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Overlap distribution of the three-dimensional Ising model
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We study the Parisi overlap probability densityPL(q) for the three-dimensional Ising ferromagnet by means
of Monte Carlo~MC! simulations. At the critical point,PL(q) is peaked aroundq50 in contrast with the
double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution
at the critical point, which we control over up to 500 orders of magnitude by using the multioverlap MC
algorithm. Below the critical temperature, interface tension estimates from the overlap probability density are
given and their approach to the infinite volume limit appears to be smoother than for estimates from the
magnetization.
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I. INTRODUCTION

In this paper we investigate the two replica overlap pro
ability density PL(q) for the three-dimensional~3D! Ising
model. On aL3 lattice with periodic boundary conditions,q
is defined by

q5
1

N (
i 51

N

si
(1)si

(2) with N5L3, ~1!

wheresi
(1) and si

(2) are the spins of two copies~replica! of
the system at temperatureT51/b. The distribution of the
overlapq is of major importance in spin-glass investigatio
@1–4#, where it plays the role of an order parameter, of
calledParisi order parameter.

To our knowledge, this quantity has never been inve
gated for simple spin systems such as the 3D Ising mo
One reason is certainly that one has in that situation
magnetizationm as an explicit order parameter at hand an
description of the critical properties based on the magn
probability densityPL

m(m) is believed to be identical to on
based onPL(q), in particular ^q&5^m&2. However, the
overlap probability density is an interesting object for stu
on its own merits and we find remarkable differences
tween the shapes ofPL(q) andPL

m(m). Therefore, we find it
worthwhile to have the properties ofPL(q) documented for
the Ising model, which is by orders of magnitude easier
simulate than spin glasses, since the dynamics is much fa
and only one~instead of many! realization needs to be simu
lated.

In the vicinity of the critical point, by finite-size scalin
~FSS! arguments@5# PL(q) can, in leading order forL large,
be written as
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PL~q!5
1

sL
P8~q8! with q85

q

sL
. ~2!

HereP8 is a universal,L-independent function andsL is the
standard deviation ofq with respect to the probability densit
PL(qP@21,11#) „or PL(qP@0,1#) when appropriate….

A major focus of our investigation is on the tails of th
PL(q) distribution, which we control forL536 at Tc over
500 orders of magnitude by using the multioverlap MC
gorithm @6#. This is also of interest in view of the conjectur
by Bramwellet al. @7,8# that a variant of extreme order sta
tistics describes the asymptotics of certain probability den
ties for a large class of correlated systems. Besides the I
model with someT(L)→Tc as L→`, their class includes
the 2DXY model in the low-temperature phase, turbule
flow problems, percolation models, and some self-organi
critical phenomena. For largeL the asymptotic behavior is
claimed to be described by anL-independent curve, which
for the overlap variable would read (q8→`)

P8~q8!5C exp@a~q82qmax8 2eb(q82qmax8 )!#. ~3!

HereC, a, b are constants andqmax8 5qmax/sL , whereqmax is
the position of the maximum of the probability densi
PL(q) at positiveq. Equation~3! is a variant of Gumbel’s
first asymptote@9#, see Refs.@10,11# for reviews of extreme
order statistics.

However, Eq.~3! is in contradiction with the widely ac-
cepted large-deviation behavior, based on the proportiona
of the entropy with the volume@12#

PL~q!}exp@2N f~q!#, ~4!

where, for largeN, f (q) does not depend onN. Our data
support Eq.~4!. Using the multimagnetical approach@13# a
similar study of the tails could be performed for the magne
probability densityPL

m(m), but this is outside the scope o
our present paper.

We would like to point out that for the overlap distribu
tion of spin glasses the status of Eq.~4! is unclear due to the
©2002 The American Physical Society22-1
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quenched average. Our previously reported result@14# dem-
onstrates that for the 3D Edwards-Anderson Ising spin g
a probability distribution of the form~3! gives an excellent
description of the tails of the Parisi overlap distribution. B
cause of the special nature of its phase transition, Eq.~4!
may also be questioned for the 2DXY model, where the
extreme order asymptotics~3! ~more precisely a variant of it!
with a5p/2 is found in the spin wave approximation@7,8#.
However, the range of validity of this perturbative argume
is unclear, at least to us. It may be worthwhile to employ
methods of Ref.@13#, or those of the present paper, to pe
form a careful numerical investigation of the the 2DXY
model with respect to these questions.

We have performed simulations at and below the criti
~Curie! temperatureTc of the Ising model phase transition
We approximateTc by the value of Ref.@15#

bc5
1

Tc
50.221 654 ~5!

and present our results forTc in Sec. II. Besides addressin
the question of the asymptotic behavior of the overlap dis
bution, we estimate the critical exponent ratio 2b/n from the
FSS behavior of the standard deviationsL . For the tempera-
tures below the Curie temperature we choose

b150.232 and b250.3. ~6!

For b50.232 multimagnetical results are available@16#,
which determine the probability densityPL

m(m) of the mag-
netization over many orders of magnitude.

Our numerical results were obtained with the spin-gl
code of the investigations of Refs.@6,14,17# by simply
choosing all the exchange coupling constants to be equ
11. A code that is specialized to the Ising model would
far more efficient. Therefore, we have limited our pres
simulations to small and medium sized lattices. As the res
appear already quite clear, there seems to be no particu
strong reason to push on towards~much! larger systems.

II. RESULTS AT THE CRITICAL TEMPERATURE

Figure 1 shows our overlap probability density resu
PL(q) at the critical temperature~5!. They rely on a statistics

FIG. 1. Overlap probability densities at the critical pointbc

51/Tc50.221 654.
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of 32 independent runs~with different pseudo-random
number sequences! for lattices up to sizeL530 and on 16
independent runs for our largest lattice,L536. After calcu-
lating the multioverlap parameters@6#, the following num-
bers of sweeps were performed per repetition~i.e., indepen-
dent run!: 219 for L54, 221 for L56, 222 for L58, 223 for
L512, 16, 224 for L524, 225 for L530 and, again, 224 for
L536 ~with the present computer program this lattice s
became too time consuming to scale its CPU time proper!.
Not to overload Fig. 1 error bars are only shown for selec
values ofq, whereas the lines are drawn from all data. T
probability densities are normalized to

E
21

11

dqPL~q!51, ~7!

and we show only theq>0 part because of the symmetr
PL(2q)5PL(q). We cut the range atq50.5, because for
L>8 the probability densities are almost zero forq>0.5.

Somewhat surprisingly we find the maximum of o
PL(q) probabilities atqmax50, in contrast to the magnetiza
tion where one finds a double peak atTc , see, for instance
numerical data in Ref.@18# and analytical results of Ref
@19#, both with periodic boundary conditions. In our simul
tion we kept a time series for the magnetization, which
produces the expected double peaked histograms atTc ~as
the accuracy of our magnetization histogram is lower th
that of results in the literature, we refrain from giving a fi
ure!. Such differences are expected. For instance, while
two low-temperature magnetization valuesm561 corre-
spond to four overlap configurations, two withq511 and
two with q521, the inverse is not true. There are altogeth
2N overlap configurations withq511 and another 2N with
q521.

Figure 2 shows ln@PL(q)# versusq. The ordinate is cut off
at 21000, to cover a range with results from at least tw
lattice sizes. TheL536 lattice continues to exhibit accura
results down to21200, thus the data from this system cov
1200/ln(10)5521 orders of magnitude.

The collapse of thePL(q) functions~2! on one universal
curve P8(q8) is depicted in Fig. 3. The figure shows som

FIG. 2. Logarithm of the overlap probability densities atbc

51/Tc50.221 654.
2-2
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scaling violations, which become rather small fromL>24
onwards. The standard deviationsL behaves withL accord-
ing to

sL}L22b/n~11c2L2v1••• !. ~8!

Note that the ratiob/n is defined for the magnetization, an
by FSS theory@5# sL

m}L2b/n holds for the standard devia
tion of the magnetization. The factor of 2 difference in t
exponent of Eq.~8! comes from dimensionality. Scaling re
lations and estimates of the Ising model critical expone
are reviewed in Ref.@20#. In particular, 2b/n5d221h
holds. Our estimate of 2b/n from a four-parameter fit of Eq
~8! to our data for the standard deviationsL is 2b/n
51.0293(28) withQ50.31 the goodness of fit~see Ref.@21#
for the definition ofQ). Restricted to ourL>24 lattices, the
more stable two-parameter fit to the leading behavior of
~8! gives

2b

n
51.03060.005 with Q50.36. ~9!

The most accurate estimates of the literature@20# cluster
aroundh50.036 with an error of a few units in the last dig
Within the conventional statistical uncertainties, this is co
sistent with our 2b/n values. The two-parameter fit becom
quickly inconsistent when the smaller lattices withL,24 are
included, with a trend towards smaller values of 2b/n.
Therefore, we conjecture that there will be a slightly incre
ing trend when larger lattices should become available.
cause its larger error bar reflects to some extent system
uncertainties, we prefer Eq.~9! over the four-parameter fit a
our final estimate.

In Fig. 4 we show the logarithm ln@P8(q8)# of the rescaled
overlap probability densities and we see a breakdown
scaling for sufficiently largeq8. The ordering of the lattices
is that the rightmost curve corresponds to theL536 lattice.
The smaller lattices deviate from it. From the left: First, t
L54 lattice ~not visible!, next the L56, then L58, L
512, L516, L524 and lastL530. The agreement is over
larger and larger range inq8. However, scaled back toq, it
concerns the vicinity ofq50. To quantify this, we have
collected in Table I theq8 and correspondingq values at

FIG. 3. Rescaled overlap probability densitiesP8(q8)
5sLPL(q) versusq85q/s l at the critical point.
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which the deviation

n36ln@PL8~q8!#[ ln@P368 ~q8!#2 ln@PL8~q8!#

becomes 1/2, a deviation too small to be visible on the sc
of Fig. 4. Theq8 values are seen to increase, whereas
correspondingq values decrease.

It is well known that the requirement of consistency of
universal probability density~2! with the functional form~4!
determines the functionf (q). Namely, to leading order the
scaling of the function~2! PL8(q8) implies that

Ldf ~q8L22b/n!5g~q8! ~10!

is anL-independent function. Therefore,

f ~q!}qdn/2b ~11!

holds. Note that the noncritical Gaussian behavior is a s
cial case, obtained fordn/2b52.

In contrast to Eqs.~2! and~11!, the functional form~4! is
expected to hold for allq, when L becomes large. This is
easily tested by plotting

f L~q!52
1

N
ln@PL~q!#, ~12!

as is done in Fig. 5, and seeing iff L(q) is L-independent up
to O(1/N) terms as it should. Not to obscure the behavior
too large symbols, the lines are plotted without error bars
fit of the scaling form~11! to our f 36(q) data for q,0.2,
f (q)50.000 04920.073qdn/2b with 2b/n51.030 from Eq.
~9!, is also included in the figure.

We see excellent convergence towards anL-independent
function, where the higher-lying curves correspond to
smaller lattices (L54 being the one on top!. However, the

FIG. 4. Logarithm of the rescaled overlap probability densit
P8(q8)5sLPL(q) versusq85q/s l at the critical point.

TABLE I. Deviation points forn36ln@PL8(q8)#50.5 of theL54
to 30 lattices from theL536 result.

L 4 6 8 12 16 24 30

q8 2.27 2.46 2.65 2.95 3.25 3.83 4.54
q 0.781 0.580 0.472 0.351 0.288 0.225 0.21
2-3
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scaling behavior~11! only holds in the vicinity ofq50. To
make this quantitatively more precise, we subtract the fu
tion f 36(q) from the others and plot the difference in Fig.
@at selected values ofq we now include barely visible erro
bars by plottingf L(q)6n f L(q)2 f 36(q)]. In the large vol-
ume limit ~for both of two lattices! the differenceu f L1

(q)

2 f L2
(q)u should be bounded by a constant

}S 1

N1
2

1

N2
D .

We see in Fig. 6 that theL524 and 30 curves fall almost o
the L536 one~the zero line!. Note that the figure is cut of
at q50.62. The number of sweeps needed to propagate
system over the full admissibleq-range scales in the multio
verlap ensemble at least proportional to the system sizeN.
Aiming at a comparable statistics for all system sizes,
required computer time thus grows at least proportiona
N2. Therefore, and because of numerical problems with
floating point representation caused by the extreme small
of PL(q) for q→1 whenL is large, we restricted the overla
simulations to qP@20.7,10.7# for the lattice sizesL
516, 24, and 30, and toqP@20.62,10.62# for the L536
lattice. Nevertheless the smallest values ofPL(q) we
sampled were those of theL536 lattice.

On the basis of Eq.~4! the plots of Figs. 5 and 6 had to b
expected. The conjecture~3! of Bramwellet al. @7,8# appears

FIG. 5. The functionsf L(q), extracted from Eq.~4! for various
lattice sizes, are plotted together with a fit according to Eq.~11!.

FIG. 6. The functionsf L(q), as well as the fit to Eq.~11!, with
f 36(q) subtracted~error bars are indicated at selected values ofq).
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to be ruled out for the Ising model. Namely, when Eq.~3!
~with qmax8 50) and Eq.~12! are both valid in some region o
bq85bL2b/n, one finds to leading order

bqL2b/n5d ln~L !1 ln@ f ~q!#, ~13!

and f (q) can only beL independent ifb is not a constant, bu
depends onq andL.

III. RESULTS BELOW THE CRITICAL TEMPERATURE

Below the critical temperature we made 16 independ
runs per lattice size with the following numbers of swee
per repetition: 216 for L54, 217 for L56, 218 for L58, 219

for L512, 220 for L516 (b50.232), and 221 for L
516 (b50.3). The overlap probability densitiesPL(q) for
b50.232 andb50.3 are shown together in Fig. 7. Clearl
the peaks moved away from zero and are now atqmax
50.3408 (L516, b50.232) andqmax50.8237 (L516,b
50.3). In Figs. 8 and 9 we show the logarithms of the
probability densities atb50.232 andb50.3, respectively.
The scales in these two figures are chosen to accommo
all the PL(0) data, but not their tails, which continue dow
to much lower values. For the largest (L516) difference
betweenPL(0) and the maximum ofPL(q), we see that it
increases from about four orders of magnitude atb50.232
to about 65 orders of magnitude atb50.3.

Note that the most likelyPL(0) configurations are thos

FIG. 7. Overlap probability densities atb50.232 ~left set of
curves! andb50.3 ~right set of curves!.

FIG. 8. Logarithms of the overlap probability densities atb
50.232.
2-4
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OVERLAP DISTRIBUTION OF THE THREE- . . . PHYSICAL REVIEW E 66, 046122 ~2002!
where one replica stays around magnetizationm50 and the
other around the maximum of the magnetic probability d
sity at positive or negative magnetizationm. It follows that
the ratio

RL5
PL~0!

PL~qmax!
, ~14!

wherePL(qmax) is the maximum ofPL(q), is related to the
interface tensionFs according to the formula introduced i
Ref. @18# for the ratioPL

m(0)/PL
m(mmax),

RL5CLpexp@22L2Fs#1•••. ~15!

HereC, p are constants andp521/2 in the one-loop capil-
lary wave approximation@22# or one-loop F4 theory
@19,23,24#, compare the discussion in Ref.@25#. Two-loop
F4 theory is considered in Ref.@26#. The correction is large
and it appears that a reliable estimate ofp does not exist.

To determine the interface tension one may first calcu
the lattice size dependent effective interface tensions

Fs,L52
1

2L2 ln RL , ~16!

and then make an extrapolation ofFs,L for L→`. Table II
collects ourFs,L results where the error bars with respect
the last digits are given in parentheses. For the sake of
comparison, we list also someFs,L results of Ref.@16# at b
50.232, obtained by applying the definitions~14! and ~16!
to the probability density of the magnetization. It is notab

FIG. 9. Logarithms of the overlap probability densities atb
50.3.

TABLE II. Effective interface tension~16! results,Fs,L , from
the overlap parameter atb50.232 andb50.3. At b50.232 results
for the same quantity obtained in Ref.@16# from the magnetization
density are included for comparison.

L b50.232 b50.232 Ref.@16# b50.3

4 0.00962~27! 0.05297~29! 0.23490~33!

6 0.01416~12! 0.03403~15! 0.26325~20!

8 0.016740~82! 0.02779~13! 0.28457~20!

12 0.020281~64! 0.02485~12! 0.29751~17!

16 0.022715~34! 0.02521~11! 0.29959~11!
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that theFs,L estimates from the overlap densities increa
monotonically in the listed range of lattice sizes, whereas
Fs,L estimates from the magnetization show a more comp
behavior: Up toL512 they decrease, then they turn arou
to increase and the increase has been followed@16# up to
lattices of sizeL532.

We pursue a similar fitting strategy as in Ref.@16#. As
there, it turns out that our data do not really support fits
more than two parameters and that including the capill
wave term with the one-loop theoretical coefficientp does
not lead to any improvements of the goodnessQ of the fits.
In essence we are left with fits to the leading, likely effectiv
correction

Fs,L5Fs1
a1

L
, ~17!

and, due to our small lattice sizes, finite-size corrections
so big that the best we can do is a fit of the interface tensi
from the largest two lattices,L512 and 16. This yields the
estimates

Fs50.030 02~24! at b50.232, ~18!

and

Fs50.305 83~68! at b50.3, ~19!

which are ~under the circumstances of our limited syste
sizes! in reasonably good agreement with results of Has
busch and Pinn~HP! @27#, for a review see Ref.@28#. Again,
our error bars are purely statistical and do not reflect syst
atic errors due to our small lattice sizes.

Our result~18! at b50.232 is lower than the multimag
netical estimate of Ref.@16#. This moves into the right direc
tion and indicates that the resolution of the inconsisten
between the multicanonical and the HP estimate atb
50.232, discussed in the paper by Zinn and Fisher@29#, has
its origin in the complex finite-size scaling behavior ofFs,L
estimates from the magnetization, which could be resol
by simulating larger systems. It is notable that this difficu
of the extrapolation appears to be limited to a small nei
borhood ofb50.232, as the multimagneticalFs estimates
@16# atb50.227 andb50.2439 are perfectly consistent wit
HP, see Fig. 1 of Ref.@29#.

IV. SUMMARY AND CONCLUSIONS

In Sec. II we have analyzed the critical behavior of t
overlap variableq. In essence, agreement with the stand
scaling picture is found, but with some more insights.
particular, we exhibit in Table I that scaling appears to
confined to a smallq ~but still largeq85qL2b/n) neighbor-
hood. It may be worthwhile to check whether the magne
probability distribution, for which comparable simulation
are easier to perform, exhibits a similar behavior. Further,
2-5
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find support in favor of standard large deviations~4!, instead
of the form ~13! derived from Gumbel’s first asymptote~3!.

Below the critical point, in Sec. III, we estimate interfac
free energies from our overlap probability densities. The
sults are smoother than those from the probability density
the magnetization@16# and tend to reconcile discrepanci
noted in Ref.@29#. But, as at the critical point, considerab
larger lattices would be needed to reach high precision
sults.

Note added in proof. E. Hernández-Garcia kindly pointed
out to us that the overlap parameter has also been studie
-
.

d-

n,

. .

nd
d

is
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the 2D knietic Ising model in the nonequilibrium regim
@30#.
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NIC in Jülich under Grant No. hmz091.
on,

on-

n-

e,

nd
@1# K. Binder and A.P. Young, Rev. Mod. Phys.58, 801 ~1986!.
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