
Monte Carlo study of the droplet formation-dissolution transition on different two-dimensional
lattices

A. Nußbaumer, E. Bittner, and W. Janke
Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig,

Postfach 100 920, D-04009 Leipzig, Germany
�Received 19 September 2007; revised manuscript received 21 December 2007; published 14 April 2008�

In 2003 Biskup et al. �Commun. Math. Phys. 242, 137 �2003�� gave a rigorous proof for the behavior of
equilibrium droplets in the two-dimensional �2D� spin-1/2 Ising model �or, equivalently, a lattice gas of
particles� on a finite square lattice of volume V with a given excess �M �M −M0 of magnetization compared
to the spontaneous magnetization M0=m0V. By identifying a dimensionless parameter ���M� and a universal
constant �c, they showed in the limit of large system sizes that for ���c the excess is absorbed in the
background �“evaporated” system�, while for ���c a droplet of the minority phase occurs �“condensed”
system�. By minimizing the free energy of the system, they derived an explicit formula for the fraction ���� of
excess magnetization forming the droplet. To check the applicability of the asymptotic analytical results to
much smaller, practically accessible, system sizes, we performed several Monte Carlo simulations of the 2D
Ising model with nearest-neighbor couplings on a square lattice at fixed magnetization M. Thereby, we mea-
sured the largest minority droplet, corresponding to the condensed phase in the lattice-gas interpretation, at
various system sizes �L=40,80, . . . ,640�. With analytical values for the spontaneous magnetization density m0,
the susceptibility �, and the Wulff interfacial free energy density �W for the infinite system, we were able to
determine � numerically in very good agreement with the theoretical prediction. Furthermore, we did simula-
tions for the spin-1/2 Ising model on a triangular lattice and with next-nearest-neighbor couplings on a square
lattice. Again finding a very good agreement with the analytic formula, we demonstrate the universal aspects
of the theory with respect to the underlying lattice and type of interaction. For the case of the next-nearest-
neighbor model, where �W is unknown analytically, we present different methods to obtain it numerically by
fitting to the distribution of the magnetization density P�m�.
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I. INTRODUCTION

The formation and dissolution of equilibrium droplets at a
first-order phase transition is one of the long-standing prob-
lems in statistical mechanics �1�. Quantities of particular in-
terest are the size and free energy of a “critical droplet” that
needs to be formed before the decay of the metastable state
via homogeneous nucleation can start. For large but finite
systems, this is signaled by a cusp in the probability density
of the order parameter � toward the phase-coexistence re-
gion as depicted in Figs. 1 and 2 for the example of the
two-dimensional �2D� Ising model, where �=m is the mag-
netization. This cusp is often termed the evaporation-
condensation “transition point” since it separates an “evapo-
rated” phase with many very small bubbles of the “wrong”
phase around the peak at �0 from the “condensed” phase, in
which a large droplet has formed; for configuration snapshots
see Fig. 3. The droplet eventually grows further toward �
=0 until it percolates the finite system in another droplet-
strip “transition.” The latter transition is indicated in the 2D
Ising model by the cusp at the beginning of the flat two-
phase region around m=0 �see Fig. 1�.

Following early work on the crystallization of hard
spheres �2� and the general droplet picture �1�, first numerical
studies of the evaporation-condensation transition date back
to the beginning of the 1980s �3–5�. Recently this problem
was taken up again by Neuhaus and Hager �6�, who dis-
cussed it with emphasis on possible Gibbs-Thomson and Tol-
man corrections. This stimulated further new theoretical
�7–9� and numerical �10–13� work.

Here, we follow the exposition of Biskup et al. �7,8�, who
present their results both in a phenomenological liquid-vapor
�or solid-gas� picture and also explicitly in terms of the
simple Ising �lattice-gas� model. The distinguishing feature
of their work is the formulation of a proper equilibrium
theory which does not need to explicitly involve correction
effects like those of Gibbs-Thomson or Tolman �14� as was
done in earlier work �15–17�. We consider this feature as one
of the main merits of their formulation, which can be shown
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FIG. 1. �Color online� Schematic plot of the probability density
P�m� of the magnetization in logarithmic form. The marked box
indicates the position of the cutout displayed in Fig. 2. The vertical
�green� line indicates the droplet-strip transition point for positive
magnetization m�0, the use of which will be explained later on in
Sec. III C.
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to be equivalent �at least in leading order� to the earlier, less
rigorous, treatment in �6�.

The price one has to pay, however, is a rather intricate
rescaling of the original problem, which in numerical work
requires great care with details. To set the theoretical grounds
for our Monte Carlo simulation study and in particular to
develop intuition for the final representation of our results in
Figs. 14–17 below, we therefore start first with a brief sum-
mary of the Biskup et al. �7,8� theory. In order to do so, we
restrict ourselves to the special case of the 2D Ising model
with Hamiltonian

H = − J�
�i,j�

sisj , �1�

where si= 	1 and �i , j� denotes a �next-�nearest-neighbor
pair. If a down spin �si=−1� is treated as a particle and an up
spin �si= +1� as a vacancy, the system can be interpreted as a
lattice gas of atoms.

II. THEORY

In this section we summarize the rigorous considerations
of Biskup et al. �8� for the case of the 2D Ising model on a
square lattice with nearest-neighbor interactions. While their
proofs refer for technical reasons to this case only, the main
line of arguments applies to other situations as well.

We imagine the following situation: an unconstrained1

Ising system of size V=L
L in the low-temperature phase at
the inverse temperature ��J /kBT��c. If the majority of
spins is positive �si=1�, i.e., the system is in the phase with
positive magnetization, then, due to thermal fluctuations,
there are always some overturned spins pointing in the op-
posite direction and the total magnetization M =�i=1

V si=m0V.
Here, m0=m0����0 denotes the infinite-volume equilibrium

magnetization �spontaneous magnetization� as, e.g., calcu-
lated analytically by Onsager and Yang for the square lattice
with nearest-neighbor interactions �see Sec. III�.

Now, if some volume vL of the systems is inverted,2 then
the magnetization of this constrained system is

ML = m0�V − vL� − m0vL. �2�

For an illustration see Fig. 4. It is important to note that here
we assumed the inverted volume vL to have the magnetiza-
tion −m0, which is satisfied to a high degree for a large
homogeneous system because of the erratic thermal fluctua-
tions. Furthermore, the volume vL must be chosen appropri-
ately in order to be compatible with the magnetization ML,

1Later on we will mostly consider constrained systems, i.e., sys-
tems where the magnetization is fixed.

2Inversion of spins means the operation si→−si for all spins in the
volume vL.

L = 640
L = 320
L = 160
L = 80
L = 40

magnetization m

d
is
tr

ib
u
ti
o
n

P
(m

)

10.9950.990.9850.980.9750.97

1

10-10

10-20

10-30

10-40

10-50

FIG. 2. �Color online� Probability density of the magnetization
for the 2D Ising model around its right peak for different system
sizes L at the temperature T=1.5. The cusp indicates the
evaporation-condensation transition region. On the right side of the
cusp �evaporated system�, a Gaussian peak is clearly visible, while
on the left side �condensed system�, a stretched exponential behav-
ior can be seen. The two arrows on the x axis indicate for L=640
the range of data points shown in Fig. 14 below.

(a)

(b)

FIG. 3. Two snapshots of a 320
320 Ising system at T=1.5 and
the same value of the magnetization m=0.9801 chosen to be in the
vicinity of the evaporation-condensation point. �a� Evaporated sys-
tem; a large number of very small excitations �bubbles� exist �1–4
spins� and the largest cluster consists of five connected spins. �b�
Condensed system; a single large droplet with volume 400 spins
that has absorbed a large amount of the small bubbles.
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which is an even integer value. Given the fact that m0 is not
an integer number, then the same must hold for vL. In the
asymptotic limit of large systems where the volume occupied
by a single spin gets arbitrarily small compared to that of the
whole system, possible ambiguities are removed.

Now, the difference �excess� from the original, uncon-
strained system with magnetization M0=m0V is

�ML = ML − M0 = − 2vLm0. �3�

The factor 2 is due to the definition of the Ising spins, having
a value 	1. The interpretation of this formula is as follows:
a system that has a difference in the magnetization of �ML
from that of an unconstrained Ising system has a volume vL
of inverted spins.3 Biskup et al. show that for a given mag-
netization ML the total volume of inverted spins vL can be �in
the thermodynamic limit of large systems� decomposed into
two parts, local fluctuations with total volume v f and a single
large connected droplet with volume vd, since there exist no
droplets of intermediate size �8�. For the total volume of
inverted spins vL=v f +vd holds.

Now, the free energy can be decomposed according to the
two contributions. For the droplet it is written as

Fd = �W
	vd, �4�

where �W is the interfacial free energy per unit volume of an
ideally shaped droplet, also known as the free energy of a
droplet of Wulff shape �18�. The contribution of the fluctua-
tions is derived in the following manner. Of the volume V of
the whole system vd is already occupied by the single large
droplet. The rest of the system has an unconstrained magne-
tization of M0

f = �V−vd�m0. If some volume v f of the remain-

ing spins is inverted, then the magnetization is

Mf = �V − vd − v f�m0 − m0v f . �5�

Then the difference �Mf from the unconstrained magnetiza-
tion M0

f is

�Mf = Mf − M0
f = − 2m0v f . �6�

The contribution to the free energy due to these fluctuations
can be written as

Ff =
�Mf − M0

f �2

2�V
=

2m0
2v f

2

�V
, �7�

where �=����=�V��m2�− �m�2� is the susceptibility in the
thermodynamic limit.

Now, the excess magnetization �Md of the droplet com-
pared to the total excess magnetization �ML is defined as

� =
�Md

�ML
or �Md = ��ML. �8�

Using Eq. �3�, which connects �ML and vL, the excess mag-
netization of the droplet can be written as �Md=−2vdm0 and
the total excess magnetization as �ML=−2vLm0. Therefore, �
can also be presented in terms of the inverted volume as

� =
vd

vL
or vd = �vL. �9�

Hence, v f can be written as

v f = vL − vd = vL
1 −
vd

vL
� = vL�1 − �� . �10�

Using this relation, the total free energy F=Fd+Ff is

F = �W
	vd +

2m0
2v f

2

�V
�11�

=�W
	�vL +

2m0
2

�V
vL

2�1 − ��2, �12�

or, in the form of Biskup et al.,

F��� = �W
	vL����� �13�

with

����� = 	� + ��1 − ��2 �14�

and

� =
2m0

2vL
2

�V�W
	vL

=
2m0

2vL
3/2

�V�W
. �15�

Now, if the magnetization is fixed to some value, then the
total volume of overturned spins is also fixed and using Eq.
�2� we have

vL =
1

2

V −

ML

m0
� . �16�

As m0, �, and �W are constants, the only varying quantity in
Eq. �13� is the relative volume of the droplet, �. A fully

3Here, one has to be careful in which range Eq. �3� is valid. The
idea is to have a large homogeneous system where any macroscopic
part has the magnetization m0. Problems arise if the formula is
interpreted on a microscopic level. For any finite system, only an
equation of the form M =mbg�V−vd�+mdvd is valid, where mbg is
the actual magnetization in the background and md is the actual
magnetization in the droplet.

m0 (V − vL)

−m0vL

FIG. 4. Ising system of size V with a minority droplet of volume
vL of negative magnetization surrounded by the background volume
�V−vL� of positive magnetization, shown in the extreme case where
the total excess in magnetization is concentrated in the droplet, i.e.,
vd=vL.
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equilibrated thermodynamic system always stays in the mini-
mum of the free energy. Therefore, the physical ��, i.e., the
optimal partition of overturned volume between the droplet
and the fluctuations, minimizes F in the range �� �0,1�.
Consequently, the solution of this problem either is given by
��� /��=0, which is

1

2	�
− 2��1 − �� = 0, �17�

or is one of the boundary values 0,1. The solution of Eq. �17�
shows that for ���c the correct solution is �=0, i.e., pure
fluctuations and no droplet at all. The point �c it given by the
condition ��c

�0�=��c
��c�, which is �c=	�c+�c�1−�c�2, or

�c =
1

	�c�2 − �c�
. �18�

This can be substituted into Eq. �17� resulting in 1 /2	�c

−2�1−�c� /	�c�2−�c�=0 or

�c =
2

3
. �19�

Inserting this value into Eq. �18� gives

�c =
3

4
	3

2
= 0.918 558 . . . . �20�

For ���c the solution is

� =
4

3
cos2
� − cos−1�3	3/8��

3
� . �21�

These results give rise to the following physical picture. For
fixed magnetization ML�M0, where ��ML���c, the system
contains no droplet; only fluctuations are present. At some
value Mc with ��Mc�=�c two states coexist, the state of pure
fluctuations and a mixed state composed of a droplet that
absorbs 2/3 of the fluctuations and the remaining 1/3 of the
fluctuations. For smaller magnetization, i.e., ��ML���c, the

droplet grows and thereby absorbs more and more of the
background fluctuations. The predicted behavior of �=����
is shown in Fig. 5.

III. SETUP

In this work we wanted to answer two questions. On the
one hand, we wanted to test for which system sizes the the-
oretical results presented in the last section start to yield a
good description of the data for the standard 2D Ising model.
On the other hand, we wanted to check the universal aspects
of the theory by using different lattice models, namely, the
triangular nearest-neighbor �NN� lattice and the next-nearest
neighbor �NNN� square lattice. In order to do so, �, the frac-
tion of the excess of magnetization in the largest droplet
defined in Eq. �9�, has to be measured in dependence on the
parameter � defined in Eq. �15�.

To get the correct scaling for the abscissa, the parameter
��vL ,m0 ,� ,�W� has to be calculated according to Eq. �15�.
While vL is a free parameter, the magnetization, the suscep-
tibility, and the free energy of the Wulff droplet per unit
volume must be obtained analytically or by other means,
e.g., as results of simulations. For the free energy of the

scaling parameter ∆

λ
=

v d
/
v L

32.521.5∆c0.50

1

0.8

2/3

0.4

0.2

0

FIG. 5. �Color online� Fraction of the excess magnetization in
the largest droplet, �, in dependence on the scaling parameter �.
For ���c there is no largest droplet, only fluctuations. At �=�c a
droplet is formed, containing 2/3 of the total excess. In the case
���c the fraction of the excess is given by Eq. �21�. The �blue�
lines approaching � for ���c are the Taylor series of Eq. �21� up
to order 4 around �=
 that have the form �=1−1 /4�−1 /32�2

−5 /512�3−1 /256�4+¯.
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FIG. 6. �Color online� The horizontal �green� line marks the
mean of �a� the spontaneous magnetization m0�L� and �b� the mag-
netic susceptibility ��L� for system sizes L=40,80, . . . ,1280 at T
=4.0 of a NNN Ising model. Its value gives an estimate for m0 and
� at L→
. Here, we read off the values m0=0.947 2825�2� and
�=0.044 676�2�.
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Wulff droplet, the analytic expression �W=2	W� �e.g., Refs.
�19,20�� can be used. Here, � is the volume of the droplet
and W is the volume bounded by the Wulff plot. Putting �
=1 gives the interfacial free energy per unit volume

�W��� = 2	W . �22�

In the following three subsections we discuss for the three
studied models the origin of the constants in question. For
the standard Ising model with nearest-neighbor couplings on
a square lattice and the Ising model on a triangular lattice, all
relevant constants are known from literature, either analyti-
cally or from quite long series expansions. This is not the
case, however, for the NNN Ising model and, therefore, here
we had to apply simulations to retrieve the values.

A. Parameters for the NN Ising model on a square lattice

The critical temperature of the Ising model was given in
1941 by Kramers and Wannier �21�. Using self-duality argu-
ments they obtained the expression

Tc =
2

ln�1 + 	2�
. �23�

For the spontaneous magnetization m0 there exists the
famous Onsager-Yang analytical solution �22,23�

m0��� = �1 − sinh−4�2���1/8. �24�

Also the susceptibility � is known virtually to arbitrary pre-
cision from very long series expansions, e.g., Orrick et al.
�24� give the formula

���� = ��
i=0

n

ciu
2i with u =

1

2 sinh�2��
�25�

and

c = 
0,0,4,16,104,416,2 224,8 896,43 840,175 296,

825 648,3 300 480,15 101 920, . . .�

up to order 323 �at T=1.5 the last term contributes �0.28

10−158�. The volume of the Wulff plot is given by �20�

W =
4

�2�
0

��0

dx cosh−1
 cosh2�2��
sinh�2��

− cosh�x�� , �26�

where

�0 = 2 +
1

�
ln�tanh���� �27�

is the interface tension of the �1,0� surface �i.e., in direction
of the axis�. For the �1,1� surface the exact expressions reads
�25,26�

�1 =
	2

�
ln�sinh�2��� . �28�

B. Parameters for the NN Ising model on a triangular
lattice

The critical temperature for the triangular lattice is �27�

Tc =
4

ln 3
. �29�

For the spontaneous magnetization Potts �28� gave in 1952
the expression

m0��� =	1 −
16 exp�− 12��

�1 − exp�− 4����1 + 3 exp�− 4���
. �30�

In contrast to the large number of low-temperature series
expansions for the susceptibility of the square lattice, we are
aware of only two published papers for the triangular lattice
�29,30�. In the second paper two more coefficients for the
same series are given:

���� = ��
i=1

n

ciu
i with u = exp�− 4�� , �31�

where
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FIG. 7. �Color online� �a� Fit of the distribution
ln Pd�ML�=−��W

	1 /2�1−ML /M0� for a V=160
160 NNN Ising
model at the temperature T=4.0 in the range m= �0.4,0.4
+400 /1602�. �b� Fit of the Wulff free energy �W vs the inverse
system size L at temperature T=4.0 for L=40,80, . . . ,640. The er-
ror bars are obtained from �at least� ten independent simulations per
data point.
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c = 
0,0,4,0,48,16,516,288,5 328,3 840,53 676,

45 488,531 600,505 584,5 199 404,

5 399 136,50 369 760,56 095 776,

484 296 732,571 273 344,4 628 107 216� .

Finally, for the volume of the Wulff plot no explicit solution
is available. Shneidman and Zia �31� showed the correct so-
lution to be the integral

W��� = 6�
0

�/6

d� r2��� �32�

with a function r��� given implicitly by

3 + exp�2��
− 2 + 2 exp�2��

= cosh�r� sin
�

3
− ��� + cosh�r� sin����

+ cosh�r� sin
�

3
+ ��� . �33�

For the angles �l= l� /6, l=0,1 , . . . ,11, the interface tension
in the direction normal to the equilibrium surface is given by
r��l�. In the direction �=� /6 the minimal radius rmin can be
found to have the value

rmin = �0 =
2

�
cosh−1
1 − e4� + e2�	e8� − 2e4� − 3

2e4� − 2
� .

�34�

The maximal radius rmax is located at �=0 and Eq. �33�
simplifies greatly to

rmax = �1 =
2

	3�
ln
 e4� − 1

2
� . �35�

C. Parameters for the NNN Ising model on a square
lattice

For the next-nearest-neighbor model none of our param-
eters are known exactly. The inverse critical temperature was
given by Nightingale and Blöte �32� using a transfer-matrix
technique they call “phenomenological renormalization” to
be

�c = 0.190 192 69�5� . �36�

In �33� this value was independently established using Monte
Carlo simulations and finite-size scaling procedures. All
other quantities are unknown in the literature and, therefore,
computer simulations must provide the values. In the case of
the magnetization and the magnetic susceptibility this is
quite easy. A simple Monte Carlo algorithm at the desired
temperature gives a time series of the magnetization M. Then
the spontaneous magnetization and the susceptibility are
given by

m0 =
1

VN
�
i=1

N

Mi �37�

and

� =
�

V
� 1

N
�
i=1

N

Mi
2 − 
 1

N
�
i=1

N

Mi�2� , �38�

where N is the number of Monte Carlo measurements and
V=L
L the volume of the system. In the desired tempera-
ture range T��2 /3�Tc the spatial correlation length � is very
small, and therefore already for moderate lattice sizes rather
precise estimates can be achieved.4 Figure 6 shows the re-
sults of a Metropolis simulation of the NNN Ising model at
T=4.0.

To obtain the Wulff free energy is a much more demand-
ing task. Several methods are known, e.g., thermodynamic
integration �34,35�. Here, we will discuss two different ideas,
namely, a fit to the distribution of P�M� and a simple argu-
ment that the value of �W does not differ much from the
appropriately scaled planar surface tension �0.

For our first method, we exploit the fact that the probabil-
ity distribution for a droplet of volume vd can be written as
�36�

Pd � exp�− ��W
	vd� . �39�

Using Eq. �2� and under the assumption vd�vL the free en-
ergy in the exponent is

Fd = �W
	vd � �W	1

2

1 −

ML

M0
� . �40�

The assumption that the total overturned volume vL is con-
sumed by the droplet volume vd is certainly satisfied the
better the larger the droplet is. As is well known, the droplet
can grow until it reaches the so-called droplet-strip transition
point, which is roughly located at

Mds = M0
1 −
2

�
� . �41�

With Eqs. �39� and �40�, a linear fit of the form y=�Wx+c
can be achieved, where y=lnPd and
x=−�	�1 /2��1−ML /M0�. Figure 7�a� shows such a fit for
the 160
160 NNN Ising model at the temperature T=4.0
and for a range m= �0.4000,0.4156�, which is close to the
droplet-strip transition point located at mds=m0�1−2 /��
�0.3442. The data stem from a constrained multimagnetic
simulation. To extract the value of the Wulff free energy in
the thermodynamic limit of large systems, several simula-
tions at different lattice sizes must be performed. In Fig. 7�b�
the scaling of the Wulff free energy is shown in dependence
on the inverse lattice size. The intersection of the linear fit
with the ordinate gives an estimate of �W=7.50	0.02.

Finally, we want to make three remarks about the given
method. First, we are fully aware of the fact that Eqs. �21�
and �9� give a “correction” to the fit done last. Using vd���,
the fit would be valid for any droplet size up to the
condensation-evaporation point and not only for large drop-

4For too small lattice sizes, the system can “tunnel” from one peak
of the magnetization, e.g., at m=m0, to the peak of opposite mag-
netization m=−m0, or vice versa. To be on the safe side, we
checked the time series for this behavior.
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lets near the droplet-strip transition point. But, on the other
hand, the fit would no longer be linear, and, more important,
the theoretical predictions that we want to compare with
would be mixed up with the parameter estimation. Second, it
is possible to measure during the simulation the droplet size
vd and fit �W

	vd directly, instead of P�m�. Here, the disad-
vantage lies in the computational effort to measure the drop-
let size. While the magnetization comes at no additional cost,
a single measurement of the volume of the largest droplet
needs O�V� operations. Third, we want to emphasize the im-
portance of the initial starting conditions of the simulation.
An ordered start where the first n spins point in one direction
and the next V−n in the other direction is in fact a strip
configuration. As discussed in Refs. �6,20�, between the strip
configuration and the droplet configuration there is an expo-
nentially large barrier that might not be overcome during the
equilibration phase, even though a droplet configuration has
a much lower free energy for the constrained magnetization
range chosen.

The second method to obtain �W is based on the assump-
tion that, at the considered temperature, the interface tension
for different angles � is roughly isotropic. This can be veri-
fied in detail for the NN Ising model, where the interface
tension for an arbitrary angle � is known analytically �37�.
For the planar interface the expression �also given by On-
sager �27,38,39�� is �0

sq=2J+T ln�tanh�J /T�� and the expres-
sion for the “worst case,” i.e., along the main diagonal of the
lattice, is �1

sq=	2T ln sinh�2J /T� �also given by Fisher and
Ferdinand �25��. For all temperatures larger than T=1.5, the
relative difference of �0

sq and �1
sq is smaller than 1.3%. Ob-

viously, the Wulff shape is still rather circular at low tem-
peratures and the squarelike shape becomes apparent only
close to T=0. With this crude heuristics, the interface tension
per unit volume at T=1.5 is 2	��0

sq=4.219. This is quite
close �99.37%� to the correct value �W

sq=4.245. An even bet-
ter approximation is 2	���0

sq+�1
sq� /2, which deviates only

0.006% from the actual value. The same holds true for the
triangular lattice. Using Eq. �34� one finds at T=2.4� 2

3Tc a
value of 2	��0

tri=7.506 57, which is only 0.005% smaller
than the exact value of �W

tri. Inclusion of Eq. �35� for the
improved estimation 2	���0

tri+�1
tri� /2 yields a remarkably

small difference of 6
10−7% from the exact result. A more
detailed discussion concerning the approximation of ����
can be found in �31�. For the NNN Ising droplet, the low-
temperature Wulff shape is an octagon, i.e., it is much closer
to the high-temperature �low-interface-tension� form,
namely, a circle. Therefore, it is reasonable to assume that
the above approximation might work as well. The planar
interface tension can be measured using a multimagnetic
simulation �flat in the distribution of the magnetization�, the
result of which is a double-peaked magnetization density
P�m�. In the limit of large system sizes L, we have in two
dimensions �40�

ln
Pmax
�L�

Pmin
�L� � = 2��0L , �42�

where Pmin
�L� is the value of the density in the mixed phase

region m�0 and Pmax
�L� the value at its maxima �m= 	m0�.

Figure 8�a� shows the result of 13 multimagnetic simulations
for the system sizes L=6–30 �33�. For every system the
maximum and minimum probabilities Pmax

�L� and Pmin
�L� were

read off, and by repeating the simulations ten times error
bars were obtained. For L�10 the resulting values are plot-
ted in Fig. 8�b�. An infinite-system-size extrapolation in 1 /L
yields a value of �0=2.136	0.001 for the planar interface
tension. Then the estimate for the Wulff free energy �assum-
ing a circular droplet shape� is �W�2	�
2.136
=7.571	0.004, which in fact is a lower bound, as the inter-
face tension is minimal along the directions of the interac-
tions.

Table I gives the numerical values for the spontaneous
magnetization m0, the susceptibility �, and the Wulff free
energy at the temperature T where the simulation took place.
The temperature was chosen to be T�0.66Tc−0.76Tc which
is a good compromise between simulation speed �freezing at
low temperatures� and compactness of the droplet �see the
right-hand side of Fig. 3 for a typical configuration�.

D. Correction of the units in the parameter �

After all constants are known, there are still some consid-
erations to be made, before the parameter � can be calcu-
lated. The magnetization m0 and the susceptibility � are in-
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FIG. 8. �Color online� �a� Distribution of the magnetization m
for the NNN Ising model at T=4.0 and system sizes L
=6,8 , . . . ,30. �b� Scaling of the interface-tension estimates from the
histogram method: The straight line shows the fit ln�Pmax

�L� / Pmin
�L� � /L

=2��0�1+a /L�� for L�10 with goodness-of-fit parameter �2 per
degree of freedom of 1.1, yielding a planar interface-tension esti-
mate of �0=2.136	0.001.
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tensive quantities that follow from the corresponding
extensive quantities normalized �divided� by the volume. It is
convention that for spin systems the volume is expressed by
the number of spins, i.e., every spin accounts for a unit vol-
ume. In contrast, the free energy of the Wulff droplet is mea-
sured �again by convention� in units of the cell volume,
which is calculated given the lattice spacing a as input. A
possible way to treat this situation is to normalize all quan-
tities to the cell volume, which would mean that m0 and � are
given in very unfamiliar units. We refrain from this step in
order to keep our results comparable to those in the literature
and instead modify Eq. �15� in a very slight way. In order to
do so, we define a scaling parameter �lit where all param-
eters are consistent with the conventions from the literature,

�lit = 2
m0

2

��W

vL
3/2

L2 . �43�

Here, vL is the number of spins of the largest droplet includ-
ing overturned spins, L2 is the total number of spins of the
system, and m0 and � are the magnetization and susceptibil-
ity normalized to the total number of spins. The normaliza-
tion of the Wulff free energy �W does not change as it is
given in terms of the unit volume in the literature. Second,
we define �uv where all quantities are given in terms of the
unit volume, which is the meaning intended by Biskup et al.,

�uv = 2
�0

2

X�W

�3/2

V
. �44�

In this representation, � is the volume of the largest droplet,
V the volume of the total system, and �0 and X are the
magnetization and susceptibility normalized to the volume of
the total system. If v0 is the Voronoi volume of one spin �41�
�the volume of the Wigner-Seitz cell of one spin� measured
in units compatible with �W, then we have

� = vLv0, �45�

V = L2v0, �46�

�0 =
M

V
=

M

v0L2 =
m0

v0
, �47�

X = �V���2� − ���2� �48�

=�L2v0
�m0
2

v0
2� − �m0

v0
�2� �49�

=
�L2

v0
��m0

2� − �m0�2� =
�

v0
. �50�

Now, a geometric “correction factor” � from �lit to �uv can
be defined as

�uv = ��lit. �51�

Using Eqs. �43�–�51�, � can be expressed as

� =
�uv

�lit
=

2
�0

2

X�W

�3/2

V

2
m0

2

��W

vL
3/2

L2

=
1

	v0

. �52�

To conclude, using the parameters from the literature as
given in Table I, the abscissa must not be scaled by � but
rather by � /	v0, where v0 is the Voronoi volume of one cell.

For the square lattice, the Voronoi volume that a spin
occupies is 1
1, which makes the correction factor trans-
parent. The same holds for the NNN lattice that has �by
coincidence� the same geometry as the NN lattice �see Fig.
9�. In the case of the triangular lattice, the Voronoi cell is a
hexagon. Figure 9�b� displays the situation. If h denotes one-
half of the lattice side length a, then it holds that a=2h.
Every hexagon is made up of six small equilateral triangles
of side length b �dotted line�. The height of such a triangle is
h, given by h=b	3 /2. It follows that b=a /	3. Now, the
volume of a hexagon is given by

v0
hex =

3	3

2
b2 =

3	3

2 
 a
	3

�2

=
	3

2
a2. �53�

Finally, for a=1, the geometric factor � for the triangular
lattice is

TABLE I. Numerical values for the magnetization m0, suscepti-
bility �, and Wulff interfacial free energy density �W entering the
parameter �=��vL ,m0 ,� ,�W� defined in Eqs. �24�–�37� at the
simulation temperature T for the three models studied.

Parameter NN square NN triangular NNN square

Tc 2.269 3.641 5.258

T 1.500 2.400 4.000

T /Tc 0.6610 0.6592 0.7608a

m0 0.9865 0.9829 0.9473

� 0.02708 0.01959 0.04467

�W 4.245 7.507 7.502

2m0
2 /�W� 16.93 13.14 5.307

aThe temperature T=4.0 was chosen without knowledge of the criti-
cal temperature; certainly a value of T=3.5 would have been more
appropriate.

a

(a) (b)

h

b

a

FIG. 9. �Color online� Wigner-Seitz cell of the �a� NNN and �b�
triangular lattice. It contains only one lattice site and all points
within the cell are closer to this point than to any other lattice site.
The red lines indicate the construction principle using the normals
to the connection of a lattice to its neighbors.
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�tri =
1

	v0

=	 2
	3

� 1.075 . . . . �54�

E. Droplet measurement

As mentioned at the beginning of Sec. III, one of our
primary goals was the determination of the volume of the
largest droplet. A possible advance would be to set up a
multimagnetic simulation and measure the droplet volume
every sweep or so. While this is certainly possible, it is not
advisable, as the determination of the multimagnetic weight
factors W�m��1 / P�m� alone is a demanding task, and in the
following analysis there is no use for them. Instead, we ar-
ranged several simulations at fixed magnetization m �micro-
magnetic�. Inserting Eq. �3� in �15� and solving for ML gives
the relation between the parameter � and the magnetization
ML,

ML��� = Vm0 − 
2���WV
	2m0

�2/3

. �55�

Solving Eq. �55� for � yields

��ML� =
	2m0

2��WV
�Vm0 − ML�3/2, �56�

which shows that a fixed magnetization results in a fixed
value ��ML�. Therefore, we actually selected for every lat-

tice 38 reasonable values �̃i= 
0.00,0.10, . . . ,16�, with an

emphasis on the vicinity of �c. By insertion of �= �̃i into
�55�, a set of corresponding magnetization values Mi �usually
noninteger values� was obtained. A subsequent rounding to
the next allowed integer value of the magnetization ��M
= 	2� gave the final values for the simulation. To take the
influence of the rounding into account, Eq. �56� was used,
resulting in the final set of slightly shifted ��1 /	V=1 /L� �i
values that correspond to the integer-valued magnetizations.
Finally, vL was computed using �16�, vL= 1

2 �V−ML /m0�,
which in general gives a noninteger value. It should be em-
phasized that in Eqs. �55� and �56� we use for m0, �, and �W
the thermodynamic values, which are strictly valid only in
the limit of infinite system size, but as we are mainly inter-
ested in the leading scaling behavior of our results, the error
introduced here can be neglected.

To enforce the constraint of constant magnetization, we
use a Kawasaki update scheme where an up spin is ex-
changed with a down spin. Since the total number of up and
down spins does not change, the magnetization keeps its
value as well. This type of nonlocal Monte Carlo move can
be accelerated using a table storing the spins sorted accord-
ing to their direction. Here, one sweep accounts for V spin
exchange attempts.

After every sweep our simulation determines the volume
of the second-largest cluster which is �by definition� the vol-
ume vd of the droplet. This is done in two steps. First a
Hoshen-Kopelman �42� algorithm performs a complete clus-
ter decomposition. Thereby spins connected by NN �or
NNN� interactions and pointing in the same direction are

assigned a unique number. Figure 10 shows the situation for
a spin configuration with NN interactions. The largest �par-
tially drawn� cluster �red� having cluster index 1 is the back-
ground; the cluster in the center �green� with cluster index 2
is the droplet we are looking for. Inside this droplet are
smaller clusters located with cluster indices 3, 4, and 5 �light
blue, yellow, and purple�. In the next step a flood-fill routine
�43�, essentially a geometric depth first search, scans the
droplet. Starting from an arbitrary position �which was re-
corded during the cluster identification step�, it stops only
when it finds spins that belong to the largest cluster �back-
ground�. Thereby spins and clusters of opposite sign that lie
within the droplet are subsumed. The result of this operation
is shown in Fig. 10�b�. The thick blue line indicates the bor-
der between the droplet, i.e., cluster number 2, and all clus-
ters that do not have the cluster number of the background,
and the background. While this method is easy to implement
for NN interactions, in the case of the NNN square lattice
there are some pathological cases. Figure 11 shows such an

1

2

3

4

5

(a)

1

2

(b)

FIG. 10. �Color online� Cutout of a spin configuration; the red
background cluster should be much larger �cf. right-hand side
�RHS� of Fig. 3�. �a� The colors and the �small� numbers indicate
the clusters detected and enumerated by the Hoshen-Kopelman rou-
tine. �b� The thick blue line surrounds the droplet �second largest
cluster� found by the flood-fill routine.
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ambiguous situation. Figure 11�a� presents the droplet as
identified by our algorithm. In contrast, Fig. 11�b� is an
�imaginary� alternative version resulting from the closing of
the inclusion of background spins. The justification of the
right pictures is given by the fact that the NNN model has an
interaction along the diagonal which connects the two sur-
face spins �yellow�. Fortunately, it is not necessary to decide
which scenario is the more physical one. Every inclusion of
reasonable size causes a large number of broken bonds at its
surface. Therefore, configurations with inclusions are highly
suppressed for temperatures well below the Curie point. To
be on the safe side, we analyzed several simulations of the
NNN square lattice for different system sizes with both
methods at the same time, i.e., for identical configurations
the droplet was measured a second time with an algorithm
that closes inclusions, and we found negligible differences.
In the end we decided to keep things as simple as possible
and therefore used only the combination Hoshen-Kopelman–
flood-fill method for our data generation.

IV. NUMERICAL RESULTS

For all three systems and at every value of � we per-
formed simulations at five different lattices sizes L=40, 80,
160, 320, and 640. Every simulation ran at least 20 000
sweeps for the thermalization and at least 200 000 sweeps for
the measurements. To obtain the error bars reliably, ten inde-
pendent simulations were run for each data point. For the
creation of pseudorandom numbers we use the R250/521
generator �44,45�.

Having the numerical values of m0, �, and �W in place
�see Sec. III�, the region of interest can be estimated. For
�=0.92��c and the values from Table I corresponding to
the NN Ising model, for L=640 the magnetization is esti-
mated with Eq. �55� to be m�0.9827. To see the relevance
of this figure we performed a multimagnetic simulation
coupled with the parallel tempering algorithm �46� for the
NN Ising model, the result of which can be seen in Fig. 2. It
shows the upper part �in the vicinity of the magnetization
peak in Fig. 1� of the distribution of the magnetization P�m�,
which for larger lattice sizes exhibits a clear cusp that divides
the evaporated and condensed regions. Within the evaporated
region it has a Gaussian form according to Eq. �7�, while in
the condensed region a stretched exponential behavior is vis-
ible; cf. Eq. �4�. To verify this quantitatively, Fig. 12 shows a
fit of a Gaussian curve and a stretched exponential curve to
the upper part of the distribution of the magnetization
ln P�m� for the NN Ising model. The point of intersection
m
 is given by the condition

h	c − m
 + d = −
�m
 − mmax�2

2�2 , �57�

the solution of which is a fourth-order equation. With the
parameters from the fit mmax=0.9864, �2=1.042
10−7, c
=0.9858, and h=−1340, it evaluates to m
=0.9829, which is
quite close to the aforementioned value calculated with Eq.
�55�. The Gaussian fit which corresponds to the pure fluctua-
tion part where �=0 can be compared to −�Ff from Eq. �7�.
It yields for the susceptibility �=�V�2=0.6666
6402


1.042
10−7�0.028, a value quite close to the infinite-
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FIG. 11. �Color online� �a� Cutout of a spin configuration for the
NNN Ising model with a droplet �green� detected by the flood-fill
algorithm. Apparently, the inclusion on the lower right side of the
droplet �two spins� has a connection to the background and does not
count toward the volume of the droplet. �b� Another way to interpret
the situation where the spins are part of the droplet.
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FIG. 12. �Color online� Gaussian fit and stretched exponential fit
of the distribution of the magnetization P�m� for the result of an
L=640 NN Ising simulation at T=1.5. The left vertical line �ma-
genta� indicates the transition magnetization ML��c� /V predicted by
Eq. �55�, while the right vertical line �purple� coincides with the
intersection point of the two fits.
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volume value given in Table I of 0.027 08. In the droplet-
dominated regime we have approximated the full mixed
phase expression by neglecting the contributions of the fluc-
tuations, which corresponds to putting �=1 in Eq. �12�. Over
the fit range the neglected part contributes less than 4%.
Even in the worst case, located at the cusp where �=2 /3, it
amounts only to a value of approximately 9%. To obtain
these values the ratio Fd�1� /F���=4	� / �3�+1� is evaluated
using Eq. �21� in conjunction with Eq. �56�, which yields an
expression �=��ML�. This is corroborated by the fact that,
when the droplet regime is fitted without fluctuations, from
−�Fd�1� the Wulff free energy is approximated as
�W=−h / ��	V / �2c��=1340 / �0.6666
	6402 / �2
0.9858��
�4.410, which is, again, quite close to the value of 4.245
given in Table I.

To have another “visual proof” that something different is
happening on the two sides of the cusp in Fig. 2, we took
several snapshots of the configurations that occurred during a
simulation run. The two plots of Fig. 3 display an evaporated
�left� and a condensed system �right�, respectively. Both sys-
tems have the same number of overturned spins, i.e., the
same magnetization, which was chosen to be right at the
transition point. While both configurations occurred during
an actual simulation run, they do present extreme cases.
When the set of the largest cluster sizes recorded in the simu-
lation run is considered, the evaporated cluster configuration
corresponds to the smallest number in the set and the con-
densed configuration corresponds to the largest number in
the set.

A final affirmation that the point under consideration was
chosen correctly can be derived from a look at the time series
of the magnetization m in Fig. 13. The direct comparison
shows a block structure in the time series that coincides with
the cusp in the distribution P�m�. Clearly, this is a sign of a
barrier in the free energy.

In Figs. 14–16 we show our main results, the fraction
���� for the three observed lattices. The �black� solid line is
the analytical value of � as shown in Fig. 5. Clearly, for
larger lattice sizes the theoretical value is approached by the
results of the simulation. Figure 14�a� shows � in depen-

dence on the magnetization m. In Fig. 14�b� � is plotted for
the same set of data points, but this time in dependence on �,
which essentially is a rescaling with vL

3/2. While in Fig. 14�a�
the important region is barely visible, the rescaling leads to a
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FIG. 13. �Color online� Time series of the magnetization of an L=160 NN Ising simulation at temperature T=1.5. The distribution on the
LHS corresponds to the times series on the RHS and both were measured during the same simulation run. The lower �green� and upper �blue�
horizontal lines indicate the transition magnetization calculated from Eq. �55� for lattice sizes L=160 and L→
, respectively. The blocks in
the time series are a typical sign of a barrier in the free energy.
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FIG. 14. �Color online� Fraction � for the 2D NN Ising model
on square lattices of size L=40,80, . . . ,640 with periodic boundary
conditions at the temperature T=1.5�0.66Tc. The error bars are not
plotted since their size is much smaller than that of the data sym-
bols. To show the influence of the scaling of the abscissa, �a� and
�b� use the same data. While in �a� the fraction � is given in units of
the magnetization in �b� it is given in units of �. The solid line in
�b� shows the analytical solution in the limit L→
.
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blowup of the transition region, making the theoretically pre-
dicted jump from ���0 to ���2 /3 at �c�0.92 observable.
This confirms that at the evaporation-condensation transition
only 2/3 of the excess of the magnetization goes into the
droplet, while the rest remains in the background fluctua-
tions. The increase of �� for �→0 can be explained by the
fact that the minimal cluster size is 1 and not an arbitrarily
small fraction. In contrast, the excess that can be fixed ana-
lytically using Eq. �15� can be much smaller than 1.

In Fig. 17 we compare � of the three different models for
the same system size L=640. The nice agreement of the data
points is a clear indication of the lattice-independent univer-
sal behavior of the theory. An explanation for the slight dis-
crepancy between the NN and the triangular lattice on the

one side and the NNN model on the other might be given by
the slightly different temperature ratio T /Tc �see Table I�.

Finally, under the assumption that the jump in the droplet
size � from 0 to 2/3 occurs at �c, it is possible to determine
one of the constants included in the rescaling factor �. Plot-
ting the fraction � against vL

3/2 /L2 for two different L, e.g.,
L=320 and 640, gives us a point of intersection �. At least
for large lattice sizes, this point should approach �c if cor-
rectly scaled by a factor D=2m0

2 /��W �respectively, D
=2�m0

2 /��W for the triangular lattice�, i.e., asymptotically

�c = D� �58�

holds. When � is measured, the unknown factor D is given
by D=�c /�. Certainly, the most interesting quantity from a
computational point of view is the interfacial tension �W,
which can be computed as �W=2m0

2 /�D if the spontaneous
magnetization m0 and the susceptibility � are known. In the
case of the NN square lattice, the point of intersection for
L=320 and 640 is �=0.053 78, which gives a scaling factor
of D=17.08. Consequently, the interface tension is �W
=4.208, which is less than 1% off from the analytical value
given in Table I.

V. CONCLUSION

Our Monte Carlo data clearly confirm the theoretical con-
siderations of Biskup et al. �7,8� for the case of the 2D
nearest-neighbor Ising system. While their results are valid
only in the thermodynamic limit of large systems, we have
shown that for practically accessible sizes the theory can also
be applied. The observed finite-size scaling behavior fits per-
fectly with their predictions for the infinite system.

Moreover, we have demonstrated that the theory, which to
date has only been proven for the square lattice nearest-
neighbor case, is actually universal in the sense that it is
independent of the underlying lattice. The Ising model on the
2D triangular lattice and on the 2D next-nearest-neighbor
lattice both approach the theoretically expected results
nicely. Apparently, for the same relative temperature T /Tc
the finite-size behavior is identical.
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FIG. 15. �Color online� Fraction � for the triangular Ising model
on square lattices of size L=40,80, . . . ,640 with periodic boundary
conditions at the temperature T=2.4�0.66Tc. Here, �=1 /	v0

=	2 /	3�1.075. . . is the geometric factor, defined in Sec. III D.
The error bars are not plotted since their size is much smaller than
that of the data symbols. The solid line shows the analytical solu-
tion in the limit L→
.
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FIG. 16. �Color online� Fraction � for the 2D NNN Ising model
on square lattices of size L=40,80, . . . ,640 with periodic boundary
conditions at the temperature T=4.0�0.76Tc. The error bars are not
plotted since their size is much smaller than that of the data sym-
bols. The solid line shows the analytical solution in the limit L
→
.
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FIG. 17. �Color online� Comparison of the fraction � for the
three observed Ising models �NN, triangular, and NNN� for the size
L=640 and the temperatures T=1.5,2.4,4.0.
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In order to achieve the correct scaling of the abscissa, we
presented several methods to estimate the Wulff free energy
�W numerically. While in theory it should be straightforward
to extract the value from the distribution of the magnetiza-
tion, due to limitations in the computer time for temperatures
near the critical one, it can be more advantageous to resort to
the isotropic approximation.

All simulations were performed in thermal equilibrium,
and the abundance of droplets of intermediate size could be
confirmed visually by looking at the distribution of droplets.
We just state this fact here, while a more detailed analysis
and the corresponding graphs will be presented later, to-
gether with more results on the finite-size scaling behavior of
the systems and the shape of the free-energy barrier associ-
ated with the evaporation-condensation transition.
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