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The fractal structure of spin clusters and their boundaries in the critical two-dimensional Ising model is
investigated numerically. The fractal dimensions of these geometrical objects are estimated by means of Monte
Carlo simulations on relatively small lattices through standard finite-size scaling. The obtained results are in
excellent agreement with theoretical predictions and partly provide significant improvements in precision over
existing numerical estimates.
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I. INTRODUCTION

The past few years have witnessed a surge in the geo-
metrical approach to phase transitions. The prototype of such
an approach is percolation theoryf1g, which focuses on clus-
ters of srandomlyd occupied sites or bonds on a lattice. The
fractal structure of these geometrical objects and whether or
not a cluster percolates the lattice are central topics ad-
dressed by the theory. Spin models such as theq-state Potts
models can easily be mapped onto percolation theory, with
neighboring spins in the same spin state lumped together in a
cluster. Generally, the geometrical spin clusters thus con-
structed do not percolate at the critical temperatureTc where
the thermal phase transition takes place. But by erasing with
a certain temperature-dependent probability bonds between
like spins, Fortuin and KasteleynsFKd f2g showed that spin
clusters can be constructed for the Potts models that do per-
colate atTc and encode the thermal critical behavior. They
thus achieved a geometrical description of the thermal phase
transition in these models. The cluster approach has been
turned into an efficient Monte Carlo algorithm by Swendsen
and Wangf3g, and by Wolff f4g, where not individual spins
are updated, as in local spin updates with, e.g., the Metropo-
lis algorithm, but entire FK clusters.

An exception to the rule that geometrical clusters do not
percolate atTc is the two-dimensionals2Dd q-state Potts
model. The origin of this effect can be understood by extend-
ing the pure lattice model to include vacant sites. In a
Kadanoff block-spin approach, such an extension is natural
as the vacant sites represent disordered blocks without a ma-
jority in any of the spin states, and is essential for establish-
ing that the phase transition of the pure models changes from
being continuous to first order atq=4 f5,6g. In addition to
the pure Potts critical behavior, the site diluted model also
displays tricritical behavior at the same critical temperature
Tc. While the critical behavior of the pure model is encoded
in the FK clusters, the tricritical behavior is encoded in the
geometrical clustersf7–9g. Both cluster types percolate atTc.
With increasingq, the critical and tricritical fixed points,
which are characterized by the same central chargec, move
together until merging atq=4.

Very recently, cluster boundaries of critical 2D systems
have been studied analytically by means of the so-called sto-
chastic Loewner evolution, introduced by Schrammf10g.
Various exact predictions for critical exponents previously

conjectured on the basis of the Coulomb-gas mapf11–13g
and conformal invariancef14g could rigorously be estab-
lished by this methodsfor an overview see Ref.f15gd.

In this paper, we numerically investigate the fractal struc-
ture of clusters in the 2D Ising model, corresponding to set-
ting q=2. We simulate the model on relatively small lattices
sL=8–512d with periodic boundary conditions, and apply
standard finite-size scaling to determine the various fractal
dimensions. In addition to studying the size or “mass” of FK
and geometrical clusters, we also examine their boundaries.
Those of geometrical clusters form the famous Peierls do-
main wallsf16g, separating spin clusters of opposite orienta-
tion. In a previous paperf9g, we simulated these domain
walls directly by considering the high-temperature represen-
tation of the model. By duality, the high-temperature graphs,
which are closed, are domain walls on the dual lattice. The
closed graph configurations were generated by means of a
Metropolis update algorithm, involving single plaquettes.

Other recent numerical studies of the geometrical struc-
ture of 2D Potts models were reported in Refs.f17,18g. Our
results for the fractal dimensions are in excellent agreement
with theoretical predictionsf7,13,19–21g, and provide in par-
ticular for the FK and geometrical clusters a considerable
improvement in precision over the estimates obtained in
Refs.f17,18g.

The rest of the paper is structured as follows. The next
section summarizes the necessary theoretical background.
Numerical results are presented in Sec. III, followed by con-
cluding remarks in Sec. IV.

II. FRACTAL STRUCTURES

The fractal properties of spin clusters and boundaries,
which are clusters themselves, are described by a straightfor-
ward extension of ordinary percolation theoryf1g. Asymp-
totically, cluster distributions,n take a general form

,n , n−t exps− und, s1d

consisting of two factors:sid an entropy factor, which mea-
sures the number of ways a cluster of sizen can be embed-
ded in the lattice, andsii d a Boltzmann weight, which sup-
presses large clusters whenu is finite. Clusters proliferate
and percolate the lattice whenu tends to zero. The vanishing
is characterized by an exponents asu~ uT−Tpu1/s, whereTp

PHYSICAL REVIEW E 71, 036703s2005d

1539-3755/2005/71s3d/036703s8d/$23.00 ©2005 The American Physical Society036703-1



denotes the percolation temperature. As explained in the In-
troduction, the percolation thresholds of both FK and geo-
metrical clusters coincide with the thermal critical tempera-
ture of the 2D Ising model. The entropy exponentt
determines the fractal structure of the geometrical objects.
Rather than extracting this exponent directly from the
asymptotic behavior of a distribution at the percolation
threshold, where the distribution becomes algebraic, it is ex-
pedient to extract it from derived quantities such as the per-
colation strengthP`, giving the fraction of sites in the largest
cluster, and the average cluster sizef1g

x =
on

n2,n

on
n,n

. s2d

Since every site belongs to some geometrical and some FK
cluster, the denominator in Eq.s2d adds up to the total num-
ber of sites for these clusters. Close to the percolation thresh-
old, the observables obey the finite-size scaling lawsf22g

P` = L−b/nPsL/jd, x = Lg/nXsL/jd, s3d

whereL is the lattice size andj the correlation length whose
divergence at criticality is governed by the exponentn. The
ratiosb /n andg /n are given in terms oft as f1g

b

n
= d

t − 2

t − 1
,

g

n
= d

3 − t

t − 1
, s4d

with d the dimensionality of the lattice. The fractal dimen-
sion D, which is also determined solely by the entropy ex-
ponentt, is related to these exponents viaf1g

D =
d

t − 1
= d −

b

n
=

1

2
Sd +

g

n
D . s5d

Generically, twosand only twod different cluster bound-
aries can be identifiedf23g: the hull sHd and the external
perimetersEPd, where the second can be understood as a
smoother version of the first. For 2D FK clusters, the two
boundaries are in one-to-one correspondence, with their frac-
tal dimensions satisfying the relationf21g

sDH
FK − 1dsDEP

FK − 1d =
1

4
. s6d

The map transforming one FK boundary dimension into the
other conserves the central chargec, which may be param-
etrized asf12,14g

c = 1 −
6s1 − k̄d2

k̄
= 13 − 6Sk̄ +

1

k̄
D , s7d

where 2ùk̄ù1 parametrizes the two-dimensionalq-state
Potts models

Îq = − 2 cossp/k̄d, s8d

with 0øqø4. In terms ofk̄, the fractal dimensions of the
FK boundariesf13,21g can be expressed as

DH
FK = 1 +

k̄

2
, DEP

FK = 1 +
1

2k̄
, s9d

while the central charge conserving map corresponds to let-
ting k̄→1/k̄. These explicit forms are seen to satisfy the
duality relations6d. With the scaling relationss5d, the critical
exponent ratios characterizing the FK boundaries become

gH
FK/n = k̄, gEP

FK/n = 1/k̄, s10d

where a single correlation length with exponentn is as-
sumed. It thus follows that the two FK boundary sizes scale
with inverse exponents:

xH
FK , Lk̄, xEP

FK , L1/k̄. s11d

In contrast to FK clusters, geometrical clusters are char-
acterized by only one boundary dimension, i.e., the fractal
dimensionsDH

G and DEP
G of the hull and external perimeter

coincide, DH
G=DEP

G . Such cases are signaled by a negative
fractal dimension of the red sitesf19g, sites that, when re-
moved, lead to a splitting of the cluster into disconnected
parts.

The central charge conserving mapk̄→1/k̄ transforming
the hull dimensionDH

FK of FK clusters into that of their ex-
ternal perimeters,DEP

FK, also maps it onto the hull dimension
of geometrical clusters, implyingf21g

DEP
FK = DH

G. s12d

This relation is remarkable as it involves the two different
boundary types. In the context of uncorrelated percolation
f23g, the hull of a cluster in 2D is traced out by a directed
random walker constrained to move on the cluster only,
whereas the external perimeter is traced out by a walker con-
strained to move around the hull on sites neighboring, but
not belonging to, that cluster.

To numerically verify relations12d, we wish to treat ex-
ternal perimeters of FK clusters and hulls of geometrical
clusters in the same manner. To this end we apply the same
algorithm used to trace out geometrical hulls to find the FK
external perimeters, where it is recalled that FK clusters dif-
fer from geometrical clusters in that with a prescribed
temperature-dependent probability bonds are erased. The dif-
ference between tracing out FK hulls and external perimeters
then reduces tossee Fig. 1d allowing the random walker to
move to a nearest neighbor site on the FK boundary only
provided the connecting bond is setshulld or alwayssexternal
perimeterd.

To conclude this section we list in Table I the predicted
exact valuesf7,13,19–21g for the various fractal dimensions
and corresponding critical exponents we wish to determine
numerically.

III. MONTE CARLO SIMULATIONS

The simulation data was collected on square lattices of
linear sizeL=8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 90,
128, 180, 256, 360, and 512 with periodic boundary condi-
tions, using the Swendsen-Wang cluster algorithmf3g in
about 53104 measurements at the critical temperatureTc
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=2/ lns1+Î2d, every t th sweep of the lattice, wheret de-
notes the autocorrelation timesrounded off to the next largest
integerd. The value oft for the various lattice sizesL was
estimated from the energy time series to vary fromt<4 for
L=8 to t<9 for L=512. We have chosen the energy time
series here as it generally leads to a conservative estimate of
the autocorrelation time for cluster algorithms. A total of 5
3103 lattice sweeps were used for equilibration. Statistical
errors were estimated by means of jackknife binningf24g.

A. Fractal dimensions

Tables II–V summarize the values obtained for the critical
exponents of the FK and geometrical clusters, as well as of
the FK hulls and external perimeters. Whereg /n andb /n are
listed, both are measured independently by considering the
average cluster sizex, which givesg /n according to Eq.s3d
with Xs0d=const, and the percolation strengthP`, which
gives b /n according to Eq.s3d with Ps0d=const. The data
were fitted using the least-squares Marquardt-Levenberg al-
gorithm.

While including the percolating clusters when considering
the mass of the cluster, we ignore them in tracing out cluster
boundaries. Because of the finite lattice size, large percolat-
ing clusters have abnormal smallsexternald boundaries, so
that including them would lead to a distortion of the hull

distribution. Moreover, the Grossman-Aharony algorithm
f23g we use to trace out the cluster boundaries generally fails
on a percolating cluster as its boundary does not necessarily
form a single closed loop any longer. With the percolating
clusters ignored, the boundary exponentsbH,EP/n cannot be
determined, while the summation in the expressions2d for
the average cluster boundary size is restricted to nonperco-
lating clusters.

1. FK clusters

In Ref. f18g, the valueDC
FK=1.87s1d compared to the ex-

act resultf19g DC
FK=15/8=1.875 was reported for the fractal

dimension of FK clusters. It was obtained on a single, but
very large latticesL=212=4096d with both open and periodic
boundary conditions by considering the number of bond
clusters as a function of the radius of gyration. The authors
observed a slow and complex approach to the asymptotic
behavior and therefore included corrections to scaling to ar-
rive at their numerical estimates. To limit the number of fit
parameters, they scanned the fractal dimensions in the neigh-
borhood of the predicted values, and completely fixed the

TABLE I. Predicted values for the fractal dimensions with the
corresponding critical exponents characterizing Fortuin-Kasteleyn
sFKd and geometricalsGd clusterssCd, their hullssHd, and external
perimeterssEPd.

DC gC/n bC/n DH gH/n DEP gEP/n

FK 15/8 7/4 1/8 5/3 4/3 11/8 3/4

G 187/96 91/48 5/96 11/8 3/4

TABLE II. FK clusters.

Fit interval gC
FK/n x2 per DOF bC

FK/n x2 per DOF

8–256 1.7512s6d 0.89 0.1244s4d 0.74

16–256 1.7507s8d 1.02 0.1246s5d 0.95

32–256 1.7500s12d 1.39 0.1249s8d 1.31

40–256 1.7507s13d 1.43 0.1246s9d 1.43

64–256 1.7496s21d 0.52 0.1254s14d 0.33

8–512 1.7511s4d 0.86 0.1244s3d 0.71

16–512 1.7507s6d 0.95 0.1246s4d 0.88

32–512 1.7505s8d 1.23 0.1247s5d 1.14

40–512 1.7509s9d 1.20 0.1245s6d 1.17

64–512 1.7505s12d 0.61 0.1248s8d 0.47

Exact 1.7500=7/4 0.1250=1/8

TABLE III. Geometrical clusters.

Fit interval gC
G/n x2 per DOF bC

G/n x2 per DOF

8–256 1.8941s3d 1.16 0.0532s2d 0.83

16–256 1.8944s4d 1.39 0.0530s3d 0.94

32–256 1.8946s5d 1.90 0.0528s4d 1.24

40–256 1.8950s6d 1.78 0.0526s4d 1.09

64–256 1.8949s9d 0.47 0.0527s7d 0.18

8–512 1.8943s2d 1.29 0.0531s2d 0.89

16–512 1.8946s3d 1.34 0.0529s2d 0.88

32–512 1.8949s4d 1.60 0.0528s3d 1.02

40–512 1.8951s4d 1.39 0.0526s3d 0.86

64–512 1.8951s5d 0.44 0.0527s4d 0.23

Exact 1.8958=91/48 0.0521=5/96

FIG. 1. sColor onlined Part of a single FK cluster of nearest
neighbor sitessfilled circlesd connected by bondssblack linksd. sad
Sites belonging to the hullsdark filled circlesd are found by allow-
ing the random walker tracing out the boundary to move only over
set bonds.sbd Sites belonging to the external perimetersdark filled
circlesd are found by allowing the random walker to move to a
nearest neighbor on the cluster irrespective of whether the connect-
ing bond is set or not. The external perimeter, which contains two
sites less than the hull for this boundary segment, is therefore a
smoother version of the hull.
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values of the correction exponents to the theoretically pre-
dicted ones. This left them with still four parameters to fit.
Error bars on the values of the fractal dimensions were de-
termined as the range wherex2 per degree of freedom
sDOFd,2.

In this study, where we use different lattice sizes and con-
sider not the bonds but the sites in a cluster, we find a simple
approach to the asymptotic behavior with very small correc-
tions to scaling in the observables required to determineDC

FK

all the way down to the smallest lattice consideredsL=8d.
We can therefore apply finite-size scaling without correction
terms. Since the fits involve only two parameters, no expo-
nents need to be fixed beforehand. To minimize the effect of
unavoidablessmalld corrections to scaling, we pick the fit
over the largest lattice sizes given in Table II, i.e., over the
range 64–512, leading to

DC
FK = 1.8753s6d s13d

with x2 per DOF=0.61 from the average cluster-size data
and

DC
FK = 1.8752s8d s14d

with x2 per DOF=0.47 from the percolation-strength data.
Both estimates are well within one standard deviation from
the exact predictionf19g DC

FK=15/8=1.875.

A possible explanation for the improved accuracy we
achieved over Ref.f18g, although working on smaller lat-
tices, may be that in that study clusters touching the bound-
ary were ignored in the measurements. This set includes all
the percolating clusters. As will be illustrated in the next
subsection, omitting percolating clusters can lead to strong
corrections to scaling.

2. Geometrical clusters

In Ref. f17g, the values gC
G/n=1.901s11d and bC

G/n
=0.052s2d were reported for geometrical clusters. These re-
sults were obtained on lattices ranging in size fromL=600 to
2000, i.e., again much larger than the ones considered by us.
Instead of using periodic boundary conditions, as we did,
free boundary conditions were adopted. Another difference
from our approach is that percolating clusters were excluded
in Ref. f17g.

Our estimates, obtained from the largest lattice sizes listed
in Table III, i.e., from the interval 64–512, are

DC
G = 1.9476s3d s15d

with x2 per DOF=0.44 from the average cluster-size data
and

DC
G = 1.9473s4d s16d

with x2 per DOF=0.23 from the percolation-strength data.
Both are in excellent agreement with the exact predictionf7g
DC

G=187/96=1.9479. . ..
In Fig. 2 we show our data for the average cluster size

obtained by including all clusters and compare them with the
data obtained with percolating clusters excluded from the
measurements, similarly to what was done in Ref.f17g.
While virtually absent in the former, corrections to scaling
are present in the latter case. This may explain why, although
working on smaller lattices, we obtained much better esti-
mates than in Ref.f17g. We found similar corrections to scal-

TABLE IV. Hulls of FK clusters.

Fit interval gH
FK/n x2 per DOF

8–512 1.304s2d 4.71

16–512 1.298s2d 3.65

32–512 1.288s3d 1.57

40–512 1.285s4d 1.36

64–512 1.281s5d 0.62

8–256 1.311s2d 2.88

8–128 1.318s3d 1.50

8–90 1.321s3d 1.29

8–64 1.325s4d 1.10

8–48 1.329s5d 0.79

Exact 1.333=4/3

TABLE V. External perimeters of FK clusters.

Fit interval gEP
FK/n x2 per DOF

24–256 0.763s3d 4.32

32–256 0.758s3d 3.10

40–256 0.755s4d 3.24

64–256 0.748s6d 4.13

24–512 0.752s2d 7.97

32–512 0.747s2d 5.73

40–512 0.744s3d 5.29

64–512 0.736s4d 4.37

Exact 0.750=3/4

FIG. 2. sColor onlined Log-log plot of the average sizexC
G of

critical geometrical clusters as a function of the lattice sizeL. Sta-
tistical error bars are smaller than the symbol size in the figure. The
straight lines proportional toL91/48are put through the data points at
L=512 by hand to demonstrate the corrections to scaling for smaller
lattice sizes when percolating clusters are excluded, and the absence
thereof when they are included in the measurements.
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ing when instead of percolating clusters, the largest cluster in
each measurement was excluded, as is common in random
percolationf22g.

3. FK hulls

Surprisingly, the results for the hulls of FK clusters given
in Table IV show a clear tendency to the predicted valuef13g
gH

FK/n=4/3, corresponding toDH
FK=5/3=1.6666. . ., when

restricting the fitting window to increasinglysmaller lattice
sizes. For example, for the interval 8–48 we find

DH
FK = 1.665s3d s17d

with x2 per DOF=0.79, indicating a good fit. This estimate,
which should be compared with the estimate 1.66s1d given in
Ref. f18g, is within one standard deviation from the exact
prediction. From Fig. 3 we see that the average FK hull size
measured on larger lattices falls below the expected value
extrapolated from smaller lattices. We have not been able to
determine the cause of this behavior. In fact, when fitting not
at the low end but at the high end of the lattice sizes consid-
ered, we obtain fits of comparable quality, but the estimate
for the exponent converges to a value significantly below the
predicted onessee top part of Table IVd.

4. Geometrical hulls

As for the clusters’ mass when disregarding percolating
clusters, we observe strong corrections to scaling for the
hulls of geometrical clustersssee Fig. 4d. This is different
from what we found using the plaquette update to directly
simulate the hulls of the spins on the dual latticef9g, where
these corrections were virtually absentssee Fig. 11 of that
paperd, allowing us to obtain precise estimates for the critical
exponents on relatively small lattices. In that study, the larg-
est hull was omitted in each measurement.

To understand the strong corrections to scaling found here
for the geometrical hulls, we depict in Fig. 5 the geometrical
cluster and the corresponding hull distributions forL=32

normalized to the volumeL2. The bump at the tail of the
cluster distribution is due to the finite size of the lattice, with
percolating clusters gulping up smaller ones reached by
crossing lattice boundaries. The subsequent sharp drop-off
arises because of the limited number of lattice sites available.

Initially, as Fig. 5 clearly shows, the hull distribution fol-
lows more or less the cluster distribution. This is a common
feature of all boundary distributions considered. The rela-
tively early drop-off of the hull distribution is because we
omit percolating clusters when tracing out cluster bound-
aries. As a result, the average hull size is underestimated and

FIG. 3. sColor onlined Log-log plot of the average hull sizexH
FK

of critical FK clusters as a function of the lattice sizeL. Statistical
error bars are smaller than the symbol size in the figure. The straight
line 0.310L1.329 is obtained through a two-parameter fit in the inter-
val 8–48.

FIG. 4. sColor onlined Log-log plot of the average hull sizexH
G

of critical geometrical clusters as a function of the lattice sizeL.
Statistical error bars are smaller than the symbol size in the figure.
The straight line proportional toL3/4 is put through the data point at
L=512 by hand to demonstrate the strong corrections to scaling for
smaller lattice sizes. A three-parameter fit in the interval 6–512
gives the valuew=0.54s3d for the effective correction-to-scaling
exponent.

FIG. 5. sColor onlined Log-log plot of the snormalizedd geo-
metrical cluster and hull distributions atTc on the largest lattice
consideredsL=512d and on a relatively small latticesL=32d. The
number of measurements taken on the largest lattice was about 5
3104 as in most part of this paper. Statistical error bars are omitted
from the data points for clarity. On the smaller lattice, about 5
3105 measurements, which is an order of magnitude more than
used in the rest of the paper, were taken to achieve good statistics.
Here, the statistical error bars are smaller than the symbol size in
the figure.
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the data points in Fig. 4 are below the expected line extrapo-
lated from larger lattice sizes. With increasing lattice size,
the effect becomes smallerssee Fig. 5, where also the distri-
butions for L=512 are includedd and the data points ap-
proach the expected asymptotic scaling, corresponding to
f20g gH

G/n=3/4, andDH
G=11/8. Figure 5 shows in addition

that the asymptotic behavior of the hull distribution sets in
for relatively large hull sizessn*100d. On smaller lattices,
the asymptotic behavior can therefore simply not be probed,
explaining the strong corrections in Fig. 4.

To see if our data are at least consistent with the theoret-
ical prediction, we account for corrections to scaling by fit-
ting the average hull-size data to the form

xH
G = aLgH

G/ns1 − bL−wd, s18d

with an effective correction-to-scaling exponentw. We fix
gH

G/n=3/4 to thepredicted value, leaving us with three pa-

rameterssw and the two amplitudesa andbd to fit. For the
interval 6–512 we obtain

w = 0.54s3d s19d

with x2 per DOF=1.60, indicating a reasonable fitssee Fig.
4d and therefore consistency with the theoretical prediction
for DH

G.

5. FK external perimeters

The corrections to scaling are less pronounced for the
external perimeters of FK clusters as they are generally
smaller than geometrical clusters and thus less likely to per-
colatessee Fig. 6d. Also the asymptotic behavior is reached
earlier than for geometrical hulls. The smallness of the cor-
rections allows us to obtain reasonable fits for the average
external perimeter size. Our result obtained from the fitting
interval 64–512 in Table V yields the fractal dimension

FIG. 6. sColor onlined Log-log plot of the average external pe-
rimeter sizexEP

FK of FK clusters atTc as a function of the lattice size
L. Statistical error bars are smaller than the symbol size in the
figure. The straight line 1.388L0.736 is obtained through a two-
parameter fit in the interval 64–512. Note the corrections to scaling
for smaller lattice sizes.

FIG. 7. sColor onlined Log-log plot of the distributions of the
three different boundaries atTc for L=512. Statistical error bars are
omitted from the data points for clarity. The FK external perimeter
distribution initially follows the FK hull distribution before at
aroundn<100 it crosses over to its asymptotic behavior which it
shares with the geometrical hulls.

FIG. 8. sColor onlined Log-log plot of the critical distributions
studied for L=16 sshort curvesd and 512slong curvesd. sad The
snormalizedd distributions of FK clusters and of their hulls and ex-
ternal perimeters. For clarity, the latter two are shifted downward by
two decades each.sbd The snormalizedd distributions of geometrical
clusters and of their hulls. The latter is shifted downward by four
decades. Statistical error bars are also for clarity omitted from the
data points. The straight lines are obtained through one-parameter
fits with the slopes fixed to the predicted values. To achieve good
statistics for theL=16 lattice, about 53105 measurements were
taken—an order of magnitude more than used for theL=512 lattice.
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DEP
FK = 1.368s2d s20d

with x2 per DOF=4.37. This estimate is compatible with the
exact predictionf21g DEP

FK=11/8=1.375, and improves the
estimateDEP

FK=1.36s2d reported in Ref.f18g by about one
order of magnitude.

B. Distributions

In Fig. 7, the distributions of the three different bound-
aries studied are plotted forL=512 to show the crossover of
the external perimeters of FK clusters. Starting similarly to
the FK hull distribution, the FK external perimeter distribu-
tion asymptotically approaches that of the geometrical hulls,
in accordance with relations12d. In other words, the FK ex-
ternal perimeter distribution interpolates between that of the
FK sfor small nd and geometrical hullssasymptotically for
largend.

Figure 8 summarizes all the cluster and boundary distri-
butions studied forL=16 and 512. The distributions are nor-
malized to the volumeL2. Upon increasing the lattice size,
the normalized distributions tend to a universal curve. The
slow approach to the asymptotic form of the geometrical hull
distribution sand to a lesser extent that of the FK external
perimeter distributiond, with the associated strong corrections
to scaling we observed for these objects, stands out clearly
from the other distributions.

It is tempting to directly analyze the distributions,n and
to extract the exponentt from the asymptotic behavior of,n,
which is algebraic at criticality. However, this method gives
far less accurate results than applying finite-size scaling to
observables involving the sumon over the cluster sizesn.
The main drawback of the method is the great sensitivity to
the location of the fitting window, i.e., the interval ofn. The
fitting range cannot be started at too small cluster sizes,
where the distribution has not taken on its asymptotic form
yet, while too large cluster sizes, which are generated only a
few times during a complete Monte Carlo run, are also to be
excluded because of the noise in the data and finite-size ef-
fects. Even in those cases for which we obtained very accu-
rate results through finite-size scaling analyses, the direct
analysis of the distributions gave unsatisfactory results.

IV. CONCLUSIONS

In this paper, the fractal dimensions of spin clusters and
their boundaries appearing in the critical 2D Ising model

were studied numerically. The Monte Carlo simulations were
carried out on comparatively small lattices. Standard finite-
size scaling was applied to obtain very precise estimates for
the cluster dimensions, significantly improving existing ones.
The results confirm the exact theoretical predictions to a high
degree of precision.

For the boundary dimensions, although improving exist-
ing estimates, we obtained less accurate results because of
corrections to scaling. We observed the strongest corrections
for the geometrical hulls, whose distribution approaches its
asymptotic form very slowly. In a previous numerical inves-
tigation f9g, where we simulated the hulls of the spins on the
dual lattice directly, corrections to scaling were virtually ab-
sent, allowing us to establish the geometrical hull dimension
to fairly high precision.

To our surprise, we found the fractal dimension of the FK
hulls to converge to the predicted value only when restricting
the fitting window to increasingly smaller lattice sizes. In
general, one expects of course such a convergence when in-
creasing the lattice size, rather than decreasing it, so as to
minimize corrections to scaling. The measured average FK
hull size on larger lattices falls below the line extrapolated
from smaller lattices. The cause for this behavior eludes us.

To verify relations12d, involving the two different bound-
ary types that can be defined for a cluster, viz. hulls and
external perimeters, we treated the two boundary types in a
similar manner. Usually, hulls are traced out by a directed
random walker on the cluster whereas external perimeters are
traced out by a directed random walker probing the cluster
from the outside. We, on the other hand, applied the hull
algorithm also to the external perimeters of FK clusters, with
the proviso that the random walker can move to a nearest
neighbor site on the FK boundary even when the connecting
bond is not setsfor the hull, the bond must be setd.
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