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Recently, it has been conjectured that the statistics of extremes is of relevance for a large class of correlated
systems. For certain probability densities this predicts the characteristic Xafg#off behavior f(x)
~exp(—a€), a>0. Using a multicanonical Monte Carlo technique, we have measured the Parisi overlap
distribution P(q) for the three-dimensional Edward-Anderson Ising spin glass at and below the critical tem-
perature We find that a probability distribution related to extreme-order statistics gives an excellent description
of P(qg) over about 80 orders of magnitude.
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The three-dimensiondBD) Edwards-Andersofil] Ising  =1,2,3 ..., corresponding, respectively, to the first, second,
(EAI) spin-glass model is a prototype of a disordered systenthird, etc. smallest random number of the seis a scaling
for which conflicting constraints create a rough free-energyariable, which shifts the maximum value of the probability
landscape. Such systems are of importance for the undedensity to zero, andC,=a® T (a) normalizes the integral
standing of a wide range of phenomena in physics, chemissver f,(x) to 1. In Gumbel’s booK7] Eq. (1) is called the
try, biology, and computer science. The overlppetween first asymptote, as it holds for the asymptotic extreme-order
two replicas of the EAI model serves as an order parametestatistics of the first of altogether three different classes of
Its probability densityP(q) is, therefore, a quantity of cen- random number distributions. In the last years a noninteger
tral physical interest. More than 20 years ago, Parisi sucvalue of the exponena received some attention. For the
ceeded to calculat®(qg) in the mean-field approximation probability density of the magnetization of the 20¢¥ model
[2]. However, for 3D physical systems the precise form ofBramwell et al. [9,10] deriveda= /2 in the spin wave ap-
P(qg) in the spin-glass phase, and the very nature of thigproximation and conjectured that this exponent describes, at
phase, have remained a subject of delpaiéd]. least approximately, probability densities of a large class of

We use a multicanonical Monte Carl®IC) technique correlated systems, includin@besides the mentioned sys-
[5,6] for calculatingP(q) numerically, specifically tailored temg turbulent flow problems, percolation models and some
for the exponentially small tail of the distribution where we self-organized critical phenomena.
can measure probabilities as small as 8 with good pre- For disordered systems Bouchaud andzite[11] noted
cision. In this paper we show that, at the critical point, athat a relationship to extreme order statistics is intuitively
modification of Gumbel’s first asymptotentroduced below  quite obvious. Namely, at low temperatures a disordered sys-
gives a perfect description of the data over about 80 orders adém will preferentially occupy its low-energy states, which
magnitude, and the agreement appears to continue below tlage random variables due to the quenched exchange interac-
critical temperature. Although the detailed relationship be-+ions of the system. Their investigation of the random-energy
tween extreme-order statistics and the EAl model remains tanodel shows that Gumbel’s first asymptote wathk 1 corre-
be understood, it is certainly quite rare that a physical forsponds to one-step replica symmetry breaking, and their con-
mula has been tested over such a large range. jecture of a relationship between extreme order statistics and

The statistics of extremes was pioneered bycRet, disordered systems is certainly far more general. This, and
Fisher and Tippet, and von Mises. A standard refr8],  the possible description of a broad range of correlated sys-
due to Fisher and Tippet, Kawata, and Smirnov, is the unitems by thea= /2 modification of Gumbel’s first asymp-
versal distribution of the first, second, third, etc. smallest of &ote, has motivated us to analyze the overlap probability den-
set ofN independent identically distributed random numberssity of the EAlI model at and below the critical point with
For an appropriate, exponential decay of the random numbeespect to the large falloff behavior of Eq.(1).
distribution, their probability densities are given by The energy function of thd= =1 EAI spin-glass model

is given by[1]

fa(x)=Caexda(x—e")] ()
in the limit of largeN. The exponent takes the values E=—, JiSiSk, 2)
(ik)
*Email address: berg@hep.fsu.edu where thes;= =1 are the spins of the system and the sum is
"Email address; billoir@spht.saclay.cea.fr over the nearest-neighbor pairs of a cuhit lattice with
*Email address: wolfhard.janke@itp.uni-leipzig.de periodic boundary conditions. The coupling constahtsare
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FIG. 1. Overlap probability densitig_(q) versusq for the EAI FIG. 2. Rescaled overlap probability densities for the EAI
model onL?® lattices at the critical temperature. model onL? lattices at the critical temperature. In the lower part the

deviationP14(q’) — Ps:(q') = AP14(q’) of someL =16 data from
guenched random variables, which take on the valtds the fit is shown. It has been shifted upwards by 0.2 to fit inside the
with equal probabilities. A set of coupling constants defines digure-

realization 7={J;;} of the system. The two-replica overlap ;o roximately fla{6], instead of using the Gibbs canonical
(Parisi order parameteis defined by ensemble. After the simulation, results for the Gibbs en-
L3 semble are obtained through an exact reweighting procedure.
1 (1)(2) In this way computer simulations allow to probe easier into
4=z ; SiTSiT (3 the extremes of materials than real experiments. Alongside
with our data at the critical point, we analyze our data from
our simulationd 17,18 at T=1, below the critical point. In
that case we generated 8192 realizationd.fer4, 6, 8, and
640 realizations fo. =12. In the tails the datéor L=12)
at T=1 are accurate down to 16°
We first ask the question whether, up to finite-size correc-
1 tions, the probability densities depicted in Fig. 1 scale. A
pL(q):_Z PI(q), (4) mgthod to mvesygate this is to plat, P_(q) versus
N7 “7 —qu)/o., whereq, is the mean value off with respect to
the distributionP (q) and o is its standard deviatiothere
q.=0 because th@ (q) are even functions A visual in-
spection shows that the data scale indeed and we proceed to
fit the standard deviations to the two-parameter fasmn
=c,L 7" to obtain
(1) The model has a freezing transition at a finite tempera- E =0.3124), Q=0.32 for T=1.14, (5)
ture, which according to the most recent estimaigs19 is v
consistent withT,=1.14. and
(2) Reference$14—-16,18 reported results that were con-
sistent with a Kosterlitz-Thoule$&0] (KT) type line of criti- B
cal points belowT ., quite similar to the 2DXY model. v

where thesi(l) and si(z) are the spins of two copigseplica

of the realization7 and the sum is over all sites. The overlap
probability density is given by the average over the probabil
ity densitiesP7(q) of all realizations

where N 7 is the number of realizations used ahds the
lattice size. There is a long history of MC studies of this
model (see[12—-19 and references therginwhich have led
to a wealth of information. Here we introduce only two re-
sults.

0.2304), Q=0.99 for T=1. (6)

In our context, this is of interest in view of the description Here the numbers in parentheses denote error bars with re-
of this model by Eq.1) with a==/2 [9]. Note, however, spect to the last digits an@ is the goodness of fit. FoOF
that one of the most recent EAI investigatidd®] claims to  =1.14 we plot in Fig. 2P'(q')=P.(q)/L?"" versusq’
rule out the KT scenario. =L#"q and see that the five probability densities collapse
At T=1.14 we generated 8192 realizations for4, 6, onto a single curve. To enlarge the scale, we restrict our-
and 8; 1024 realizations fdt=12; and 256 realization for selves to th&=0 range. Therelative) error bars of the lines
L=16. Figure 1 shows our normaliz&{q) probability den- in Fig. 2 are therelative) error bars of Fig. 1. Not to obscure
sities. Due to the MC method, the error bars of neighboringhe agreement, we include only one representative error bar
entries are strongly correlated. This results in smooth curvefor each lattices size,=16,12 . .. from right to left in Fig.
of varying thickness, which represents the error. The pearl o2 (for L<8 they are barely visible on the scale of the figure
these data are the tails of the distributions, whiébr L For our data alf=1 a similar analysis is already given in
=16) are accurate down to 18P (for |g| towards 2. This  [18]. The small discrepancy in the estimates of the critical
is achieved by simulating the system in & ependent exponents/v (0.255 in[18] instead of 0.23Dis due to using
statistical ensemble for which the distribution@¥alues is  different methods of data analysis. Note that the error bars of
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the B/v estimateq5) and(6) reflect only the fluctuations of
our two-parameter fit and addition&dystemati¢ errors are
expected from corrections to scaling.

Our aim is to relate the probability distribution of Fig. 2 to
the first asymptote of extreme-order statistics @&g. In the
neighborhood ok=0 the expansion

x—e*=—1-3x2+0(x3) (7)
holds. To get the position of the maximum Bf(q’) right,
we have to choose

X:b(q,_qunax)! (€S)

whereq;,.. is theq’>0 argument for which the probability
densityP’(q") takes on its maximum value. We then have to
find an exponenta to reproduce the data for=b(q’
—Opma=>0. For x=b(q’ —q/,,0<0, however, the behavior
(1) cannot be quite correct. The reason is that xke0
asymptotic behavior

exflax]=exgdab(q’ —amay] 9
predicts, on a logarithmic scale, a constant slapeith de-
creasingx, while for the data of Fig. 2 the slope levels off
and atq’ =0 (i.e., x=—bqy,,,) the derivative ofP’(q’) be-
comes zero, what is impossible with E§). A simple solu-
tion is to replace the first on the right-hand side of Eql)
by ctanh/c), wherec>0 is a constant. For smal the
Taylor expansion(7) still holds, while for large|x| the hy-
perbolic tangent functior tanhf/c) approaches quickly-c
[note that in the limitc—cc the original form(1) is recov-
ered. For x— —o (practically already afjy’=0) the thus
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FIG. 3. Tails of the rescaled overlap probability densities of Fig.
2:IN[P’(q")] versusq’. For T=1.14 we show in the lower part the
deviation 20In Pig(q’) —In Pf(q’) = AIn Pig(q’)] of someL =16
data from the fit, shifted downwards by 300.

T=1),aandb by theq’ >q/,,tails of the distribution and

by the value atq’=0. This allows to iterate to our final
estimates

a=0.44840) for T=1.14, (12
and

a=0.44637) for T=1. (12
The nonuniversal coefficients areb=5.35(11), c

=3.37(41),C=7.55(88) forT=1.14, andb=8.23(17),c
=4.48(43),C=16.8(2.2) forT=1. The error bars rely on a
jackknife analysis.

For T=1.14 our best fit to Eq(10) is already included in
Fig. 2. To demonstrate its quality we plot in the lower part of

modified Gumbel distribution becomes constant. Thereforethe figure the deviation from the fit foia subset gfthe L

the symmetric expression f&?'(q’) is obtained by multi-

=16 data. Good consistency between the data and the fit is

plying the above construction with its reflection about thefound over the plotted range of .

g’'=0 axis

b
Ctanl‘( + E(q’—q,’na)))

J

b
e 2z

Of course, the important largebehavior of Eq(1) is not at
all affected by our manipulations.

The calculation of the parameteasb, ¢, andC is done by
using the logarithm of Eq(10). Starting values are deter-
mined by the following parts of the distributiol© by the
height of the peak ag’ =q/,,, (now off the maximum loca-
tion by a tiny shift which can be neglected; in the fits we
usedq,,=1.135972 forT=1.14 andq;,,=1.115056 for

P’(q’)zCexp[a

—exp[+b(q" — qfna)]

xexp{a

—exd —b(q" + Uz ]

(10

In Fig. 3, we follow the tails of our distributions by plot-
ting IN[P’(q’)] versusq’ for q'=1.5. BesidesT=1.14, the
results forT=1 are also included in this figure. On the scale
of Fig. 3 the error bars are not visible. As in Fig. 2, we
indicate the accuracy of the=16 data forT=1.14 in the
lower part of the figure. Figure 3 exhibits the finite-size ef-
fect, due to which, foig close to 1, the smaller lattices un-
dershoot the larger ones. It is quite clear that something as
this has to happen, because the data from each lattice size
terminates atj=1, whereas Eq(10) has no corresponding
singularity. When calculating our fit parameters, we take this
into account by restraining our use of data ¢v<2,
In[P'(q’')]>—43.4 for theT=1.14,L=16 lattice, and to
q’'<1.62, InP’(g')]>—25.6 fortheT=1,L=12 lattice. The
agreement of our fits with those data stretches then over con-
siderably larger ranges. Statistically significant discrepancies
of the L=16 data with the fit begin only around[F'(q’)]
=—200 . Discrepancies of the=1, L=12 lattice with the
fit are encountered around[P{(q')]=—35. However, the
T=1.14, L=12 data deviate already around[®{q')]=
—10 from theL =16 data. This is possible, because correc-
tions to theL.%3'2 scaling factor are not traced by the accu-
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racy of our datdin particularL =16 has low statistics due to limits only small parts of the tails of our distributions could
computer time limitations Therefore, it is not entirely clear be covered.

whether the large range, which we find for the agreement of In summary, we have presented strong numerical evi-
the fit with ourL =16 lattice, is to some extent a statistical dence that th_e Parisi overlap distribution of the EAl model
accident. Taking it at face value, we have the remarkabl&an b€ described by EGL0). The excellent agreement over
range of 200/In(10%87 orders of magnitude. many decades suggests a deep relation to simple, but funda-

. . - mental statistical properties, presumably also present in
Our coefficienta differs from the 2DXY coefficient of many other correlated systems. The detailed relationship be-

Bramwellet al.[9], a= 7/2. This means that the EAl and the yeen the EAI model and extreme-order statistics remains to
2D XY models are certainly in quite different universality pe investigated and it is certainly a challenge to extend the
classes of extreme-order statistics. However, the fact thagork of Bouchaud and Mgard[11] to the more involved

both distributions can be described by it at all might help toscenarios of the replica theory. On the other hand, it could be
explain the observed similarities. Our temperatlirel is  that replica symmetry breaking is not the driving mechanism
below the criticalT,, but with our lattice sizes it appears ©Of the EAI model phase transition and that our observations

impossible to resolve the question, whether the here-reportedf€ rooted in general relatiop8] between extreme-order sta-
behavior reflects the existence of a critical line befGwor tistics and certain universality classes of correlated systems.

just the closeness of=1 to T.. Before comparing to We would like to thank Framais David and Andrévorel
extreme-order statistics, W&8] tried to fit theq>qnatails  for discussions. This research was in part supported by the
of our distributions to the theoretical predictions that haveU.S. Department of Energy under Contract No. DE-FG-
been made21-23 based on the replica mean-field ap- 97ER41022. Most numerical simulations were performed on
proach. None of these fits was particularly good and evetthe T3E computers of the CEA in Grenoble and of the NIC in
when pushing the adjustment of free parameters to theifuich.
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