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Information geometry of the ising model on planar random graphs
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It has been suggested that an information geometric view of statistical mechanics in which a metric is
introduced onto the space of parameters provides an interesting alternative characterization of the phase
structure, particularly in the case where there are two such parameters, such as the Ising model with inverse
temperatureb and external fieldh. In various two-parameter calculable models, the scalar curvatureR of the
information metric has been found to diverge at the phase transition pointbc and a plausible scaling relation
postulated:R;ub2bcua22. For spin models the necessity of calculating in nonzero field has limited analytic
consideration to one-dimensional, mean-field and Bethe lattice Ising models. In this paper we use the solution
in field of the Ising model on an ensemble of planar random graphs~where a521, b51/2, g52) to
evaluate the scaling behavior of the scalar curvature, and findR;ub2bcu22. The apparent discrepancy is
traced back to the effect of a negativea.
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I. GENERALITIES: THE INFORMATION GEOMETRY

Various authors, motivated by ideas in parametric sta
tics @1#, have discussed the advantages of taking a geom
cal perspective on statistical mechanics@2–8#. The ‘‘dis-
tance’’ between two probability distributions in paramet
statistics can be measured using a geodesic distance th
calculated from the Fisher information matrix for the syste
In a statistical mechanical context the probability distrib
tions of interest are Gibbs measures

p~xuu!5expS 2(
i 51

r

u iHi~x!2 ln Z~u!D , ~1!

where x characterizes the state of the system~e.g., spins!,
Hi(x) are the various terms in the Hamiltonian,Z(u) is the
normalizing partition function, andu i are the various param
eters such as the inverse temperatureb, the external fieldh,
etc.

The manifoldM of parameters is endowed with a natur
Riemannian metric, the Fisher-Rao metric@1#, which mea-
sures the distance between different configurations. Fo
spin model in fieldM is a two-dimensional manifold param
etrized by (u1,u2)5(b,h). The components of the Fishe
Rao metric take the simple formGi j 5] i] j f in this case,
wheref is the reduced free energy per site and] i5]/]u i . A
natural object to consider in any geometrical approach is
scalar or Gaussian curvature which may be calculated a

R52
1

2G2U]b
2 f ]b]hf ]h

2f

]b
3 f ]b

2]hf ]b]h
2f

]b
2]hf ]b]h

2f ]h
3f

U , ~2!

whereG5det(Gi j ).
It is worth remarking that, unlike most standard statisti

mechanical observables, the curvatureR depends on third
order derivatives. Nonetheless, a plausible scaling rela
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has been advanced forR in the critical region. The hypoth-
esis, on dimensional grounds, is that the curvature depe
on the correlation volume for a second-order transitionR
;jd, wherej is the correlation length andd is the dimen-
sion of the system. This is reasonable sincej is the only
physical scale in the system near criticality.

Combined with hyperscaling,nd522a, and standard
scaling assumptions, this leads to

R;ub2bcua22. ~3!

In the above,a is the standard exponent characterizing t
scaling of the specific heat, so consideration ofR clearly
offers a way of determining critical exponents in a nonsta
ard manner.

Analytic determination ofR in spin models has been lim
ited by the necessity of carrying out calculations in field. O
case where this is possible is the one-dimensional~1D! Ising
model @3#, where the curvature was calculated to be

R511h21coshh ~4!

with h5Asinh2h1e24b. The 1D Ising model can be though
of as having a zero-temperature transition, so looking ah
50, b→` we see thatR;e2b, corresponding to the ex
pecteda51. Similarly, it is possible to obtain an expressio
for the scalar curvature for the Ising model on a Bethe latt
@6#, where the scaling behavior is also verified. Both the
examples have unsatisfactory aspects—the 1D Ising m
has no real transition and the Bethe lattice Ising mode
mean field in nature.

Given the relative paucity of models which are soluble
field, any further explicit calculations would be welcom
particularly in a non-mean-field model with a genuine finit
temperature phase transition. In the sequel we discuss
such case, the Ising model on dynamical planar rand
graphs.
©2002 The American Physical Society19-1
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II. PARTICULARS: THE ISING MODEL
ON PLANAR GRAPHS

The solution of the Ising model on an ensemble ofF4

(4-regular! or F3 (3-regular! planar random graphs was fir
presented by Boulatov and Kazakov@9,10#, who were moti-
vated by string-theoretic considerations, since the continu
limit of the theory represents matter coupled to 2D quant
gravity. They considered the partition function for the Isi
model on a singlen vertex planar graph with connectivit
matrix Gi j

n

Zsingle~Gn,b,h!5(
$s%

expS b(
^ i , j &

Gi j
n s is j1h(

i
s i D ,

~5!

then summed it over alln vertex graphs$Gn% resulting in

Zn5 (
$Gn%

Zsingle~Gn,b,h!, ~6!

before finally forming the grand-canonical sum over grap
with different numbersn of vertices

Z5 (
n51

` S 24gc

~12c2!2D n

Zn , ~7!

wherec5exp(22b). This last expression could be calculat
exactly as matrix integral overN3N Hermitian matrices,

Z52 ln E Df1 Df2 expS 2TrF1

2
~f1

21f2
2!2cf1f2

2
g

4
~ehf1

41e2hf2
4!G D , ~8!
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where theN→` limit is to be taken to pick out the plana
diagrams and the potential appropriate forF4 ~4-regular!
random graphs has been shown.

When the matrix integral is carried out the solution
given in parametric form by

Z5
1

2
ln

z

g
2

1

gE0

z dt

t
g~ t !1

1

2g2E
0

z dt

t
g~ t !2, ~9!

where the functiong(z) is

g~z!5
1

9
c2z31

z

3 F 1

~12z!2
2c21

zB

~12z2!2G ~10!

andB52@cosh(h)21#.
In the thermodynamic limit the reduced free energy p

site is given by

f 5 lnS 24cg~z0!

~12c2!2 D , ~11!

where z05z0(b,h) is the appropriate low- or high
temperature solution ofg8(z)50. Whenh50 this may be
solved in closed form, and although the solution is not av
able explicitly for nonzeroh it can still be developed as
power series inh around the zero-field solutions in order
obtain expressions for quantities such as the energy, spe
heat, magnetization and susceptibility. It was found that
critical exponents were given bya521, b51/2, g52, so
the transition wasthird order with, intriguingly, the same
exponents as the 3D spherical model on a regular lattice@11#.

If we carry out a perturbative expansion for the hig
temperature solution, which is symmetric inh and hence a
series in even powers, we find
z0512
1

u
2

~u21!~2u222u11!

~2u21!4
h21

~u21!~2u222u11!~4u5210u4110u325u215u11!

24~2u21!9
h41 . . . , ~12!
r

ump-

n-

q.
nts
where the coefficients in the series are most naturally
pressed in terms ofu5exp(2b)5Ac, as above.

III. GENERALITIES: SCALING
OF THE SCALAR CURVATURE

The expected scaling form of the various components
R for a generic spin model in field is discussed at so
length in Ref. @4#, and we now recapitulate these resu
briefly for comparison with the specific results for the Isi
model on planar random graphs in the following section. T
starting point is the scaling form of the free energy per s
near the critical point,

f ~e,h!5l21f ~elae,hlah!, ~13!
x-

f
e

e
n

wheree[bc2b and ae ,ah are the scaling dimensions fo
the energy and spin operators. Fore.0, i.e., in the unbroken
high-temperature phase, we can use standard scaling ass
tions to write this as

f ~e,h!5e1/aec1~he2ah /ae!, ~14!

wherec1 is a scaling function and we also defineA51/ae
andC52ah /ae for later convenience. In terms of the sta
dard critical exponentsA522a andA1C5b.

This generic scaling form can now be substituted into E
~2! to find the scaling behavior of the various compone
and the scalar curvature~2! itself near criticality~i.e. h50,
e→0),
9-2
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R52
1

2G2U A~A21!eA22c1~0! 0 eA12Cc19 ~0!

2A~A21!~A22!eA23c1~0! 0 2~A12C!eA12C21c19 ~0!

0 2~A12C!eA12C21c19 ~0! eA13Cc1-~0!
U , ~15!
ila
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where the scaling of the metric determinant is

G5A~A21!e2A12C22c1~0!c19 ~0!. ~16!

Expanding the determinant one finds two terms of sim
order contributing to give

R5
~A12C!@~A12C!2~A22!#

2A~A21!c1~0!
e2A ~17!

or, translating back to the standard critical exponents,

R5
g~g2a!

2~22a!~12a!c1~0!
ea22. ~18!

The discussion in Ref.@4# was intended to be as general
possible, one should note that for Ising-like models with
g

g
n

io
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6h symmetry all odd derivatives of the scaling functio
with respect to h will vanish so ]h

3f 50 rather than
eA13Cc1-(0). This does not affect the stated scaling re
tions.

However, one feature of these scaling relations does h
an impact on the observed scaling for the Ising model. G
nerically one expects that]b

2 f 5A(A21)eA22c1(0), which
contributes to both the metric and the determinant involv
in calculatingR. If A.2, i.e.,a,0, this naively suggests a
vanishing]b

2 f at criticality, which will in generalnot be the
case. There would instead be a contribution from a regu
term, which would give a constant at the critical point. Ha
ing such a constant term modifies the scaling form ofR in
the casea,0, A.2 to
R52
1

2G2U A~A21!f~0! 0 eA12Cc19 ~0!

2A~A21!~A22!eA23c1~0! 0 2~A12C!eA12C21c19 ~0!

0 2~A12C!eA12C21c19 ~0! eA13Cc1-~0!
U , ~19!
or
the
where we have denoted the constant byA(A21)f(0). The
scaling forG is also modified to

G5A~A21!eA12Cf~0!c19 ~0!. ~20!

When expanded, the expression forR contains two terms
that now have differing orders ine. The leading term forA
.2, the case which we are interested in, is

R5
~A12C!2

2A~A21!f~0!
e22 ~21!

or

R5
g2

2~22a!~12a!f~0!
e22, ~22!

so the critical exponenta no longer appears in the scalin
exponent.

By virtue of the Boulatov and Kazakov solution, the Isin
model on planar random graphs allows us to explicitly co
firm these observations, as we see in the following sect
Sincea521, b51/2, g52, we haveA53, C525/2 and
the modified discussion of scaling should apply.
-
n.

IV. PARTICULARS: THE SCALAR CURVATURE
FOR ISING

We can now take the series expansion forz0 from Eq.
~12!, insert this intog(z) and use the resulting expression f
f in Eq. ~11! to calculate the various terms that appear in
scalar curvatureR as a power series inh2. We find that the
leading terms ath50, with eu[u2ucr5e/21 . . . and
ucr51/2, and usingb,h as co-ordinates are

R52
1

2G2U 352

225
0

3

20
eu

22

2
1072

675
0

3

20
eu

23

0
3

20
eu

23 0

U . ~23!

The determinant of the metric scales asG5
88
375

eu
221 . . . ,

so the final scaling expression for the scalar curvature is

R;
225

704
eu

221•••5
225

176
e221 . . . . ~24!
9-3
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A glance back at Eqs.~19!–~22! shows that the modified
scaling forA.2 that these incorporate is, indeed, follow
for the individual components in Eq.~19!, the metric in Eq.
~20! and the scalar curvature itself in Eqs.~21! and ~22!.

It is an easy matter to calculateR for any u when h is
ea

es
-
d

t
ng
pa

et

05611
small, using the expansion forz0 in Eq. ~12!. Writing

R5R01R 2h21 . . . , ~25!

the first two coefficients are given by
R05
~6u8143u71357u611265u512123u411841u31783u2175u13!

2~6u5127u4156u3154u2118u13!2~2u21!2
3~2u212u11!~u11!~u211! ~26!

and

R25 1
2 ~u11!~u211!u~u12!@144u1811008u1723276u16231 180u15279 106u142129 786u132135 424u12292 093u11

278 645u10237 499u9154 941u81245 658u71410 788u61328 760u51139 986u4133 183u315331u21765u

145#/@~6u5127u4156u3154u2118u13!3~2u21!7#, ~27!
rist-
n

l

which give the scaling of Eq.~24! when u is set equal to
1/21eu .

In Fig. 1 we have plottedR close toucr51/2 using a
series correct up toO(h6) terms. The scaling region inh is
very narrow, with the approximation toR rapidly giving
large negative values outside this region due to the incr
ingly strong divergences in the series coefficients asu
→ucr for increasing order inh. This turnover is just visible
on the edges of the plotted surface. The sensitivity toh
would have to be carefully handled in any numerical inv
tigations ofR. Within the domain of validity of the expan
sion in h it appears thatR is positive. It has been remarke
@3,5# thatR is positive in the thermodynamic limit for Ising
models when the parameters take physical values, with
only divergence being at the critical point, and the Isi
model here provides another example. This feature is ap
ently not universal, calculations ofR for the one-
dimensional Potts model@12# and field theories@8# do not
give positive curvatures throughout the physical param
space.

It has been observed that the lineh50 is a geodesic of the
metric for the one-dimensional Ising and Potts models@12#.
The geodesic equations using co-ordinatesb,h are given in
general by

dVb

ds
1Gbb

b VbVb12Gbh
b VbVh1Ghh

b VhVh5l~s!Vb,

~28!

dVh

ds
1Gbb

h VbVb12Gbh
h VbVh1Ghh

h VhVh5l~s!Vh,

~29!

where s parametrizes the flow lines,Vb5db/ds, Vh

5dh/ds, theG are the Christoffel symbols andl(s) allows
for the possibility of a nonaffine parameter choice.

A vector field with a flow line alongh50 hasVh50, so
in this case Eqs.~28! and ~29! reduce to
s-

-

he

r-

er

dVb

ds
1~Gbb

b !uh50VbVb5l~s!Vb, ~30!

~Gbb
h !uh50VbVb50. ~31!

The first of these equations forb(s) always has a solution
and the second requires (Gbb

h )uh5050. This is satisfied for
the Ising model on planar random graphs because the Ch
offel symbolGbb

h vanishes ath50 for the same reason as i

FIG. 1. A plot of R close toucr51/2. Note that the externa
field h is scaled by a factor of 105 and so covers a very narrow
range.
9-4
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the one-dimensional models—the off-diagonal compone
of the metric]b]hf areO(h) in all cases. We therefore fin
that for the Ising model on planar random graphsh50 is
also a geodesic line in theb,h plane.

We close with a remark on the infinite temperatureT
→`, b→0, u→1) limit of R whenh50. In this limit R
was found to be 2 for the one-dimensional Ising model@3#
andz/2 for the Ising model on az co-ordinated Bethe lattice
@6#. Here we find thatR(T5`)54060/168152.415 . . . , so
if we accept the suggestion in Ref.@3# that R2R(T5`)
should be taken as a measure of fluctuations caused by
spin interactions the correct measure of the deviation fr
ideal paramagnetism for the Ising model on planar rand
graphs isR24060/1681.

V. CONCLUSIONS

We have calculated the scaling behavior of the scalar
vature of the Fisher-Rao metric for the Ising model on pla
random graphs using the exact solution of@9,10# combined
with a perturbative expansion in the external fieldh.
05611
ts

the

m

r-
r

Although a521 for this model,R;e22 rather than the
R;e23 one might have expected naively from general sc
ing arguments. This discrepancy was traced back to the
fect that a negative value ofa had on the scaling of the
various components of the metric and the terms that cont
uted toR.

Various qualitative features of the calculatedR tally with
earlier observations of one-dimensional and mean-field Is
models. It is positive~within the domain of the applicability
of our semiperturbative calculation! and diverges only at the
critical point. The zero-field line is seen to be a geodesic,
as for the one-dimensional Ising and Potts models.

It would be an interesting exercise to calculateR for other
models where some form of solution in field was accessib
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