
Geometric properties of the three-dimensional Ising and XY models

Frank Winter,1,* Wolfhard Janke,2 and Adriaan M. J. Schakel
1Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany

�Received 14 March 2008; published 9 June 2008�

The fractal structure of high-temperature graphs of the three-dimensional Ising and XY models is investi-
gated by simulating these graphs directly on a cubic lattice and analyzing them with the help of percolation
observables. The Ising graphs are shown to percolate right at the Curie critical point. The diverging length scale
relevant to the graphs in the vicinity of the percolation threshold is shown to be provided by the spin corre-
lation length. The fractal dimension of the high-temperature graphs at criticality is estimated to be
D=1.7349�65� for the Ising and D=1.7626�66� for the XY models.
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I. INTRODUCTION

The high-temperature �HT� expansion is a powerful tool
to study the critical properties of lattice spin models �1�. In
this approach, the partition function and correlation functions
are calculated by counting graphs on the lattice with each
graph representing a certain contribution. Traditionally, such
an expansion is carried out exactly to a given order by enu-
merating all possible ways a graph of a given size and topol-
ogy can be drawn on the lattice. This exact approach, involv-
ing combinatorial and graph-theoretical algorithms, is
notoriously challenging and laborious, with each additional
order requiring typically about the same amount of effort
needed for all previous orders combined.

We have developed a different approach �2� in which the
HT representation of lattice spin models is studied by means
of Monte Carlo simulations. The HT graphs along the links
of the underlying lattice are generated through a Metropolis
plaquette update that proposes a local change in the existing
graph configuration. At high temperatures, only a few small
graphs generated this way can be found scattered throughout
the lattice. As the temperature is lowered, graphs start to fill
the lattice by growing larger and becoming more abundant.
At temperatures below the critical temperature, the lattice
becomes filled with graphs. A typical graph configuration
now consists of one large graph spanning the entire lattice
and a collection of much smaller graphs �see Fig. 1�. The
steady increase in the number of occupied links and the ap-
pearance of graphs spanning the lattice as the temperature is
lowered are reminiscent of a percolation process. The use of
percolation observables therefore suggests itself to analyze
the graph configurations. For these observables to have a
bearing on the critical properties of the model under investi-
gation, it is necessary that the HT graphs percolate right at
the thermal critical point. For the Ising model on a square
lattice we numerically showed that the percolation threshold
indeed coincides with the �exactly known� Curie temperature
�2�. In other words, the phase transition in this lattice spin
model to the ordered, low-temperature state manifests itself

through a proliferation of HT graphs. Moreover, the fractal
structure of closed and open graphs was shown to encode the
standard critical exponents �2–5�.

The purpose of this paper is to extend this geometric
Monte Carlo approach to three dimensions. Two-dimensional
�2D� spin models arguably form a very special class of
models—in particular, the Ising model as it is self-dual. It
therefore is a priori not obvious that this geometric Monte
Carlo approach together with the use of percolation observ-
ables is viable in 3D.

Another Monte Carlo algorithm for studying HT represen-
tations of classical statistical models has been put forward by
Prokof’ev and Svistunov �6�. That so-called worm algorithm
is much more efficient than the conventional local update we
use. The dynamic exponent z characterizing the divergence
of the autocorrelation time � when the critical point is ap-
proached, ��� z, with � the correlation length, is close to
zero for the worm algorithm while it is larger than 2 for the
plaquette update we use. The plaquette update, on the other
hand, has the virtue that it provides a direct and clean imple-
mentation of the HT representations of the spin models we
consider. Prokof’ev and Svistunov �4� recently applied their
algorithm to the 3D complex ���4 theory to determine the
fractal dimension of the HT graphs in that theory. These
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FIG. 1. �Color online� Distribution of Ising HT graphs on a
cubic lattice of linear size L=24 at the percolation threshold. Note
the presence of a single large graph and many much smaller graphs.
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graphs are unlike those in the XY model as links and vertices
carry different weights in the two models. Moreover, because
the update algorithms differ, the graphs in the two models are
simulated in completely different ways. Nevertheless, since
the ���4 theory is in the same universality class as the XY
model, both types of HT graphs should yield the same fractal
dimension. We set out below to investigate whether univer-
sality holds for the fractal structure of HT graphs.

The paper is organized as follows. Section IIintroduces
the Metropolis plaquette update algorithm used in this Monte
Carlo study together with the percolation observables applied
to analyze the HT graphs. The subsequent two sections
present our results for the Ising �Sec. III� and XY �Sec. IV�
models, and the paper ends in Sec. V with a summary and
conclusions.

II. SIMULATION AND DATA ANALYSIS TECHNIQUES

To be specific, we consider the HT representation of O�N�
lattice spin models described by the Hamiltonian

H = − J �
�x,x�	

Sx · Sx�, �1�

with the interaction, characterized by the parameter J, re-
stricted to spins on nearest-neighbor sites, so that the sum in
Eq. �1� runs only over nearest-neighbor pairs. The spin vari-
able Sx= �Sx

1 , . . . ,Sx
N� located at each site x of the cubic lattice

has a fixed length Sx
2=1. Simulations are carried out for the

3D Ising �N=1� and XY �N=2� models.

A. Ising model

The HT representation of the 3D Ising model on a cubic
lattice with periodic boundary conditions consisting of N
sites and 3N links �7�,

Z = �cosh ��3N2N �
closed

graphs

Kb, �2�

provides an alternative, but completely equivalent descrip-
tion of the spin model. In this representation, which is purely
geometric in nature, spin degrees of freedom are swapped for
link variables. The representation �2� of the partition function
can be visualized as a sum over all possible closed graphs
that can be drawn on the lattice. Each occupied link carries a
factor K=tanh �, with � the inverse temperature, where for
convenience the coupling constant J is set to unity. In the
entire temperature range 0����, 0�K�1. The minimum
number of occupied links, b, needed to form a closed graph
is 4 on a cubic lattice. The internal energy

E = −
� ln Z

��
= − 3N K −

1

sinh � cosh �
�b	 �3�

is determined by the average number �b	 of occupied links.
The central idea of our geometric Monte Carlo approach

�2� is to directly simulate the graphs contributing to the par-
tition function. The HT representation �2� suggests the fol-
lowing local Metropolis update algorithm �8�.

The probability distribution P�G� for a given graph con-
figuration G reads in equilibrium

P�G� =
1

Z
�cosh ��3N2NKb. �4�

Such a configuration can be reached from the configuration
present after, say, t iterations in the following way:

(a)

(b)

(c)

FIG. 2. �Color online� An existing Ising HT graph on a cubic
lattice �left panel� is updated with the help of a chosen plaquette
�middle panel� into a new graph �right panel�.
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Pt+1�G� = Pt�G� + �
G�

�Pt�G��W�G� → G�

− Pt�G�W�G → G��� , �5�

where W�G→G�� is the probability for the system to move
from the graph configuration G with b occupied links to the
graph configuration G� with b� occupied links. In equilib-
rium, Pt+1�G�= Pt�G�= P�G�, and the system satisfies de-
tailed balance

P�G��W�G� → G� = P�G�W�G → G�� �6�

or

W�G → G��
W�G� → G�

=
P�G��
P�G�

=
Kb�

Kb . �7�

As is customary with Metropolis algorithms, the acceptance
rate pHT of a proposed update is maximized by giving the
largest of the two transition probabilities W�G→G�� and
W�G�→G� appearing in the ratio the largest possible value,
which is 1—that is, if the number of links, b�, in the pro-
posed configuration is larger than the number of links, b, in
the existing configuration, so that Kb� /Kb�1, W�G�→G�
=1, and W�G→G��= pHT. If, on the other hand, b��b, the

proposed configuration carries a larger weight than the exist-
ing one and will always be accepted.

The HT graphs are generated by taking the smallest pos-
sible closed graphs on the lattice—i.e., plaquettes—as build-
ing blocks. During a sweep of the lattice, all plaquettes are
visited in a regular, typewriter fashion. For the Ising model,
reflecting the underlying Z2 spin symmetry, a link can either
be empty or occupied. The links of a plaquette considered for
update are changed from empty to occupied and vice versa
�see Fig. 2 for an illustration�. This is easily implemented by
means of the binary rules 0+1=1 and 1+1=0, respectively.

The acceptance rate of a proposed update reads �8�

pHT = 
Kb�−b if b� 	 b ,

1 otherwise.
� �8�

The resulting and existing numbers of occupied links, b� and
b, respectively, are related via

b� = b + 4 − 2b�, �9�

with b denoting the number of links on the plaquette already
occupied. By taking plaquettes as building blocks, the result-
ing graphs are automatically closed.

Table I gives a summary of the number NMC of Monte
Carlo sweeps of the lattice of size L used for data collection

TABLE I. Overview of parameters used in the simulations of the 3D Ising model. The temperature
intervals ��1 ,�2� are sampled with i equidistant points. For each sampling point, NMC Monte Carlo sweeps
of the lattice of size L are used for data collection, with Ncal sweeps used for equilibration.

�1 �2 i L NMC Ncal

0.218000 0.233000 70 12 460000 60000

0.170000 0.218000 190 12 120000 20000

0.233000 0.270000 120 12 120000 20000

0.220000 0.230000 60 16 460000 60000

0.170000 0.220000 190 16 120000 20000

0.230000 0.270000 140 16 120000 20000

0.220500 0.229000 50 20 460000 60000

0.170000 0.220500 190 20 120000 20000

0.229000 0.270000 150 20 120000 20000

0.220500 0.227100 40 24 460000 60000

0.170000 0.220500 190 24 120000 20000

0.227100 0.270000 160 24 120000 20000

0.220500 0.226000 35 28 460000 80000

0.170000 0.220500 180 28 120000 30000

0.226000 0.270000 165 28 120000 30000

0.220500 0.224900 30 32 460000 80000

0.170000 0.220500 190 32 120000 30000

0.224900 0.270000 170 32 120000 30000

0.220500 0.223800 25 40 500000 120000

0.170000 0.220500 180 40 130000 40000

0.223800 0.270000 175 40 130000 40000

0.220500 0.223500 25 48 560000 240000

0.170000 0.220500 150 48 140000 50000

0.223500 0.270000 160 48 140000 50000
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in the temperature interval ��1 ,�2�, with Ncal sweeps used
for equilibration. The temperature intervals are sampled with
i equidistant points. The largest lattice taken for temperature-
dependent runs is L=48, while runs at the percolation thresh-
old are carried out on lattices up to L=64. Since the
plaquette update is a local update, autocorrelation times grow
very large on large lattices. Analyzing the time series of the
percolation strength, we estimate the autocorrelation time to
vary from ��25 for L=10 to as long as ��2500 for L
=64. To somewhat reduce correlations between successive
data points, we take measurements every fifth sweep of the
lattice. Statistical errors are estimated by means of jackknife
binning. Fits are carried out by using the nonlinear
Marquardt-Levenberg algorithm for minimization of error-
weighted least-squares fits.

B. XY model

For the XY model �N=2�, where the spins take values
along a circle, the general spin Hamiltonian �1� with J=1
reduces to

H = − �
�x,x�	

cos�
x − 
x�� , �10�

with 
x being the planar angle of the spin at site x relative to
a fixed, but arbitrary axis. The HT expansion is facilitated by
the use of the Fourier expansion

e� cos�
� = �
l=−�

�

Il���eil
, �11�

where Il�x� is the modified Bessel function of the first kind.
The partition function

Z = 
x
��

−�

� d
x

2� � 
�x,x�	

e−� cos�
x−
x�� �12�

then takes the well-known form �9�

Z = 
x
��

−�

� d
x

2� � 
�x,x�	

�
lx,x�

Ilx,x�
���eilx,x��
x−
x��, �13�

involving the integers lx,x� defined on the links connecting
the nearest neighbor sites x and x�. The spin degrees of free-
dom are now easily integrated out with the result

Z = 
�x,x�	

�
lx,x�

� Ilx,x�
��� = I0

3N��� 
�x,x�	

�1 + �
lx,x��0

�
Ilx,x�

���

I0��� � .

�14�

Here, the prime on the sums is to indicate that only configu-
rations satisfying the zero-divergence condition �x�lx,x�=0 at
each site x contribute, where the sum �x� runs over all near-
est neighbors of x. It is generally accepted that the link vari-
ables lx,x� on the right-hand side of Eq. �14� can be restricted
to the values �1 without changing the universality class. The
partition function of the XY model can then be cast in a form
analogous to the HT representation �2� of the Ising model,

Z = I0
3N��� �

closed

oriented graphs

Kb, �15�

where K� I1��� / I0���, with 0�K�1 for all �, and use is
made of the property that I−1�x�= I1�x�. Since the link vari-
able of the truncated model can take two nontrivial values
�1, the graphs now have, in contrast to the Ising model, an
orientation. A plaquette considered for update must therefore
also be given a �randomly chosen� orientation. As binary
rules we now have −1+1=0, 0+1=1, 0−1=−1, and 1−1
=0 in addition to the restrictions −1−1=0 and 1+1=0 of
singly occupancy, which, as already mentioned, we expect
not to change the universality class of the model. Apart from
these modifications, the HT representation of the XY model
can be handled in the same way as that of the Ising model.

C. Observables

The HT graphs are analyzed with the help of standard
percolation observables �10�. An important characteristic is
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L=20
L=16
L=12
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FIG. 3. �Color online� Average Ising HT graph density as a
function of the reduced inverse temperature � /�c for cubic lattices
varying in linear size from L=12 to L=48.
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FIG. 4. �Color online� Percolation probability PS of the Ising
HT graphs as a function of the reduced inverse temperature � /�c

for cubic lattices varying in linear size from L=12 to L=48.
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whether a graph spans the lattice or not. We say a graph does
so already if it spans the lattice in just one of the three pos-
sible directions. By recording this each time the graphs are
analyzed, one obtains the percolation probability PS, which
tends to zero in the limit �→0 and to unity in the opposite
limit �→�. Another important observable is the graph dis-
tribution nb, which gives the average number of graphs of b
occupied links normalized by the volume. Close to the per-
colation threshold it assumes the form

nb � b−�e−
b, 
  �K/Kper − 1�1/�. �16�

The exponents � and � are related to the fractal dimension D
of the HT graphs via �=d /D+1, with d=3 the dimension of
the space box, and �3�

� = 1/�D , �17�

where � is the exponent characterizing the divergence of the
correlation length � as the percolation threshold is ap-
proached, � �K /Kper−1�−�. An additional observable we
measure is the percolation strength P�, which is defined as
the size of the largest graph normalized by the volume. Fi-
nally, we also record the average graph size �G.

The percolation threshold and the fractal dimension of the
HT graphs follow from applying finite-size scaling to these
observables. According to scaling theory, the percolation
probability and strength for different values of the tuning
parameter K and for different lattice sizes L do not depend on
these variables separately, but depend on them in a convo-
luted way �11�:

PS�K� = PS�L1/��K/Kper − 1�� , �18�

P��K� = L−�G/�P��L1/��K/Kper − 1�� .

Here, �G determines the scaling dimension of the percolation
strength, which is related to the fractal dimension D of the
HT graphs through �10�

D = d − �G/� . �19�

The scaling dimension of the percolation probability is zero.
The first scaling relation in Eqs. �18� implies that the curves

PS�K� measured on lattices of different size all cross at the
same point. This point, being volume independent, marks the
percolation threshold Kper on the infinite lattice. That scaling
relation in addition implies that the curves collapse onto a
universal curve when replotted as a function of L1/��K /Kper
−1�. Similarly, the second scaling relation in Eqs. �18� im-
plies that if in addition to the horizontal axis also the vertical
axis is properly rescaled, with the correct value for the ratio
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L=12

(β/βc − 1)L1/ν
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0.6
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0.2

0

FIG. 5. �Color online� Collapse of the data in Fig. 4 with the
choices �20� for �c and �.

L

P
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10−3

10−4

FIG. 6. �Color online� Log-log plot of the percolation strength
P� of the Ising HT graphs at the critical temperature �20� as a
function of the lattice size L. The straight line is obtained through a
two-parameter fit in the interval L=10–64.
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FIG. 7. �Color online� Collapse of the Ising percolation strength
data measured on lattices of different size L �a� when L�G/�P� is
plotted as a function of �� /�c−1�L1/� �b� on a semilogarithmic
scale.
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�G /�, also the P��K� data fall onto a universal curve. That
scaling relation in addition implies that measurements at the
percolation threshold scale as P��Kper�L−�G/�, providing a
good means of determining �G /�.

III. ISING MODEL RESULTS

We start by simulating the HT graphs of the Ising model
on a cubic lattice. Figure 3 shows the internal energy as

obtained through Eq. �3� by measuring the density of occu-
pied links. Apart from a small interval around the critical
temperature, E is seen to be almost independent of volume,
implying that the correlation length is much smaller here
than the linear size of the smallest lattice considered �L
=12�. When entering the critical region, the correlation
length becomes larger and eventually exceeds the size of the
largest lattice considered �L=48�.

We first determine the location of the percolation thresh-
old. To this end, we measure the percolation probability on
lattices of different linear size L as a function of the inverse
temperature �see Fig. 4�.

The figure shows that the curves connecting the data
points all cross within error bars at the critical temperature,
giving a first indication that the percolation threshold coin-
cides with the thermal critical point. The percolation prob-
ability at the threshold we estimate to be PS=0.05�2�. To
obtain a more refined test, we apply finite-size scaling to this
observable. When replotted as a function of �� /�c−1�L1/�,
with � the correlation length exponent of the 3D Ising model,
the data are expected to collapse onto a universal curve. The
inverse critical temperature and � have been determined to
high precision in Refs. �12,13�,

�c = 0.22165459�10�, � = 0.63012�16� , �20�

respectively. Figure 5 shows that these values indeed pro-
duce a good collapse of the data in the entire temperature
range.

Since this is achieved without any adjustable parameter,
we arrive at the important conclusion that the percolation
threshold of the HT graphs coincides within error bars with
the thermal critical point. Moreover, since the standard Ising
correlation length exponent � has been used, it follows that
the relevant diverging length scale for the HT graphs in the
vicinity of the critical temperature is provided by the spin
correlation length.

We proceed to determine the fractal dimension D of the
HT graphs. This can be done by measuring, for example, the

TABLE II. Percolation strength exponent �G /� of the Ising HT graphs at the critical temperature �20� as
obtained through two-parameter fits in the indicated intervals.

L �G /� �2 /NDOF L �G /� �2 /NDOF

8–64 1.256 �5� 1.61 10–64 1.265 �7� 1.35

8–56 1.255 �6� 1.68 10–56 1.264 �7� 1.43

8–48 1.255 �6� 1.75 10–48 1.266 �8� 1.43

8–40 1.258 �6� 1.57 10–40 1.271 �7� 0.96

8–32 1.254 �7� 1.57 10–32 1.267 �8� 1.05

8–24 1.253 �7� 1.50 10–24 1.269 �8� 0.85

8–20 1.245 �8� 1.19 10–20 1.260 �11� 0.83

12–64 1.256 �5� 1.61 14–64 1.270 �10� 1.41

12–56 1.270 �9� 1.41 14–56 1.269 �12� 1.53

12–48 1.273 �9� 1.37 14–48 1.273 �13� 1.51

12–40 1.281 �7� 0.68 16–64 1.261 �13� 1.37

12–32 1.279 �9� 0.79 16–56 1.258 �15� 1.47

12–24 1.285 �7� 0.34 16–48 1.261 �17� 1.49
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FIG. 8. �Color online� Collapse of the percolation probability PS

of XY HT graphs measured on lattices of different size L �a� when
replotted as a function of �K /Kper−1�L1/� �b�.
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percolation strength or the average graph size at the percola-
tion threshold and applying finite-size scaling to the data
obtained for different lattice sizes L �see Fig. 6�. Since �G
was found to show large corrections to scaling for small L,
the observable P�, showing only small corrections, is used to
estimate D. Table II summarizes the results of two-parameter
fits using the nonlinear Marquardt-Levenberg algorithm for
various fit intervals. On the basis of these fits, we estimate
the critical exponent �G /� to be

�G/� = 1.2651�65� , �21�

corresponding to the largest possible fit interval �L=10
−64�, which still gives a good fit quality with a �2 per degree
of freedom �DOF�, �2 /NDOF=1.35 .

Figure 7 shows that, with this choice, the data collected in
the vicinity of the critical temperature on lattices of different
size L fall onto a universal curve when both axes are prop-
erly rescaled.

The estimate �21� for the graph exponent leads to the
estimate

D = d − �G/� = 1.7349�65� �d = 3� �22�

for the fractal dimension of the HT graphs at the critical
point. This fractal dimension is closer to that of a self-
avoiding walk in 3D, for which �14� D=1 /�=1.7001�32�,
than to that of a Brownian random walk, for which D=2.
Given this estimate for the fractal dimension, the relation
�17� leads to the estimate

� = 0.9147�42� �23�

for the graph distribution exponent �, which for self-
avoiding random walks is unity.

IV. XY MODEL RESULTS

We proceed by analyzing the HT graphs of the 3D XY
model. The critical temperature of the truncated XY model,
where links are allowed to be at most singly occupied, has to
our knowledge not been determined before. To arrive at an
accurate estimate of the percolation threshold, we consider
the percolation strength data and search for the best data
collapse given the value

� = 0.6717�1� �24�

for the XY correlation length exponent recently reported in
Ref. �15�. This is done by rendering a motion picture out of
about 300 single frames each of which showing the data
collapse for a different value of Kc. Successive frames cor-
respond to slightly increased values of Kc. A media player,
such as MPlayer, which can go forward and backward frame

TABLE III. Percolation strength exponent �G /� of the XY HT graphs at the percolation threshold �25� as
obtained through two-parameter fits in the indicated intervals.

L �G /� �2 /NDOF L �G /� �2 /NDOF

6–64 1.203 �7� 4.03 8–64 1.221 �7� 2.34

6–56 1.200 �7� 3.93 8–56 1.217 �7� 2.36

6–48 1.196 �6� 3.21 8–48 1.212 �7� 1.85

6–40 1.192 �6� 2.73 8–40 1.208 �7� 1.60

6–32 1.188 �7� 2.66 8–32 1.203 �8� 1.71

6–24 1.185 �7� 2.83 8–24 1.200 �9� 1.98

6–20 1.179 �8� 2.35 8–20 1.192 �11� 1.95

10–64 1.237 �7� 1.21 12–64 1.244 �8� 1.13

10–56 1.235 �7� 1.26 12–56 1.241 �9� 1.22

10–48 1.229 �6� 0.88 12–48 1.234 �9� 0.89

10–40 1.224 �7� 0.77 14–64 1.258 �7� 0.56

10–32 1.221 �8� 0.90 14–56 1.257 �8� 0.53

10–24 1.220 �11� 1.12 16–64 1.258 �9� 0.60

10–20 1.213 �15� 1.36 16–56 1.256 �10� 0.68

L

P
∞

64321684
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10−2

10−3

FIG. 9. �Color online� Log-log plot of the percolation strength
P� of the XY HT graphs at the percolation threshold �25� as a
function of the lattice size L. The straight line is obtained through a
two-parameter fit in the interval L=10−64.
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by frame, is used to play the motion picture and to determine
the value of Kc showing the best collapse. The quality of the
collapse is established visually. Error estimates are based on
the number of successive frames for which the quality of
collapse remains roughly the same. We have checked this
method by applying it to the Ising model, where the critical
temperature is known to high precision, and obtained surpris-
ingly good results. For the truncated XY model, we arrive in
this way at the estimate

Kper = 0.22288�5� , �25�

which is to be compared to the value Kc= tanh �c
=0.218 095. . . of the Ising model. Figure 8 shows the col-
lapse of the data achieved with the estimate �25� of the per-
colation threshold.

As for the Ising model, we determine the fractal dimen-
sion of the HT graphs of the XY model by measuring the
percolation strength P� at the percolation threshold �25� on
lattices of different size �see Fig. 9�. Table III summarizes
the results of two-parameter fits using various fit intervals.
On the basis of these fits, we estimate the critical exponent
�G /� to be

�G/� = 1.2374�66� , �26�

corresponding to the largest possible fit interval �L=10
−64� that still gives a good fit quality ��2 /NDOF=1.21�.

Figure 10 shows that with this choice, the data collected
in the vicinity of the percolation threshold on lattices of dif-
ferent size L fall onto a universal curve when both axes are
properly rescaled.

The result �26� leads to the estimate

D = 1.7626�66� �27�

for the fractal dimension of XY HT graphs at the percolation
threshold. Comparison with the estimate �22� for the fractal
dimension of the Ising HT graphs shows that the XY graphs
are more crumpled, although still much less so than a
Brownian random walk. For the graph distribution exponent
� we arrive at the estimate

� = 0.8446�45� , �28�

which is lower than the estimate �23� for the Ising model.
Our estimate �27� is in good agreement with the value D
=1.7655�20� recently reported by Prokof’ev and Svistunov
�4� for the ���4 theory which they obtained using their worm
algorithm �6�. As stated in the Introduction, the HT graphs of
that model as well as the worm update algorithm used to
simulate them are completely different from the XY HT
graphs and the plaquette update. Yet, despite these differ-
ences, the fractal dimensions of the two models, which share
the same universality class, agree within error bars. We take
this as a strong indication that, as expected, universality
holds for the fractal structure of HT graphs.

V. CONCLUSIONS

In this paper, it was shown that the geometric Monte
Carlo approach originally introduced in the context of 2D
spin models �2�, in which HT graphs are simulated directly
and analyzed with the help of percolation observables, can
also be applied to 3D spin models. The 3D Ising HT graphs
were shown to percolate right at the critical temperature,
which is known to high precision. The phase transition to the
ordered, low-temperature state in this spin model was shown
to be reflected by a proliferation of HT graphs. Also, through
data collapse, it was shown that the diverging length scale
relevant to the HT graphs in the vicinity of the percolation
threshold is the spin correlation length. With the help of
finite-size scaling, the fractal dimensions of the closed Ising
and XY HT graphs were determined as in percolation theory.
Both models are handled similarly, with the only difference
that, in contrast to the Ising HT graphs, the XY HT graphs are
oriented. Finally, it was shown that universality holds for the
fractal structure of HT graphs.
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FIG. 10. �Color online� Collapse of the XY percolation strength
data measured on lattices of different size L �a� when L�G/�P� is
plotted as a function of �K /Kper−1�L1/� �b� on a semilogarithmic
scale.
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