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Overlap distribution of the three-dimensional Ising model
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We study the Parisi overlap probability dendRy(q) for the three-dimensional Ising ferromagnet by means
of Monte Carlo(MC) simulations. At the critical pointP, (q) is peaked aroundj=0 in contrast with the
double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution
at the critical point, which we control over up to 500 orders of magnitude by using the multioverlap MC
algorithm. Below the critical temperature, interface tension estimates from the overlap probability density are
given and their approach to the infinite volume limit appears to be smoother than for estimates from the
magnetization.
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I. INTRODUCTION 1 _ q
Pu(q)=—P'(q") with q'=—. 2
oL g

In this paper we investigate the two replica overlap prob- -

ability density P, (q) for the three-dimensionaBD) Ising  HereP’ is a universall-independent function and, is the
model. On aL* lattice with periodic boundary conditions,  standard deviation af with respect to the probability density
is defined by P.(ge[—1,+1]) (or P (qe[0,1]) when appropriate

A major focus of our investigation is on the tails of the
P.(q) distribution, which we control foL. =36 atT. over
500 orders of magnitude by using the multioverlap MC al-
gorithm[6]. This is also of interest in view of the conjecture
by Bramwellet al.[7,8] that a variant of extreme order sta-
tistics describes the asymptotics of certain probability densi-
ties for a large class of correlated systems. Besides the Ising
model with someT(L)— T, asL—o, their class includes
[1-4], where it plays the role of an order parameter, ofte the 2D XY model in the low-temperature phase, turbulent

i ’ Mow problems, percolation models, and some self-organized

calledParisi order parameter . .critical phenomena. For large the asymptotic behavior is

tT(Zi (;ur k_nOV\llledg_e, thlstquantltyhhas ?ﬁveerblee_n mve(sjtl- laimed to be described by dnrindependent curve, which
gated for simple spin systems such as the sing modef, . p
One reason is certainly that one has in that situation the" the overlap variable would readj ()
magnetizatioom as an explicit order parameter at hand and a POy — 't _ abla'—q
description of the critical properties based on the magnetic PHa)=Cexdald’~mae )] ©
probability densityP[‘(m) .is believed to be identical to one HereC, a, b are constants anal, .= Gmax/0y » WNEreqmay is
based onP(q), in particular (q)=(m). However, the the position of the maximum of the probability density
overlap probab|ll|ty density is an interesting opject for studpr(q) at positiveq. Equation(3) is a variant of Gumbel’s
on its own merits and we find remarkable differences bef; st asymptotd 9], see Refs[10,11] for reviews of extreme
tween the shapes &f_(q) andP{"(m). Therefore, we find it order statistics.
worthwhile to have the properties &f_(q) documented for However, Eq.(3) is in contradiction with the widely ac-

the Ising model, which is by orders of magnitude easier tacepted large-deviation behavior, based on the proportionality
simulate than spin glasses, since the dynamics is much fastgf the entropy with the volumgL2]

and only ongiinstead of manyrealization needs to be simu-
lated. P (q)=exd —Nf(a)], (4
In the vicinity of the critical point, by finite-size scaling
(FS9 argumentg$5] P, (q) can, in leading order fok large,  where, for largeN, f(q) does not depend oN. Our data
be written as support Eq.(4). Using the multimagnetical approa¢h3] a
similar study of the tails could be performed for the magnetic
probability densityP{"(m), but this is outside the scope of

N

1
a=y izl sMs®  with N=L3, (1)

wheres® ands{® are the spins of two copieseplica of
the system at temperatufie=1/8. The distribution of the
overlapq is of major importance in spin-glass investigations

*Email address: berg@hep.fsu.edu our present paper.
"Email address: billoir@spht.saclay.cea.fr We would like to point out that for the overlap distribu-
*Email address: wolfhard.janke @itp.uni-leipzig.de tion of spin glasses the status of E4) is unclear due to the
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FIG. 1. Overlap probability densities at the critical pojf FIG. 2. Logarithm of the overlap probability densities 8¢
=1/T,=0.221 654. =1/T.=0.221 654.

quenched average. Our previously reported reddlt dem- . . . ) )
onstrates that for the 3D Edwards-Anderson Ising spin glasgf 82 independent runswith different -pseudo-random

a probability distribution of the fornt3) gives an excellent Aumber sequenckdor lattices up 1o sizd. =30 and on 16

description of the tails of the Parisi overlap distribution. Be-:gﬂﬁpiﬂzeguﬁggsgﬁ; Our;g%Zi;Egﬁt'(tﬁz ?;‘gil c,)A\v]\c/tiir Cr?LIJCr:]J:
cause of the special nature of its phase transition, (Eg. 9 PP ' g

. bers of sweeps were performed per repetitioa., indepen-
may also be questioned for the 2BY model, where the dent run: 219 for L—4, 22 for L=6, 22 for L—8, 22 for

extreme order asymptoti¢8) (more precisely a variant of)it L=12, 16, 24 for L =24, 25 for L= 30 and, again, % for

with a= /2 is found in the spin wave approximatin,8]. B ) . : .
However, the range of validity of this perturbative argumentl‘_36 (with the present c_omputer program th|.s lattice size
became too time consuming to scale its CPU time properly

's unclear, at least to us. It may be worthwhile to employ theNot to overload Fig. 1 error bars are only shown for selected
methods of Ref[13], or those of the present paper, to per- 9- . y
values ofg, whereas the lines are drawn from all data. The

form a careful numerical investigation of the the 20¢ o -, .
model with respect to these questions. probability densities are normalized to
We have performed simulations at and below the critical

(Curie) temperaturel . of the Ising model phase transition. +1
We approximateT, by the value of Ref[15] fﬁl dqP(q)=1, (7)
1
B.==—=0.221654 (5)
Te and we show only the=0 part because of the symmetry

. . . P (—0g)=P . We cut the range a=0.5, because for
and present our results fdr, in Sec. Il. Besides addressing LL>(8 ?k?e prt)(bqa)bility densities areg alﬂost zero €pr0.5.
the question of the asymptotic behavior of the overlap distri- Somewhat surprisingly we find the maximum of our
'k;lgtlso E \r’]\'e (_astlrr;a';]e the c(r;ncgl dexponent 'r:at|,6/h2» from the PL(q) probabilities atg,.=0, in contrast to the magnetiza-
be IaV|orho é e standard deviatiop. N or the tempera-  tjon where one finds a double peakTat, see, for instance,
tures below the Curie temperature we choose numerical data in Ref[18] and analytical results of Ref.
B,=0232 and B,=0.3 6) [19], both with periodic boundary conditions. In our simula-
e 2 tion we kept a time series for the magnetization, which re-
For 8=0.232 multimagnetical results are availafles], ~ Produces the expected double peaked histogranis, aas

which determine the probability densiB['(m) of the mag- the accuracy of our magnetization histogram is lower than
netization over many orders of magnitude. that of results in the literature, we refrain from giving a fig-

Our numerical results were obtained with the spin-glasé‘re)- Such differences are expect_ed. For instance, while the
code of the investigations of Ref§,14,17 by simply WO low-temperature magnetization values=+1 corre-
choosing all the exchange coupling constants to be equal $Pond to four overlap configurations, two with=+1 and
+1. A code that is specialized to the Ising model would beWO With g=—1, the inverse is not true. There are altogether
far more efficient. Therefore, we have limited our present?” Overlap configurations witlq=+1 and another 2 with
simulations to small and medium sized lattices. As the resultd= — 1. . _
appear already quite clear, there seems to be no particularly Figure 2 shows IrP,(q)] versusq. The ordinate is cut off

Strong reason to push on towar@ﬂucm |arger systems' at — 1000, to cover a range with results from at least two
lattice sizes. Thé. =36 lattice continues to exhibit accurate

results down to-1200, thus the data from this system cover
1200/In(10)=521 orders of magnitude.

Figure 1 shows our overlap probability density results The collapse of thé® (q) functions(2) on one universal
P_(q) at the critical temperaturg). They rely on a statistics curve P’(q’) is depicted in Fig. 3. The figure shows some

Il. RESULTS AT THE CRITICAL TEMPERATURE
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FIG. 3. Rescaled overlap probability densitieB’(q’) FIG. 4. Logarithm of the rescaled overlap probability densities
=0 P.(q) versusq’ =gq/o, at the critical point. P’(q")=oPL(q) versusq’'=g/o; at the critical point.

scaling violations, which become rather small fraree24 ~ Which the deviation

onwards. The standard deviation behaves with. accord- o . o
ing to - Asdn[PL(q")]=In[Pge(a’)]— I[P (q")]

oL "2 (1L - - ) ®) becomes 1/2, a deviation too small to be visible on the scale
- 2 ' of Fig. 4. Theq’ values are seen to increase, whereas the

Note that the ratigd/» is defined for the magnetization, and corresponding) values decrease. _
by FSS theory5] Urcwocrﬁ/y holds for the standard devia- .It is well knovv_q that thg requ_lrement of (_:onS|stency of a
tion of the magnetization. The factor of 2 difference in theunlvers_al probability (_jenS|t§/2) with the functlo_nal form(4)
exponent of Eq(8) comes from dimensionality. Scaling re- detérmines the fungtmlﬁ(q)/. Namely, to leading order the
lations and estimates of the Ising model critical exponent$caling of the function2) P((q") implies that
are reviewed in Ref[20]. In particular, B/v=d—2+ 7y A (it ) —2BI0\ — mf ey
holds. Our estimate of 2/ v from a four-parameter fit of Eq. L7H(a’L )=9(a’) (10

(8) to our data for the standard deviatian is 28/v g anl-independent function. Therefore,
=1.0293(28) withQ=0.31 the goodness of fisee Ref[21]

for the definition ofQ). Restricted to out =24 lattices, the f(q)ocqd”/?h (11
more stable two-parameter fit to the leading behavior of Eq.
(8) gives holds. Note that the noncritical Gaussian behavior is a spe-
cial case, obtained falv/28=2.
2B ] In contrast to Egs(2) and(11), the functional form(4) is
721'0301’0'005 with  Q=0.36. © expected to hold for alf, whenL becomes large. This is

easily tested by plotting

The most accurate estimates of the literat[@6] cluster 1
aroundn=0.036 with an error of a few units in the last digit. _
Within g1e conventional statistical uncertainties, this is gon- fu@==intPdal. 12
sistent with our 8/v values. The two-parameter fit becomes o o o
quickly inconsistent when the smaller lattices wiith: 24 are ~ @s is done in Fig. 5, and seeingfif(q) is L-independent up
included, with a trend towards smaller values oB/2. to O(1/N) terms as it should. Not to obscure the behavior by
Therefore, we conjecture that there will be a slightly increas{00 large symbols, the lines are plotted without error bars. A
ing trend when larger lattices should become available. Befit of the scaling form(11) to our fz4(q) data forg<0.2,
cause its larger error bar reflects to some extent systematfdd)=0.000049-0.0731""2% with 28/»=1.030 from Eq.
uncertainties, we prefer E9) over the four-parameter fit as (9), is also included in the figure.
our final estimate. We see excellent convergence towardsLandependent

In Fig. 4 we show the logarithm [®'(q’)] of the rescaled function, where the higher-lying curves correspond to the
overlap probability densities and we see a breakdown o$maller lattices [(=4 being the one on topHowever, the
scaling for sufficiently largey’. The ordering of the lattices
is that the rightmost curve corresponds to the 36 lattice.
The smaller lattices deviate from it. From the left: First, the
L=4 lattice (not visible, next theL=6, thenL=8, L
=12,L=16,L=24 and last. =30. The agreement is over a
larger and larger range ig’. However, scaled back tg, it q’ 227 2.46 2.65 2.95 3.25 3.83 4.54
concerns the vicinity ofg=0. To quantify this, we have g 0.781 0580 0472 0351 0288 0225 0212
collected in Table | theg’ and corresponding values at

TABLE |. Deviation points forAs¢n[P{(q')]=0.5 of theL=4
to 30 lattices from thé. =36 result.

L 4 6 8 12 16 24 30
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FIG. 5. The functiond(q), extracted from Eq(4) for various FIG. 7. Overlap probability densities #=0.232 (left set of
lattice sizes, are plotted together with a fit according to #d). curves and 8=0.3 (right set of curvep

scaling behaviof11) only holds in the vicinity ofg=0. To  to be ruled out for the Ising model. Namely, when E8).
make this quantitatively more precise, we subtract the funcéwith q;,,,=0) and Eq.(12) are both valid in some region of
tion f3¢(q) from the others and plot the difference in Fig. 6 bq’=bL?#’*, one finds to leading order

[at selected values af we now include barely visible error 261

bars by plottingf, (q) = A, (q) — f35(q)]. In the large vol- bgL*”"=dIn(L)+In[f(q)], (13
ume limit (for both of two lattice§ the difference|fL1(q)

—fLZ(q)| should be bounded by a constant

11
| —— —
Ni N

andf(q) can only bel independent ib is not a constant, but
depends o andL.

IIl. RESULTS BELOW THE CRITICAL TEMPERATURE

Below the critical temperature we made 16 independent
We see in Fig. 6 that the= 24 and 30 curves fall almost on runs per lattice size with the following numbers of sweeps
the L =36 one(the zero ling. Note that the figure is cut off Per repetition: 2°for L=4, 2'7for L=6, 2'®for L=8, 2
at q=0.62. The number of sweeps needed to propagate tHer L=12, 2*° for L=16 (3=0.232), and 2' for L
system over the full admissibtgrange scales in the multio- =16 (8=0.3). The overlap probability densitié? (q) for
verlap ensemble at least proportional to the system Nize £=0.232 and3=0.3 are shown together in Fig. 7. Clearly,
Aiming at a comparable statistics for all system sizes, théhe peaks moved away from zero and are nowdgty
required computer time thus grows at least proportional t0=0.3408 (=16, 3=0.232) andqm,=0.8237 (=16,
N2. Therefore, and because of numerical problems with the=0.3). In Figs. 8 and 9 we show the logarithms of these
floating point representation caused by the extreme smallnegsobability densities ag=0.232 andg=0.3, respectively.
of P (q) for g—1 whenL is large, we restricted the overlap The scales in these two figures are chosen to accommodate
simulations to qe[—0.7,+0.7] for the lattice sizesL all the P (0) data, but not their tails, which continue down
=16, 24, and 30, and tqe[—0.62;+0.62] for theL=36 to much lower values. For the largest £ 16) difference
lattice. Nevertheless the smallest values Bf(q) we betweenP (0) and the maximum oP (q), we see that it

sampled were those of the= 36 lattice. increases from about four orders of magnitudezat0.232
On the basis of E¢(4) the plots of Figs. 5 and 6 had to be to about 65 orders of magnitude 4&0.3.
expected. The conjectu(8) of Bramwellet al.[7,8] appears Note that the most likely? (0) configurations are those
——— y y y Py 2 A
0.005 _Scallnlg_fl4t Rt /1 | o
- I
0.004 | IE;a /,‘/ 1
= [ */
@ 0.003 t;}% s /./:// | —_
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I 0.002 M. L=30 *-~e-- _,,/"" ’_’Ax-"’A / n__l
oA ._*_r*"** —*—-n:"_""_’: el Ly E
0001 [T esegeneeae oo
W‘a" - e .-
0 M s Y Y
-0.001 } Tt ] A0 [ =16 ~um - i " \~
0 01 02 03 04 05 06 0 0.2 0.4 0.6 0.8 1
q q
FIG. 6. The functiond(q), as well as the fit to Eq11), with FIG. 8. Logarithms of the overlap probability densities @t
f36(q) subtractederror bars are indicated at selected valueg)of  =0.232.
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ol \ that theF estimates from the overlap densities increase
20 ,__H,M_H.**www:::jfii ﬁ i “.‘:{ ) monoto_nically in the listed range of_Iattice sizes, whereas the
-40 —— fﬂf‘ ‘,.f ‘-\..,“iL ] Fs . estimates from the magnetization show a more complex
_ i IR behavior: Up toL =12 they decrease, then they turn around
@_l -60 1 aaa.aa”a /_/" 3 4] to increase and the increase has been follojes] up to
I I i lattices of sizel =32.
= -100 f-r' 'E:g e L1 We pursue a similar fitting strategy as in RgL6]. As
120 | - L=8 »xt 1 there, it turns out that our data do not really support fits to
I '_,J".j L=12 e more than two parameters and that including the capillary
-140 L=16 ---=
160 —— , , ! wave term with the one-loop theoretical coefficigntioes
0 0.2 04 06 08 1 not lead to any improvements of the goodn€sef the fits.
qa In essence we are left with fits to the leading, likely effective,
correction
FIG. 9. Logarithms of the overlap probability densities @t
=0.3. a,
Fs,L:Fs+r! (17)

where one replica stays around magnetization0 and the
other around the maximum of the magnetic probability den-
sity at positive or negative magnetizatiam It follows that  and, due to our small lattice sizes, finite-size corrections are

the ratio so big that the best we can do is a fit of the interface tensions
from the largest two latticed,=12 and 16. This yields the
RL:LO) (14  estimates
PL(qmax)
whereP| (gma is the maximum ofP, (q), is related to the Fs=0.0300224) at p=0.232, (18)
interface tensiorf¢ according to the formula introduced in
Ref.[18] for the ratioP"(0)/P(Mma and
R =CLPexd —2L%F¢]+---. (15
Fs=0.3058368 at pB=0.3, (19

HereC, p are constants and= —1/2 in the one-loop capil-
lary wave approximation[22] or one-loop ®* theory
[19,23,24, compare the discussion in RéR5]. Two-loop ~ Which are (under the circumstances of our limited system
®* theory is considered in Reff26]. The correction is large  Sizes in reasonably good agreement with results of Hasen-
and it appears that a reliable estimatepafoes not exist. busch and PinitHP) [27], for a review see Ref28]. Again,

To determine the interface tension one may first calculat@ur error bars are purely statistical and do not reflect system-

the lattice size dependent effective interface tensions atic errors due to our small lattice sizes.

Our result(18) at 3=0.232 is lower than the multimag-
netical estimate of Ref16]. This moves into the right direc-
tion and indicates that the resolution of the inconsistency
between the multicanonical and the HP estimate Bat
and then make an extrapolation Bf | for L—c. Table I =0.232, discussed in the paper by Zinn and Fig@él, has
collects ourfFs  results where the error bars with respect toits origin in the complex finite-size scaling behaviorfef
the last digits are given in parentheses. For the sake of eagstimates from the magnetization, which could be resolved
comparison, we list also sonte;| results of Ref[16] at 3 by simulating larger systems. It is notable that this difficulty
=0.232, obtained by applying the definitioffs4) and (16)  of the extrapolation appears to be limited to a small neigh-
to the probability density of the magnetization. It is notableborhood of 3=0.232, as the multimagneticél, estimates
[16] at 5=0.227 andB3=0.2439 are perfectly consistent with
HP, see Fig. 1 of Ref.29].

1
FSYL:_Tln RL! (16)

TABLE II. Effective interface tensior{16) results,Fg, , from
the overlap parameter gt=0.232 and3=0.3. At 8=0.232 results
for the same quantity obtained in RgL6] from the magnetization

density are included for comparison. IV. SUMMARY AND CONCLUSIONS

In Sec. Il we have analyzed the critical behavior of the

- p=0232 p=0.232 Ref[16] p=03 overlap variableg. In essence, agreement with the standard
4 0.0096227) 0.0529729) 0.2349@33) scaling picture is found, but with some more insights. In
6 0.0141612) 0.0340315) 0.26325%20) particular, we exhibit in Table | that scaling appears to be
8 0.01674082) 0.0277913) 0.2845720) confined to a smalt| (but still largeq’ =qL?*'") neighbor-

12 0.02028164) 0.0248%12) 0.2975117) hood. It may be worthwhile to check whether the magnetic
16 0.02271834) 0.0252111) 0.2995911) probability distribution, for which comparable simulations

are easier to perform, exhibits a similar behavior. Further, we
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find support in favor of standard large deviatigdy instead
of the form (13) derived from Gumbel's first asymptot8).
Below the critical point, in Sec. lll, we estimate interface-
free energies from our overlap probability densities. The re- ACKNOWLEDGMENTS
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