax	.

We can learn two things from Eq. �35�. First, kmax scales as a
pure power of N with the same exponent as for kcutoff, ��
=�, only if �=1 / ��−1�. The distribution of kmax is then
neither Fréchet nor Gumbel, but has a more complicated
form, as follows from Eq. �33�,

P�x�  Nx−�w�x�exp�− N�
x

�

y−�w�y�dy� , �36�

where N is a normalization coefficient and x=kmax /N1/��−1�,
and depends on the exact form of w�x�. Second, �� may be
smaller than �; that is, the maximal degree grows slower
than the cutoff. At first sight this may appear counterintui-
tive. One could have expected that ��k� for large k is domi-
nated by the maximal degree distribution and thus kmax must
not grow slower than kcutoff.

The formula for k
max
* presented above works surprisingly

well for real graphs where the cutoff stems from correlations
between nodes degrees. In order to check Eq. �35�, we per-
formed multicanonical simulations and obtained distributions
P�kmax� for multigraphs and simple graphs with �=2.5, 3,
and 3.5. In light of what has been said in Sec. III B, the
scaling of kmax for trees has to be identical to that for multi-
graphs, so it is not necessary to consider trees separately. The
procedure was similar to that described in the previous sec-
tion, with the only difference that we flatten P�kmax� and not
��k�. In each simulation we performed around 108 Monte
Carlo steps after fixing the weight r�kmax�.

Let us discuss first multigraphs. In Table II, left, we

1000 10000

1000

10000

γ = 2.5
γ = 3.0
γ = 3.5

N

µ
1
(N

)

FIG. 4. Plots of 1�N� for simple graphs with �=2.5, 3, 3.5.
Solid and dotted lines are fits from Table I, left and right,
respectively.

TABLE II. Values of exponents � ,�, and scaling of k
max
* for

degenerated and simple graphs, for different power laws ��k�
�k−�. Assumed scalings are kcutoff�N�, ln w�x��−x�. The expo-
nents � ,� have been confirmed numerically in the previous section.
The formulas for k

max
* are obtained from Eq. �35�.

�

Multigraphs Simple graphs

� � k
max
* � � k

max
*

�2,3�
1

�−1

�−1

�−2
N1/��−1� 1

5−�
2 N1/�5−���ln N�1/2

3 1 /2+ln 2 N1/2 1 /2 2 N1/2

�3,�� 1 /2 2 N1/��−1� 1 /2 2 N1/��−1�
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present values of � ,� for various �, which we confirmed
numerically in previous sections. The fourth column shows
scaling laws for k

max
* predicted by means of Eq. �35�. In Fig.

5 we plotted the experimental distributions P�kmax�, in the
rescaled variable x=kmax /k

max
* . Plots for different N show

good agreement of positions of the maximum. The distribu-
tion for �=3.5 is also approximately Fréchet, which agrees
with recent findings �30�, the two for �=2.5,3 deviate
slightly from Fréchet in the tail. The perfect scaling of kmax
means that the thermodynamic limit for the distribution of
maximal degree is approached much faster than for ��k�, and

is reached already for N�104 nodes; no subleading correc-
tions are necessary.

We repeated the same procedure for graphs �see Table II,
right, and Fig. 5�. Again, one sees very good agreement,
except for �=3, where one obtains better collapse for a
slightly different value k

max
* �N0.45. The shape of P�kmax� is

better approximated by Gumbel than Fréchet distribution.
Also for �=3.5 and N	32 000, the distribution P�kmax� de-
viates from Fréchet and is closer to Gumbel.

To conclude, we have shown that the distribution of the
maximal degree exhibits the scaling kmax�N�� but, in gen-
eral, with a different exponent than that in the cutoff. The
large-N scaling is, however, approached much faster than in
case of the degree distribution and subleading corrections
can be safely neglected in most cases for networks of order
104 nodes. It is also worth mentioning that �� depends on
both the exponents � and �.

VI. SUMMARY

In this paper we considered finite-size effects in the de-
gree distribution of equilibrated networks. We showed that
the convergence towards the thermodynamic limit is very
slow, thus in order to get reasonable estimation of the cutoff
one has to consider subleading corrections to the scaling
kcutoff�N�. For multigraphs and �=3, the correction turns
into a leading behavior ��N ln N�1/2 and therefore does not
vanish for N→�. This has to be taken into account when
comparing any numerical results for finite networks to that
derived analytically for the leading behavior only. We
checked also that the asymptotic behavior of the cutoff func-
tion is very simple: ln w�x��−x�, but � is not universal
among different classes of graphs. We argued that the maxi-
mal degree kmax reaches the asymptotic power-law scaling
faster than the cutoff but scales in many cases differently
than kcutoff.

The networks presented here do not have explicit degree-
degree correlations. It would be interesting to check which of
the results will survive the introduction of correlations, i.e.,
are universal to some extent.
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