PHYSICAL REVIEW E, VOLUME 64, 036120
Softening of first-order transition in three-dimensions by quenched disorder
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We study by extensive Monte Carlo simulations the effect of random bond dilution on the phase transition
of the three-dimensional four-state Potts model that is known to exhibit a strong first-order transition in the
pure case. The phase diagram in the dilution-temperature plane is determined from the peaks of the suscepti-
bility for sufficiently large system sizes. In the strongly disordered regime, numerical evidence for softening to
a second-order transition induced by randomness is given. Here a large-scale finite-size scaling analysis, made
difficult due to strong crossover effects presumably caused by the percolation fixed point, is performed.
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The influence of random, confining geometries on first-both regimes in the last ten yedi®,9], including approxi-
order phase transitions has been the subject of exciting exnate analytic treatments, MC simulations, transfer-matrix
perimental studies in the past few years. The case of thealculations, and high-temperature series expansions. Among
isotropic to nematic transition aiCB liquid crystals con- others al_so quite intricate problems such.as_self-averagmg
fined into the pores of aerogels consisting of multiply con-and multifractality have recently been studied in some detail

nected internal cavities has been particularly extensivelygg]'

) ) . . In 3D, to date only the Ising model with site dilution has
studied and led to spectacular results: The first-order transSiaan studied extensivelit0]. In accordance with the Harris

tion of th_e corresponding bulk liquid crystal is.drastically criterion the presence of random disorder was found to
softened in the porous glass and becomes continllduan  modify the critical exponents to values close to
effect that was not attributed to finite-size effects but rather=0.6845), y/»=1.9§3), andB/»=0.5198). Concerning
to the influence of random disorder. the influence of random disorder on first-order transitions,
The first attempt to reproduce such a softening scenarieven less is known in 3D. Apart from the exploratory work
using Monte CarldMC) simulations was reported by Uzelac [11] of Uzelacet al.[2], only the site diluted three-state Potts
et al. [2] who studied a three-dimension@D) g-state Potts model, which in the pure 3D case has a very weak first-order
model with spin variable@akingq=3 and 4 states per spin transition[12], has recently been studied via large-scale MC
located inside the randomly connected pores of an aerogsimulations[13]. This study led to the conclusion that the
modeled by diffusion-limited cluster aggregation. Although critical exponentr governing the scaling behavior of the
in experimental studieg3] commonly random fields or ran- correlation length is compatible with that of the 3D site di-
dom uniaxial anisotropies are suggested to explain the softuted Ising model, whereas thg exponent is definitely dif-
ening of the transition, the random disorder chosen in Refferent.

[2] is coupled to the energy density and thus more akin to The purpose of this paper is to p_re.sent nume(ical evidence
bond dilution. for softening of the transition when it &ronglyof first order

The qualitative effect of quenched random bond disorde({n the pure system, in order to be sensitive to disorder ef-

on second-order phase transitions is well understood throu fets- The p_arad|gm in 3D is the qu'State Potts model, since
he correlation length at the transition temperature of the un-

perturbed system is small enough=3 in lattice spacing
units [14]) to allow simulations of significantly large sys-

the Harris relevance criteridd], and a beautiful experimen-
tal confirmation was reported in a low-energy electron dif-

fraction investigation of a two-dimensiondRD) order- o ¢ "Eor the pure 3D five-state Potts model the first-order
d'SO“.’?f transition [5]. For systems with a _flrst—order transition is already too strongl4]. In the following we,
transition in the pure case, randomness generically softeRferefore, consider the four-state bond diluted Potts model on
the transition and, under certain circumstances, may evefimple-cubic lattices of siz&= L3 with periodic boundary
induce a second-order transition according to a picture firs¢ongitions. The Hamiltonian of the system with independent,

proposed by Imry and Wortig5]. o ~ quenched random interactions is written as BH
In 2D, the natural candidate for theoretical |nvest|gat|ons:2(ij)Kijgm ». where the spins take the values;
: i

is theg-state Potts model, since in the pure case this model is_ 4

exactly known to exhibit regimes with first- and second-(; ;) The coupling strengths are allowed to take two differ-
order transitions[7], c_Jependmg on the value di. W|t_h ent valuesk;; =K=J/kgT and 0 with probabilitiep and 1
quenched, random disorder, many results were obtained in ; respectively. The order parameter for a given realization
of theKj; is defined by the majority orientation of the spins,
m=(u), where u=(0dpma—1)/(q—1) and ppay is the
maximum value of the density of spips, in theq=4 pos-
sible spin states. The thermal average over the MC iterations

...,4 and the sungoes over all nearest-neighbor pairs
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is indicated by brackets - - ), and the physical quantities are

then averaged over disorder realizations, ews(u). For =~~~ mean field wransition temperature !
. . . e . 1.5 - —— Spline fit to data b

each disorder realization the susceptibility is defined as usue OL=10

via the fluctuation-dissipation theoremy=KV(({u?) OL=16

_ < M>2) ) B percolation point

The present MC simulations consist of two parts. First, a
scan of the dilution-temperature plane in order to determine.
the phase diagram, and second, a large-scale finite-size SCiy
ing (FSS study atp=0.56 up toL=296 in the dilution re- o
gime exhibiting second-order transitions. The spin update:
were performed with the cluster-flipping methpib] in the 0.5 -
Swendsen-Wang formulation that turned out to be better be )
haved than the Wolff single-cluster version for high dilutions
(small p), where small clusters connected by nonvanishing 7
bonds are more likely to appear. We made sure that, by ad 0
justing the length of the runs, at least ten tunneling events
between the two coexisting phases of the pure system (
=1) were observed up to lattice sike=16. To improve the FIG. 1. Phase diagram of the bond diluted four-state Potts model
accuracy, for weak dilutionsp( between 1 and 0.68vhere in 3D. The solid line is a spline interpolation to guide the eye, and
we obtained evidence for first-order transitionS, we also useﬂ'le dashed line shows the transition line within a simple mean-field
multicanonical algorithm§16]. For the determination of the argumentTi(p)=pT(1).
maxima of observables we applied standard histogram re-
weighting techniques in order ?c? extrapolate the resglts oveﬁ:ateol k_)_etweerp_=_0.68 and 0.84: Th_e shape of the energy
a temperature range around the simulation point, pro_bab|I|ty densmg; as well as the Binder cumullants suggest

2. o a first-order transition ap=0.84 and above while a clear

At each probabilityp and for each realization of the ran-

. second-order signal is observed@at 0.68 and below. For
dom Cpupllngs, between 3610° gnd _30< 10° MC sweeps the investigation of the critical properties in the second-order
per spin were performed, resulting in at least Z&0nos}

: ) " regime we have chosen a dilutip= 0.56 where the correc-
independent measurements of the physical quantities for the,ns 1o scaling are seemingly relatively small, since the ef-

Iarges.t lattice size considered. This turned out to be S“fﬁCie%ctive transition temperatures corresponding to the suscep-
for reliable thermal averages. For the average over disordgjplity maxima remain almost constant in the range of sizes
realizations, between 2000 and 5000 samples were genef=| <16 used for the determination of the phase diagram.
ated. In order to convince ourselves that fpr=0.56 the tran-
The phase diagram is determined from the locations of theition is indeed of second order, let us first consider the av-
maxima of the average susceptibiliky,,,, obtained for sys-  erage probability densities of the ener§yge). In Fig. 2 their
tems of increasing sizes up to=16. Theoretically we ex- shapes close tH ., are depicted for various lattice sizes up
pect that the transition remains of first order in the regime ofo L =96. We see that the system exhibits for small sizes two
low impurity concentrations. For increasing concentrations a
regime of second-order transitions should appear frdtri-a 120 : 0.006 ' '
critical concentration until the percolation threshold is
reached where the transition vanishes altogether. After this
percolation threshold, no ordered phase can exist at any finit

p—y
T

0.8 1

9

temperature. Two points are known in the-kgT/J plane:

The transition temperaturd; of the pure system14] -

keTi(p=1)/J=1.590 76, anckgTy(p=p.)/I=0 at the per-  |g" .
6 L

colation thresholg.~0.2488. As can be inspected in Fig. 1,

the temperatures of the susceptibility maxima for different
lattice sizes are very stable and already fof Bpins an £
accurate transition line is obtained. Also shown is the result
of a simple mean-field argument taking into account the av-

erage number of neighborkgT,(p)/zJ=const, where the
constant is chosen such thBt of the pure system is repro- 0 ‘
duced. This leads to a simple linear approximation of the 0.85 0SS s 425
transition line, kgT;(p)/J=1.590 76< p, which is surpris- ¢
ingly accurate over a significant range pialues. FIG. 2. The probability density of the energy pt=0.56 for

By monitoring the FSS behavior of various thermody- sizesL = 16, 20, 25, 30, 50, 64, and 96, reweighted to the tempera-
namic quantities as well as th@seudo} dynamics of the ture where the two peaks are of equal height. The inset shows the
update algorithm, we estimate the tricritical point to be lo-associated effective interface tension.

(e) e
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' TABLE |. Linear fits for ymay, (dxIn E)Kmax' andﬁKmax.
3 ® p=056
107 | ----- percolation L min L max ylv x’ld.o.f
—— random fixed point
35 96 1.50014) 0.044
10° | = 1 40 96 1.50217) 0.054
7 50 96 1.50627) 0.065
;'. :.-’ ”’_, max
10" ,,"‘: ,f"‘{ 3 L min L max v Xz/d-o-f
,;.' /;.‘”
/,x’ 35 9 1.36213) 1.011
10° |- | 40 96 1.35816) 0.887
e S _ 50 96 1.33(25) 0.419
-._‘.-»”"‘--ou- mK
Rl Sy max
o | \\_ L min L max Blv Xz/d'o'f
10 100 35 926 0.59213) 2.778
L 40 96 0.60815) 2.145
FIG. 3. Finite-size scaling behavior of the susceptibility, the o0 %6 0.64%24) 0.311

magnetization and oflin m/dK at Kmax (the quantities have been

ehasor vl s S ey sty e €20ONEN. o1 the magnetization s cleary not et slable. We

S i P vy 9 oy Pelherefore also considered the FSS behavior of higtear-
colation fixed point, and above a crossover length scale it reaches a . = )
new (random) fixed point. mal) moments of the magnetizatiodu"), which should

scale with a dimensiomB/v. The results for the first mo-

distinct peaks that clearly collapse into a single peak whefnents exhibit, however, again much stronger corrections to
one approaches the thermodynamic limit. This is preciselyscaling than we observed fgror d«In m, leading to our final
what is expected at a second-order phase transition, while iestimate of3/v=0.65+0.05.

the case of a first-order transition the double-peak structure From the log-log plots of the three quantities in Fig. 3 one
should persist for all sizes and, in fact, should become evepan clearly observe a crossover from a percolation-type be-
more pronounced when the system size increases. Physicallyavior at small sizes, characterized by the exponght$

a two-peak structure would reveal the presence of two phased v=2.05, 1b=1.124, andB/v=0.45, towards a new re-

at the transition temperature, and this coexistence is the chagime at large sizes, which presumably corresponds to the
acteristic feature of a first-order transition. More quantita-random fixed point, with exponents as given above. The nu-
tively we have confirmed that the effective interface tensiomrmerical evidence for this interpretation is quite striking, but
ooq derived from the wusual relationP /P mnax—exp
[—20,4(L)L971] vanishes in the infinite-volume limit; see
the inset of Fig. 2.

Our final goal is a quantitative characterization of the
critical behavior by providing estimates for the critical expo-
nents of the transition. To this end we have performed aX
standard FSS analysisat 0.56. As can be inspected in Fig. s

3, the corrections to asymptotic FSS f?phax seem to be- 40
come quite small above=30. The data are thus linearly 3¢
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fitted toa, L " for L in the range4. nj,>30 toL =96, and 20 ey
X : : s
the resulting exponents are collected in Table I. Selecting the10 L&z22 5

fits with the smallest chi-squared per degree of freedom,©
x%/d.o.f, we take as the final result the lines in bold face,

e.g.,y/v=1.50+0.02. The quantityyIn m gives an estima-
tion of the exponent, (dkiIn H)KmaxocLl"’. Here our analysis
leads to an estimate of 4#1.33+0.03 or »=0.752
+0.014, in agreement with the stability condition of the ran-

dom fixed point ¢=2/D=0.665...) andsignificantly dif- FIG. 4. Plot of they? deduced from linear fits Of¢maxL)
ferent from the estimate for the site diluted 3D Ising modeI:aXLy/»(lJr b,L~“) in the range 25L<96. The exponents are

[»=0.684(5)]. The same procedure was applied to the magfixed parameters and the amplitudes are free. The base plane gives
netization evaluated at the temperature where the susceptibthe ranges of variation of the exponents: 52gv<1.75 and 0

ity is maximal. Judging the values qf/d.o.f would lead to  <w<5. A cutoff at y2=50 has been introduced for clarity of the
the result given in bold face in Table |, but the effective figure.

1.25
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with the present system sizes we can of course not confeur-state bond diluted Potts model we obtaii@dhe phase
pletely rule out the possibility of corrections to scaling, in diagram in thep-T plane in very good agreement withes-
particular since for the 3D disordered Ising model it is well caled mean-field theory(b) the approximate location of the
known that such corrections at the random fixed point ardricritical point aroundorcp=0.7§8), and(c) at the dilution
strong (with a correction-to-scaling exponent around  P=0.56 clear evidence for softening of the rather strong
=0.4). In order to investigate this question for the 3D four-first-order phase transition in the pure case towards a con-
state Potts model, we tried to fit the physical quantities to thdinuous transition with estimates for the critical exponents of
standard expression, e.@,L”[1+b,L~“+---], includ- ~ »=0.752(14), ¥/»=1.502), y=1.134), B/v=0.655),

ing a subdominant correction-to-scaling term. Since four-2"dB=0.495). These are clearly different from the values

parameter nonlinear fits are notoriously unstable, we perf©r both the 3D disordered Isind»=0.6845), y/v

formed linear fits where the exponents are kept fixed and” 1.9635)] and thethree-state Potts modghb=0.69((5),
only the amplitudes are free parameters. In Fig. 4, we show g/v=1.9224)] models.
3D plot of the totaly? for the susceptibility fits as a function We gratefully acknowledge financial support by the
of y/v and w. We observe a clear, stretched valley, whichDAAD and EGIDE through the PROCOPE exchange pro-
confirms thaty/ v is close to 1.5, but obviously this does not gram. C.C. thanks the DFG for financial support through the
allow any reliable estimation of the correction-to-scaling ex-Graduiertenkolleg “Quantenfeldtheorie” in Leipzig. Work
ponentw. The same procedure forigives qualitatively the  partially supported by the computer-time Grants Nos. hlz061
same picture and confirms our previous estimate of 1/ of NIC, Juich, C2000-06-20018 of the Centre Informatique
=1.33. ForgB/v, on the other hand, thg? landscape turns National de [I'Enseignement Supeur (CINES), and
out to be very flat and extremely sensitive to the fit range. C2000015 of the Centre de Ressources Informatiques de
To conclude, from large-scale MC simulations of the 3D Haute Normandi€CRIHAN).
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