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Resampling schemes in population annealing: Numerical and theoretical results
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The population annealing algorithm is a population-based equilibrium version of simulated annealing. It can
sample thermodynamic systems with rough free-energy landscapes more efficiently than standard Markov chain
Monte Carlo alone. A number of parameters can be fine-tuned to improve the performance of the population
annealing algorithm. While there is some numerical and theoretical work on most of these parameters, there
appears to be a gap in the literature concerning the role of resampling in population annealing which this work
attempts to close. The two-dimensional Ising model is used as a benchmarking system for this study. At first
various resampling methods are implemented and numerically compared. In a second part the exact solution of
the Ising model is utilized to create an artificial population annealing setting with effectively infinite Monte Carlo
updates at each temperature. This limit is first performed on finite population sizes and subsequently extended
to infinite populations. This allows us to look at resampling isolated from other parameters. Many results are
expected to generalize to other systems.
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I. INTRODUCTION

Without doubt the enormous increase in computing power
over the past decades has paved the way to tackle ever more
challenging problems. In parallel to this explosion in raw
computing power, the design of efficient algorithms and their
further refinement have turned out to be crucial for solving
many hard computational tasks. One class of such prob-
lems requires the simulation of complex systems with rugged
free-energy landscapes, such as spin glasses, polymers, and
frustrated systems [1]. In the recent past it has been shown
that the population annealing (PA) framework can be rather
successful in treating the aforementioned systems [2–5].

PA is a simulation framework in which a population of
R replicas, i.e., R configurations of the model under study,
is collectively cooled from an initial high temperature to a
final low temperature. Replicas evolve independently except
at each temperature step where the population is reweighted
and resampled (see Sec. II A for details). Typically, Markov
chain Monte Carlo (MCMC) is used to evolve replicas be-
tween temperature steps but any update (including molecular
dynamics) which is suitable for the studied model may be
used [4,5]. Each time the temperature is lowered, replicas
acquire an importance weight resulting from the change in
temperature. Resampling, the subject of this study, in essence
then is the “translation” of real-valued weights to integer num-
bers of copies to be made of each replica as the temperature
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is lowered to again evenly distribute the weight among all
members of the population.

Over the past decade and a half the increase in computing
power has no longer translated into an improvement in single
core performance but rather a constant increase of the number
of computing cores available. PA is almost trivially parallel
and has no theoretical limitations on the level of parallelism
[6,7] which means it is well suited to run on modern com-
puting hardware that is becoming more and more parallel.
Parallelizability is perhaps the unique selling point for PA
over related approaches with otherwise similar performance
[8]. For instance, a somewhat similar algorithm is parallel
tempering [9] for which, however, the potential degree of
parallelism is rather limited [10].

Note that without weights and resampling PA essentially
reduces to performing R independent simulated annealing
(SA) runs [11]. Keeping track of the weights is necessary
if correctly weighted thermal averages are to be taken over
the population (which is normally not the focus of atten-
tion in simulated annealing) [12]. However, if weights are
never rebalanced down to low temperatures, then few replicas
will carry most of the weight, such that most computational
resources are spent on replicas that do not contribute to
measurements [13]. Thus, resampling contributes toward the
ongoing task of equilibration and importance sampling of the
system.

Although it is well understood that resampling is a crucial
part in the PA framework [11] and despite the fact that numer-
ous different resampling schemes have been used in PA in the
past [2,3,14], to the best of our knowledge, the effect of the
chosen resampling method on the quality of the data obtained
in PA has not yet been studied systematically. In the present
work we attempt to fill this gap. Besides providing guidance
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regarding the question which method is preferable, we quan-
tify the noise that enters simulations through resampling
and thus identify scenarios in which the chosen resampling
method matters most, thus revealing a tight connection be-
tween resampling and the temperature schedule.

The rest of this paper is organized as follows. In Sec. II
we describe the PA algorithm as well as the different resam-
pling methods we consider. Section III contains an outline of
the simulation details, in particular the quantities we use to
compare the different methods. Our results are split into two
parts, presented in Secs. IV and V. In the former we discuss
numerical results from PA simulations using various resam-
pling methods and otherwise constant parameters, while in
the latter we study the effect of the chosen resampling method
in well-equilibrated systems using the perfectly equilibrated
Ising model as an artificial example. Finally, Sec. VI contains
our conclusions.

II. ALGORITHM

A. Population annealing

As already mentioned above, PA is an algorithmic frame-
work in which a population of replicas is sequentially cooled.
Each temperature step is followed by a population control
move. Finally, to additionally equilibrate the system, one
also performs a number of single-replica MCMC moves at
each temperature. Through the temperature steps each replica
k = 1, . . . , Ri at temperature step i acquires a weight W (i)

k ,
and these weights are rebalanced through resampling. The
algorithm can be summarized as follows:

(1) Initialize the population of R replicas at the starting
inverse temperature β0 = 0. In some cases a nonzero inverse
temperature has to be chosen [5]. Set iteration counter i ← 0.
Set all weights W (i)

k ← 1.
(2) Make an inverse temperature step βi → βi+1 unless the

stopping inverse temperature βs is reached, i.e., unless βi �
βs:

(a) Calculate the modification of the (unnormalized)
Boltzmann weights W (i)

k for each replica k with energy Ek

through the temperature change, i.e.,

W (i+1)
k = W (i)

k e−�βEk , (1)

where �β := βi+1 − βi is the inverse temperature step.
(b) Resample the population according to the computed

weights W (i+1)
k , that is make on average

τk = RW (i+1)
k

/
Ri∑

j=1

W (i+1)
j (2)

copies of replica k, where Ri is the population size at βi.
Set all weights W (i+1)

k ← 1.
(c) Increment the iteration counter, i ← i + 1.
(d) Perform θ MCMC sweeps on each replica.
(e) Calculate estimates for observables through popu-

lation averages, i.e.,

Ô(i) =
Ri∑

k=1

O(i)
k W (i)

k

/
Ri∑

k=1

W (i)
k . (3)

(f) Goto (2).

The three major parameters that can be adjusted to op-
timize PA performance are the (target) population size R,
the number of updates in the equilibration routine θ and the
inverse temperature step �β. Some guidelines for their choice
have previously been discussed by some of us [11]. In essence,
one should choose θ large enough to ascertain a sufficient
degree of equilibration if an efficient MCMC algorithm is
available and put the remaining computing resources into
choosing a population size as large as easily feasible, typically
of the order of at least a few thousand replicas. The anneal-
ing schedule {βi} is recommended to be chosen adaptively
[11,14,15].

Note that when the weights W (i)
k are reset in every iteration

(as is the case here), then they can be absorbed into the
expression for τk , i.e.,

τk = Re−�βEk

/
Ri∑

j=1

e−�βEj . (4)

In this case, population averages can simply be calculated
as Ô(i) =∑Ri

k=1 O
(i)
k /Ri. More generally, instead of resetting

weights to unity, one can resample such that weights after
the resampling are set following a rule Wk ← g(Wk ) for some
g(x), e.g., g(x) = √

x (see ch. 11.3.1 in Ref. [16]). Such
choices amounting to a trade-off between importance sam-
pling and increased correlations in the population will not be
considered further in the present paper, however.

B. Resampling methods

We now turn specifically to the resampling procedure of
step 2(b) in the algorithm. It is a random process that is geared
toward removing the imbalance among the replica weights
computed in step 2(a) which is a consequence of the variation
in configurational energy. Equation (4) only determines the
expected number of copies, i.e., if r (i)

k is the number of copies
made of replica k at temperature step i, then we demand that〈

r (i)
k

〉 = τ
(i)
k . (5)

One hence has considerable freedom in choosing the distribu-
tion of r (i)

1 , . . . , r (i)
Ri

as only its first moment is fixed. In total,

the Ri configurations are resampled into Ri+1 =∑Ri
k=1 r (i)

k
replicas [17] such that on average each replica k is copied
τk many times; as a result, Ri+1 may differ from the target
population size R. In fact, we will distinguish between meth-
ods that preserve a constant population size throughout and
those which have a fluctuating population size. On distributed
architectures the former may be desirable as they allow to
guarantee that every compute node has the same number of
replicas. The (resampled) Ri+1 configurations then carry equal
weights W (i+1)

k = 1. In the following we will first discuss
the methods with fixed and then the ones with fluctuating
population size. Note that some of the methods with constant
population size we discuss here have been studied previously
in the context of particle filtering [18].

For fixed population size the distribution P(r (i)
1 , . . . , r (i)

Ri
)

does not factorize and hence the set {rk} has to be drawn at
once. For a full mathematical description of such methods we
refer to ch. 4.3.1 of Ref. [16] as well as Ref. [19], and we will
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FIG. 1. Visualization of various population-size preserving resampling methods. Colored boxes correspond to different replicas k and their
lengths are proportional to τk . The number of copies of replica i is determined by the number of arrows in (colored) box k. The resampled
population is shown at the bottom for each method. The algorithms for each method are explained in the main text. (a) multinomial, (b)
systematic, (c) stratified, and (d) residual.

here only provide an algorithmic explanation of the following
approaches,

(a) multinomial resampling,
(b) systematic resampling,
(c) stratified resampling, and
(d) residual resampling.
To the best of our knowledge, this is the first time that

population-size preserving methods other than multinomial
resampling are studied in the context of PA. Previous work
[2,5,20] always relied on multinomial resampling when re-
quiring a constant population size.

The methods can best be explained through the geometric
illustration provided in Fig. 1. The desired number of copies
τk for each replica k is visualized by horizontal stacked bar
charts. By design the τk’s add up to R, as is indicated by the
double-arrow line of length R and the grid of unit squares.
Each method (with the exception of residual resampling) can
then be explained by a protocol of placing R arrows at random
on the interval [0, R]. The number of arrows falling onto a
colored box with length τk then determines the number of
copies made, rk . Finally, the bottom bar shows the population
after resampling.

In multinomial resampling the position Ui of each of the
R arrows is chosen uniformly at random from the interval
[0, R]; see Fig. 1(a). Hence, the Ui’s appear to be out of

order as compared to systematic and stratified resampling.
Formally, this corresponds to drawing from a multinomial
distribution with R trials, R mutually exclusive events and
event probabilities p1, . . . , pR equal to τ1/R, . . . , τR/R as in
Eq. (4). In systematic resampling [see Fig. 1(b)] the position
of the first arrow U1 is drawn uniformly at random from
the interval [0,1] (first square). The positions Ũ2, . . . , ŨR of
the remaining R − 1 arrows are given by Ũk = U1 + k − 1.
Remarkably, this method only uses one random number for
the resampling of the population, as is illustrated by the use of
Ũk instead of Uk and the dashed arrows as well as the lighter
color in Fig. 1(b). Similarly, in stratified resampling [see
Fig. 1(c)] only one arrow is placed per square. However, here
the arrows are not spaced equidistantly but rather placed with
uniform probability on each square, i.e., Ui ∼ U ([i − 1, i]).
Last, in residual resampling [see Fig. 1(d)] at first each replica
is copied �τk� times, where �x� denotes the largest integer
smaller than or equal to x, i.e., rounding down. The population
is brought to its original size by multinomially drawing from
the residuals, that is by performing multinomial resampling
where τk is replaced by τk − �τk�. Note that the sum of the
residuals is a random variable and can take any nonnega-
tive integer value up to R − 1. Hence, residual resampling
uses less random numbers than multinomial and stratified and
the actual number is a random variable. In fact, instead of
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multinomially sampling the residuals one may choose to use
the systematic or stratified resampling method instead. This
is then commonly referred to as systematic residual, respec-
tively, stratified residual resampling. Here, we only discuss
(multinomial) residual resampling but extensions to different
resampling methods are straightforward.

Clearly, all methods shown in Fig. 1 distribute R arrows
and thus the resampled population is guaranteed to have the
target size. Additionally, in all methods the expected numbers
of arrows in each colored box (i.e., per replica) is proportional
to its size, i.e., τk , and hence the original constraint of 〈rk〉 =
τk is also satisfied.

When allowing a fluctuating population size one can use
factorized distributions for P(r (i)

1 , . . . , r (i)
Ri

), in which the num-
ber of copies rk of one replica k is chosen only based on τk of
the same replica k, i.e.,

P
(
r (i)

1 , . . . , r (i)
Ri

) =
Ri∏

k=1

P
τ

(i)
k

(
r (i)

k

)
. (6)

In this case, resampling can easily be implemented in parallel
[14] as the resampling method is completely described by a
univariate distribution Pτk (rk = j). As a consequence, the new
population size Ri+1 (i.e., the sum of all rk’s) itself becomes
a random variable. Hence, the population size fluctuates with
time. In this group we consider

(e) nearest-integer resampling [21] and
(f) Poisson resampling [3]

given by

Pτk (rk = j) =

⎧⎪⎨⎪⎩
τk − �τk� if j = �τk� + 1,

1 − (τk − �τk�) if j = �τk�,
0 else

(7)

for nearest integer and

Pτk (rk = j) = τ
j

k

j!
e−τk (8)

for Poisson, respectively.
Besides the question of whether a method preserves pop-

ulation size, the most notable difference among the above
approaches is by how much rk can differ from τk or, more
quantitatively, what the variance of rk is. As is shown in
Appendix C, it is possible (under mild assumptions) to exactly
calculate this variance as a function of τk . This quantity will
play a crucial role in Sec. V. Apart from the distributions
(a)–(f) above, any probability distribution with nonnega-
tive integer support and adjustable mean (see, for example,
Ref. [22]), such as the geometric or the Pascal distribution,
would also result in a valid resampling method, but these lead
to even larger sampling variances and hence are of no practical
relevance.

III. MODEL, SIMULATION DETAILS, AND OBSERVABLES

A. Ising model

In this work we consider the Ising model in the absence of
an external magnetic field, corresponding to the Hamiltonian

H = −J
∑
〈i j〉

σiσ j, (9)

where σi ∈ {−1, 1} are the spin variables and the sum is over
nearest-neighbor interactions only. We choose J = 1 and kB =
1 to fix units and use an L × L square lattice with periodic
boundary conditions.

Owing to the availability of exact results [23–25], this
model has become a standard benchmark system for PA
[11,14,26] and many other algorithms. In particular, this
allows for an easy way to differentiate systematic from statis-
tical errors. An additional advantage of the two-dimensional
Ising model is the availability of exact results for finite sys-
tems [24,25], particularly the exact energy density of states
[25], which allows us to separate the effect of resampling from
MCMC as we will explain in Sec. V.

B. Simulation details

We use the publicly available code from Ref. [14] to obtain
the numerical data presented in Sec. IV. This implementation
runs on a single GPU and is highly parallel. All calcula-
tions of weights, resampling [27] and measuring observables
are done in parallel, with one thread per replica. Spin-flip
updates, on which typically most wall-clock time is spent,
are further parallelized to a sub-replica level by employing
a checkerboard domain-decomposition. When global summa-
tion is needed, such as for the normalization of weights, this is
done efficiently by first calculating partial sums of each thread
block on subsets of the total population and then summing
over the partial sums by using atomic operations provided
by the CUDA toolkit. Necessary extensions of the scheme
described in Ref. [14], such as the calculations required for the
realization of the different resampling techniques discussed in
Sec. II B, were implemented in the same spirit.

The question we set out to answer is which resampling
method has the best PA performance. In principle, one may
expect this question to be decided in a trade-off between run
time and accuracy. In most practical scenarios, however, run
time in PA is vastly dominated by Monte Carlo (MC) moves
such that even for the Ising model where spin updates are
quick, resampling often takes less than 1% of the overall run
time (cf. the inset of Fig. 19 in Ref. [11]). Thus, we focus on
observables which measure the quality of the data obtained
through PA and will not compare run times.

C. Observables

The most immediately suitable quantities for judging the
performance of PA are the systematic and statistical errors. We
looked at various moments of the energy and magnetization
distributions and present here the errors in estimating the
specific heat, since the exact solution [24] allows us to readily
evaluate the systematic error and since this is where we found
the strongest differences among the resampling methods we
studied.

Another useful quantity to compare different resampling
methods is the average quadratic deviation between the ex-
pected and the actually generated number of copies, namely,
the sampling variance [28], i.e.,

SV = 1

Ri

Ri∑
k=1

(rk − τk )2. (10)
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This quantity is of particular interest as it is a direct measure of
how much additional noise enters the PA simulation through
the resampling step.

As a consequence of the resampling step replicas descend-
ing from the same replica at a previous temperature will in
general be correlated. This is illustrated by the notion of
families [21]: Two replicas a and b are said to belong to
the same family if they both are descendants of the same
initial replica k (at β0). In contrast, two replicas from different
families are guaranteed to be uncorrelated.

The authors of Ref. [21] quantify the family distribution by
the replica-averaged family size ρt ,

ρt = R
R∑

k=1

n2
k, (11)

the entropic family size,

ρs = R exp

(
R∑

k=1

nk ln nk

)
, (12)

and the number of families,

f =
R∑

k=1

min{1,Nk}, (13)

where nk (respectively, Nk) is the fraction (respectively, the
number) of replicas descending from the initial replica k. Note
that while k runs from 1 to R, most nk are zero. As is shown
in Ref. [21], these quantities are closely related to each other.
For reasons outlined in Appendix A we use a different name
for ρt than previous authors.

Since, by construction, replicas from different families are
uncorrelated, the above family quantities provide an upper
bound for the population’s correlation and thus an upper
bound for error bars. This, of course, neglects the decorrelat-
ing effect of MCMC updates and hence largely overestimates
the actual correlation [11]. Most notably we can see this in the
artificial PA setting described in Sec. V, as there by design all
replicas are uncorrelated and yet the family quantities at the
end of each simulation would suggest strong correlation, i.e.,
ρt , ρs, R/ f � 1.

Recently, Weigel et al. [11] addressed this issue and de-
veloped a method to quantify PA correlations that takes into
account the effect of MCMC updates. They observed that
correlations in a PA population are similar in nature to the
ones in MCMC time series, provided that copies of one replica
are placed adjacently in the resampled population. This is
demonstrated by the overlap correlation C(i, j) of two replicas
i and j. They show that C(i, j) in a large population only
depends on the distance |i − j|, and it decays exponentially
for large enough distance |i − j|, i.e., C(i, j) = C(|i − j|) ∝
exp(−|i − j|/τexp)—analogous to the well-known two-time
correlation C(t1, t2) ∝ exp(−|t1 − t2|/τ̃exp) in MCMC.

The authors of Ref. [11] further use a binning analysis of
observables such as energy and magnetization in replica space
to obtain error bars and show that they are compatible with
error bars calculated from independent PA simulations. From
this, a measure of effective population size Reff is defined

through

Reff(O) = σ 2(O)

σ 2
R (Ō)

, (14)

where σ 2(O) is the variance of the observable O and σ 2
R (Ō)

is the variance of its mean. The first is straightforward to
calculate and the latter can be obtained through (jackknife)
binning [29], i.e.,

σ̂ 2
R (Ō) = 1

n(n − 1)

n∑
i=1

(
O(n)

i − Ō
)2

, (15)

where n blocks are chosen large enough that bins can be
assumed to be uncorrelated and O(n)

i is the mean of the ith
bin. We will use Reff(E ) and Reff(M ) as further means to
benchmark different resampling methods.

IV. NUMERICAL OBSERVATIONS

In the following, we present numerical results for the
benchmarking quantities introduced above. All data in this
section were obtained through PA simulations using a tar-
get population size R = 20 000, the annealing schedule βi =
i/300 with i ∈ {0, . . . , 300}, θ = 5 MCMC steps at each (in-
verse) temperature (except at β0 = 0) and a linear system size
L = 64. For each resampling method independent simulations
were run and repeated for 5 000 different random number
seeds. Throughout this section, we visualize data sets by lines
connecting all points in the set. Additionally, a small subset
of the data points is shown by points (with error bars when
available). Some preliminary results from these runs were
presented in Ref. [30].

Figure 2 shows systematic and statistical errors of the spe-
cific heat. Contrary to common practice, we measure before
the equilibration routine (i.e., immediately after resampling)
as this is where the resampling-method dependent signal
should be strongest. The use of this protocol is motivated
by the fact that in target problems of PA such as models
with complex free-energy landscapes MCMC equilibration
routines are not as efficient, such that the effects of the choice
of resampling scheme will be more prominent there. If we
were to measure after the equilibration routine (as is usually
done), then all errors would be indistinguishable except at the
critical temperature due to the short autocorrelation time of
the off-critical Ising model (not shown). We use the available
exact solution [24] to estimate systematic errors, and the stan-
dard deviation of independent runs for the statistical error.
The most prominent feature in both types of error are two
spikes around criticality, cf. Fig. 2. It is seen that all methods
produce roughly comparable systematic and statistical errors,
although multinomial and Poisson resampling have slightly
stronger bias in the vicinity of the critical temperature and a
substantially higher statistical error throughout. The inset in
the lower panel shows all (statistical) errors relative to those
for the nearest-integer method. It can be clearly seen that apart
from systematic resampling all methods produce consistently
larger errors than nearest-integer resampling.

The double peak of the statistical error and particularly
the S-shape of the systematic error (which was previously
reported by two of us, see Fig. 3 in Ref. [26]) is readily
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FIG. 2. Relative systematic (upper panel) and statistical (lower
panel) error of the specific heat measured after the resampling
step for various resampling methods. The data are extracted from
PA simulations with R = 20 000, θ = 5, and βi = i/300. Upper
panel: Systematic errors hardly differ between different resampling
schemes. Lower panel: Statistical errors; colors coincide with the top
panel. The inset shows the statistical error relative to the error using
nearest-integer resampling. Away from criticality, the curves differ
significantly whereas around βc ≈ 0.44 the choice of the resampling
method appears to have little effect on the statistical error.

understood through a change in sign of the skewness of the
(exact) energy distribution (see Fig. 3): Below (above) the
critical temperature the energy histogram is skewed toward
higher (lower) energies. Consequently, as low energies tend
to be undersampled and high energies oversampled, the actual
spread of the energy histogram and thus the specific heat is
overestimated (underestimated).

As a measure of how much noise enters the setup through
resampling, we consider the sampling variance SV (see Fig. 4)
which depends directly on the resampling method of choice
and thus shows the strongest difference for the methods.
Within the measurement accuracy multinomial and Poisson
resampling have equal sampling variance. In fact, in both
cases we measure a value of 1.0 irrespective of temperature
(for reasons that will become apparent in Sec. V B). By value
they have the highest SV followed by residual, stratified,
systematic and nearest-integer resampling in that order. Sys-
tematic and nearest-integer resampling also coincide within
the given accuracy. Note that this order of methods is the

FIG. 3. Exact energy distribution close to the inverse critical
temperature βc ≈ 0.44 for the 642 Ising model. Above (below) βc

the histogram is skewed toward higher (lower) energies whereas
very close to βc the distribution is symmetric. The skewness of the
distribution as a function of β is depicted in the inset which clearly
shows a change in sign around βc.

same as that observed in the inset in the lower panel of Fig. 2.
The jumps in the SV of residual resampling can be explained
by a discontinuity of the second moment of the probability
distribution of rk for that particular method at τk = 1 (for
further detail see Appendix C 5).

Our measurements for the family quantities introduced by
Wang et al. [21], ρt , ρs, and R/ f , are shown in Fig. 5. All
quantities are monotonously increasing, with a rapid increase
in the vicinity of the critical temperature. Larger families
typically lead to a higher degree of correlation within the pop-
ulation and thus indicate worse statistics. Again multinomial
and Poisson resampling perform worst, followed by residual
resampling and then the remaining methods which produce
similar results, particularly regarding the replica-averaged
family size ρt .

Figure 6 shows the effective population sizes Reff(E ) and
Reff(M ), where E is the (extensive) internal energy of each

FIG. 4. Sampling variance as a function of temperature for dif-
ferent resampling methods. Poisson and multinomial (respectively,
nearest-integer and systematic) resampling have identical sampling
variance. The parameters are as stated in the caption of Fig. 2.
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FIG. 5. The family quantities ρt , ρs, and f as a function of
inverse temperature β for the resampling methods studied (R =
20 000, θ = 5, �β = 1/300). Top panel: the replica-averaged family
size ρt . Middle panel: the entropic family size ρs. Bottom panel: the
plain average family size R/ f .

configuration {σ j} [as given by Eq. (9)] and M is the magneti-
zation M =∑ j σ j . Both quantities are equal to the population
size R at β = 0 and show a dip at the inverse critical tempera-
ture. Thanks to the decorrelating nature of the MCMC updates
Reff(E ) recovers to the size of the population within the or-
dered phase, whereas Reff(M ) remains low due to dynamic
ergodicity breaking [11]. In each panel the inset shows the
effective population sizes compared to nearest-integer resam-
pling. This again demonstrates that multinomial and Poisson

FIG. 6. Effective population sizes Reff(E ) (upper panel) and
Reff(M ) (lower panel) in units of R. The insets show the same quan-
tities relative to the value observed with nearest-integer resampling
(R = 20 000, θ = 5, �β = 1/300).

resampling perform equally within the accuracy of our data
and poorly as compared to the other methods. Nearest-integer
and systematic resampling again show similarly good perfor-
mance followed by stratified and residual resampling in that
order. Also note that the methods which coincide in sampling
variance, i.e., multinomial and Poisson resampling as well
as systematic and nearest-integer sampling, respectively, also
perform very similarly in all other benchmarking quantities.
This indicates that the sampling variance captures the quality
of a resampling method very well.

Note that Reff(M ) for multinomial and Poisson resampling
do not reach the same value in the low-temperature regime
as the other methods do, as can be seen in the inset of
the lower panel. This shows that a poor resampling method
can amplify the correlation due to ergodicity breaking. In
fact, with increasing β the ratio of Reff(M ) for multinomial
and Poisson resampling with Reff(M ) for the nearest-integer
method decreases which suggests that for deep anneals well
below a transition temperature these two methods are unfavor-
able. Similarly, the Reff(M ) ratio for the residual resampling
method also shows a decline in the ordered phase. We expect
this observation to be of significance as ergodicity breaking
is a common phenomenon in glassy systems. Hence, when
studying such problems the multinomial, Poisson, and resid-
ual resampling methods should best be avoided.
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V. ASYMPTOTIC ANALYSIS

We now turn to an analysis of the asymptotic behavior of
resampling methods for PA simulations of the Ising model, in
particular considering the limits of θ → ∞ and R → ∞.

A. Exact sampling simulations

From this point onward, we replace the Metropolis sam-
pling of state space by an exact sampling of energies. This
is possible as the energetic density of states, g(E ), of the
square-lattice Ising model can be calculated exactly for small
to moderate system sizes [25]. Note that this is very differ-
ent from the Propp-Wilson [31] method that achieves exact
sampling of spin configurations. We used the code provided
in Ref. [25] to once calculate g(E ) for lattice sizes up to
L = 128, and stored ln g(E ) in double precision for further
use. From ln g(E ), the probability of an energy E at a given
inverse temperature β is easily obtained by computing

Pβ (E ) = exp[−βE + ln g(E )]∑
E ′ exp[−βE ′ + ln g(E ′)]

. (16)

In practice we draw from this distribution by using stan-
dard “inverse transform sampling.” The sum over all energies
contains only O(L2) terms and thus can be calculated very
quickly. Clearly, combining exact sampling with population
annealing is of no practical use as an actual simulation
method. However, for us this artificial combination is of
theoretical interest as it isolates the effect of the choice of
resampling method from the influence of imperfect MCMC
equilibration. In this setting we can study the family quantities
as well as the sampling variance whereas effective population
sizes Reff(E ) and Reff(M ), as well as the statistical and system-
atic errors of observables become trivial.

Having eliminated the effect of imperfect equilibration,
two key parameters besides the resampling method remain
that also affect the PA simulation: the (target) population
size R and the chosen annealing schedule {βi}. These are
investigated in the present section. Below in Sec. V C we
introduce the notion of resampling cost that allows us to
compare the various resampling methods independent of the
particular choice for R and {βi}.

The effect of the (target) population size on the family
quantities ρt , ρs, and R/ f is illustrated in Fig. 7 for multino-
mial resampling. It can be seen that whenever R is much larger
than ρt , ρs, and R/ f , respectively, the curves for different
population sizes R collapse. Hence, as long as the population
size is large enough, it does not affect the family quantities;
intuitively this is clear as then each family does not “feel” the
finite (population) size and behaves as it would in the limit
R → ∞. Conversely, for small R the asymptotic values of
ρt , ρs, and R/ f are underestimated. For small β the data for
all population sizes studied agree and in order of ascending
population size the individual data sets start deviating from
the R → ∞ case.

Note that compared to the results discussed in Sec. IV (see,
for example, Fig. 5) values obtained for the family quantities
here are significantly smaller. For such small θ , insufficient
equilibration (which clearly is the case for θ = 5 at least close
to the critical inverse temperature βc) becomes the main driver

FIG. 7. Family quantities ρt (top), ρs (middle), and R/ f (bottom)
as a function of inverse temperature β using inverse temperature
step �β = 0.01 and multinomial resampling. Lines connect all data
points, but to improve readability only a small subset of the data
points are shown explicitly.

of family growth resulting in much larger values for ρt , ρs

and R/ f in Fig. 5. The effect of θ is demonstrated in Fig. 8
which shows measurements of ρt for various choices of θ . For
β < βc almost all values for ρt coincide and at βc all values
for ρt exhibit a strong increase: The smaller θ the stronger the
increase in ρt is.

Turning now to the annealing schedule, Fig. 9 shows the
family quantities for a fixed population size R = 105 for var-
ious inverse temperature steps and again using multinomial
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FIG. 8. Family quantity ρt for various choices of θ . The popula-
tion size was fixed to 10 000, �β was chosen as 0.01 and multinomial
resampling was used. Lines connect all data points, but only some are
shown with explicit symbols.

resampling. The choice of R = 105 is such that the effect of
the population size being finite is negligible. At first glance,
one might guess that smaller temperature steps would result
in less family growth. However, Fig. 9 shows a very different
picture: While indeed (too) large temperature steps lead to
a big increase in family size, also (too) small steps result in
larger families than at intermediate temperature step sizes.
This shows that too small temperature steps can in fact harm
PA statistics instead of improving them. In Sec. V C this is
made more explicit through the introduction of the notion of
the resampling cost.

B. Asymptotic estimator for the replica-averaged family size

The standard method for calculating ρt is

ρt = R
R∑

k=1

n2
k = 1

R

R∑
k=1

N2
k, (17)

where nk (respectively, Nk) is the fraction (respectively, the
number) of replicas descending from replica k at β0 = 0. As

we show in Appendix B, when all rk’s are i.i.d., then

ρ
(i)
t ≈ ρ

(i−1)
t + σ 2

(
r (i)

k

)
. (18)

This relation is noteworthy as it means that ρt is expected to
increase by �ρt ≡ σ 2(r (i)

k ) irrespective of the previous value
of ρt . Note that the estimator resulting from Eq. (18) is only
correct if all the rk’s are i.i.d. Generally, this is not the case
as replicas may be strongly correlated within their families.
However, in the limit θ → ∞ this assumption becomes true
for most of the methods discussed here and approximately
correct for all of them. See Appendix B for more detail.

Using the law of total variance, σ 2(r (i)
k ) can be expressed

as
�ρt = σ 2

(
r (i)

k

) = σ 2
(
τ

(i)
k

)+ SV(β,�β ), (19)

with τ
(i)
k being the expected number of copies of a replica and

SV(β,�β ) the expected sampling variance when resampling
from inverse temperature β = βi−1 to β + �β = βi. Again,
see Appendix B for a derivation of this relation.

Note that this is not the first time ρt has been studied in
the MCMC-equilibrated regime. Reference [32] found that the
increase in ρt is approximately equal to 2ε (cf. Eq. (42) in
Ref. [32]), where ε is the proportion of the population deleted
during resampling, the so-called culling fraction. This agrees
with numerical results at high temperatures. Their calculation
uses nearest-integer resampling and approximates the number
of resampling steps k to be a continuous “time” variable, thus
assuming σ 2(τ (i)

k ) = 0. In this limit, and using nearest-integer
resampling, it is easy to show that our derived formula agrees
with Ref. [32]. However, Eq. (19) here generalizes to other
resampling methods and nonzero variance σ 2(τ (i)

k ).
The first term on the right-hand side of Eq. (19), the vari-

ance of the Boltzmann weights (which we will refer to as the
weight variance), is independent of the resampling method
whereas the second term, the sampling variance, is strongly
resampling-method-specific. Roughly, these two terms can be
understood as the two driving forces in the evolution of popu-
lation quantities in the well-equilibrated regime. In the limit of
very small �β the population is noise-driven (sampling vari-
ance dominates weight variance) and in the limit of large �β

it is weight-driven. This explains three observations in Fig. 9:
(i) In the case of large �β, ρt shows a strong increase near

FIG. 9. Family quantities ρt (left), ρs (middle), and R/ f (right) for population size R = 105 at inverse temperature steps of �β = 0.003,
0.005, and 0.01 and using multinomial resampling.
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FIG. 10. Comparison of ρt measured with the standard estimator
(17) and with the asymptotic one (18). Top: Comparison of dif-
ferent population sizes. Bottom: Comparison of different annealing
schedules.

criticality due to a large weight variance. (ii) At small �β, ρt

follows nearly a straight line as the weight variance is negli-
gible compared to the constant sampling variance (dependent
on the resampling method, see below) [33]. (iii) Last, this is
the reason why ρt is minimal for an intermediate step size. The
inverse temperature step that achieves minimal average family
size will in general depend both on the sampling variance and
on the weight distribution.

The variance of r (i)
k is straightforward to measure and thus

ρt can be estimated. The upper panel of Fig. 10 shows the
estimates for ρt for various population sizes using the standard
estimator (17) as well as the asymptotic one (18). It can be
seen that both are in good agreement as long as the population
size is much larger than ρt . The lower panel shows ρt for
various choices of �β (see also the left panel in Fig. 9), once
using the standard estimator and R = 105 and once using the
asymptotic estimator and R = ∞ (details see below). As the
population size is chosen large enough here, the agreement of
the standard and the asymptotic estimator is very good.

The reason we use the asymptotic estimator, is that
limR→∞ σ 2(r (i)

k ) can be calculated [using Eq. (19)] and thus ρt

can be evaluated [using Eq. (18)] in the limit R → ∞ which
otherwise is not possible. When resampling a population from
inverse temperature β to β + �β, τ for a replica with energy

E is given by

τ (β,�β, E ) = e−�βE Z (β )

Z (β + �β )
. (20)

In Eq. (20) we deliberately omitted a factor of R/Ri, which for
population-size preserving methods equals one and otherwise
approaches one as R → ∞. As above equation is a one-to-one
mapping from E to τ for fixed β and �β and since the energy
distribution in the d = 2 Ising model is exactly known, the
distribution of the τ ’s can easily be obtained. This allows for
straightforward computation of the weight variance, σ 2(τ ).

As for the calculation of the second term in Eq. (19), the
sampling variance SV(β,�β ), this will in principle depend
on the full set of {τk} for the entire population of Ri replicas.
For example, when using the systematic or stratified resam-
pling method, the sampling variance of replica m specifically
depends on

∑m−1
k=1 τk as well as τm itself. In the following we

denote svm = 〈(τm − rm)2〉{τk} as the sampling variance of a
specific replica m which in principle also depends on the full
set of {τk} and is related to the previously defined SV through
Eq. (22) given below. We can approximate svm as a function
of a single τm for the various methods as follows (and as in
this approximation svm only depends on its own τm we omit
the index m):

For multinomial and Poisson one obtains

svmult(τ ) = svPoi(τ ) = τ, (21a)

which in the case of multinomial resampling is only strictly
true in the limit R → ∞. Note that τ on average is always one
and thus the averaged sampling variance for the two methods
is temperature-independent (as could be seen in Fig. 4 above).
For residual resampling we find

svres(τ ) = τ − �τ� ≡ ε, (21b)

where ε refers to the fractional part of τ . The sampling vari-
ance for stratified resampling is given by

svstrat(τ ) =
{

1
3 , τ � 1,(
τ 2

3 − τ + 1
)
τ, τ < 1,

(21c)

and for nearest-integer as well as systematic resampling by

svni(τ ) = svsys(τ ) = ε(1 − ε). (21d)

For the derivations of these relations we refer to Appendix C.
From these, the averaged sampling variance for a given

β and �β can be calculated by summation over all possible
energies, i.e.,

SV(β,�β ) =
∑

E

pβi (E ) svm (τ (β,�β, E )), (22)

where the superscript m ∈ {mult,Poi,res,strat,ni,sys} refers to
the chosen resampling method. As can be seen in Fig. 11,
the SV calculated in this way is in very good agreement with
values previously obtained through MCMC simulations. Here,
the inverse temperature step was chosen as �β = 1/300 to
allow for comparison with the simulation data from Fig. 4.

Adding both terms in Eq. (19) gives rise to an estimate for
ρt in the limit of R → ∞ and for a given annealing schedule.
The lower panel of Fig. 10 shows quasiexact [34] results from
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FIG. 11. Sampling variance SV according to Eq. (22) as function
of the inverse temperature for nearest-integer/systematic, stratified
and multinomial/Poisson resampling. �β = 1/300. Dashed lines
show the simulation data from Fig. 4.

exact sampling PA compared to the calculation of ρt in the
limit R → ∞ from the exact τ -distribution which are very
compatible. Note that this calculation can be performed in
time O(L2) and in terms of wall-clock time the calculation
of the quantities of interest in the double limit θ and R → ∞
is near instantaneous.

C. Notion of resampling cost

The goal of the considerations so far was to isolate the
effect of the resampling method from that of other parameters,
namely, the number of MCMC sweeps θ , the population size
R and the annealing schedule {βi}. The θ -dependence was
overcome by taking the limit θ → ∞ and similarly, the R-
dependence was removed by taking the limit R → ∞. The
remaining dependence on the annealing schedule cannot be
removed by a simple limit as ρt at βi does not only depend on
βi but on the entire schedule up to βi.

Instead, we note that in Eq. (18) the increase in ρt , namely
�ρt = ρt (βi ) − ρt (βi−1) only depends on the two tempera-
tures βi−1 and βi. This allows us to consider ρt as a function of
�β for various β. Clearly, �ρt (for any resampling method)
will be the smallest when �β → 0. However, as we have
pointed out above (see, e.g., Fig. 10) this will not result in
the smallest possible final ρt at the inverse stopping tem-
perature βs. It is thus natural to define the resampling cost
�ρt/�β which is shown as a function of �β for vari-
ous β in Fig. 12. The resampling cost can be understood
as the cost per inverse-temperature step-width attributed to
making a certain temperature step with a certain resampling
method.

Studying this quantity reveals a very tight connection be-
tween resampling and the chosen temperature step. The two
most interesting observations from the data shown in Fig. 12
can be made in the limit of very small and very large inverse
temperature steps. In the limit of small (large) steps the second
(first) term in Eq. (19) dominates and �ρt is noise-driven
(weight-driven). Hence, on the one hand, for large steps the re-
sampling cost becomes independent of the chosen resampling
method, which is illustrated through the collapse onto the

FIG. 12. Increase of ρt per step size �β (resampling cost)
for various inverse temperatures obtained using different resam-
pling methods. For large �β (limit of weight-driven) curves from
different resampling methods coincide. For small �β (limit of noise-
driven) curves differ significantly as noise-driven behavior depends
predominately on the sampling variance SV. Top panel: nearest-
integer/systematic resampling. Middle panel: stratified resampling.
Bottom panel: residual resampling.

dashed data set from multinomial resampling included in each
panel. On the other hand, for very small temperature steps
the resampling cost becomes independent of temperature and
diverges as 1/�β for all methods except nearest-integer and
systematic resampling, where the resampling cost approaches
a constant temperature-dependent value.
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FIG. 13. Resampling cost as a function of inverse tempera-
ture β for the nearest-integer resampling method for very small
temperature steps. In the limit of �β → 0, the resampling cost ap-
proaches the mean absolute deviation of the energy distribution, i.e.,
〈|E − 〈E〉β |〉β .

At very small �β the weight variance approaches zero and
becomes negligible. When the weight variance is zero, all τk’s
are equal to one. In this case the sampling variance approaches
a constant value which for

(i) multinomial/Poisson resampling is one,
(ii) for residual resampling is 1

2 ,
(iii) for stratified resampling is 1

3 , and
(iv) for nearest-integer and systematic resampling equals

zero.
These values can be found by taking the limτ→1 sv(τ ) in

Eqs. (21a) to (21d) [35]. The nonzero limits for all but the
nearest-integer and systematic resampling methods then lead
to the divergent behavior observed in Fig. 12.

The constant resampling cost for nearest-integer and sys-
tematic resampling can be understood by Taylor expanding
τβ (�β, E ′) = e−�βE ′

Z (β )/Z (β + �β ) for small �β which
up to first order in �β yields

τ (β,�β, E ′) = 1 + (〈E〉β − E ′)�β + O(�β2), (23)

where 〈E〉β is the canonical average of the energy at inverse
temperature β. Observing that for nearest-integer and system-
atic resampling the sampling variance [see Eq. (21d)] in the
limit τ → 1 approaches |1 − τ |, one obtains

SV(β,�β ) = 〈|E − 〈E〉β |〉β�β + O(�β2). (24)

Here, 〈|E − 〈E〉β |〉β is the mean absolute deviation (MAD) of
the energy distribution, which is the temperature-dependent
constant observed in the top panel of Fig. 12. Figure 13 shows
that for very small �β indeed the values for �ρt/�β and the
MAD fall on top of each other. Note that this calculation was
carried out in the limit of R → ∞. When using the nearest-
integer resampling method we expect a nonzero sampling
variance of the order of 1/R as �β → 0. While theoretically
this leads to an increase in SV as �β → 0 for finite population
sizes, in any practical setting all other contributions to SV will
be much larger than 1/R such that this effect is negligible.

Furthermore, the crossover point between the noise-driven
and weight-driven regimes is strongly temperature-dependent

as can be best seen by looking at the position of the minimum
of the resampling cost for the remaining methods. Close to
the critical temperature the weight-driven regime begins at
much smaller �β whereas away from criticality even con-
siderably large �β are within the noise-driven regime. Thus,
if we fix �β, then we expect a strong dependence on the
resampling method away from criticality and almost no de-
pendence around βc which is in very good agreement with
our experimental observations in Sec. IV (see, for example,
Fig. 2, in particular the inset in the lower panel).

D. Optimal inverse temperature steps

For all resampling methods the resampling cost becomes
rather large when the chosen temperature step is (too) large.
Further, for all methods but the nearest-integer and systematic
ones the resampling cost also is quite large for (too) small
inverse temperature steps. This naturally raises the question
which temperature step to choose. In the following, we will
demonstrate for the example of multinomial resampling how
ρt can be reduced by using an adaptive annealing schedule
[36].

First, we attempt to find an optimal annealing schedule
with a constant �β. As is seen in the top panel of Fig. 14, the
order of the lines changes with temperature, which suggests
that the step should be chosen adaptively to minimize ρt .
For example, �β = 6.5 × 10−3 leads to the highest ρt around
β = 0.5 and has one of the lowest ρt ’s for β � 0.9.

To minimize ρt we can find the temperature step that results
in a minimum increase in ρt as a function of inverse tem-
perature (see middle panel in Fig. 14). This is done by using
the golden-section search method to find the �β at which the
resampling cost is minimal. The optimal inverse temperature
step �β∗ obtained in this way varies over almost two orders
of magnitude which shows that any linear annealing schedule
gives suboptimal results. �β∗ is small (respectively, large) at
(respectively, away from) the critical temperature suggesting
temperature steps should be chosen smaller around the critical
temperature than away from it.

Starting at β0 = 0, we choose the annealing schedule
through a simple greedy strategy, i.e., βi = βi−1 + �β∗(βi−1).
The resulting measurement for ρt corresponds to the datasets
(∗,∞,∞, m) and (∗, 105,∞, m) in the bottom panel of
Fig. 14. These are significantly lower in value than any ρt

obtained through schedules with constant �β (see top panel).
The four entries of the tuples (B, R, θ,R) describe the simula-
tion protocol used, where B stands for the annealing schedule
and R represents the resampling method.

Choosing temperature steps adaptively has been previously
suggested in Refs. [14,32]. In Ref. [14] the next temperature
is chosen such that the estimated overlap of the Boltzmann
distribution of the old and the new temperature is within a
target interval. We have measured the histogram overlap with
our annealing schedule and found (for the two-dimensional
Ising model and using multinomial resampling) that it is close
to 0.7 (except at very low temperatures) but clearly not con-
stant, see the inset in the middle panel of Fig. 14. Note that
this result strongly depends on the chosen resampling method.
For a method with lower sampling variance such as stratified
resampling we expect this value to be higher. One can show
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FIG. 14. Optimization of the annealing schedule to minimize ρt

for the case of multinomial resampling. Top panel: ρt for various
linear schedules. Middle panel: Inverse temperature step �β∗ at
which the resampling cost is minimal. The inset shows the histogram
overlap α(β, β + �β ) [14] for the respective annealing schedule as
well as α∗ = 1 − erf (1/4). Bottom panel: ρt measured using differ-
ent annealing schedules and resampling methods. The key encodes
annealing schedule, population size, number of sweeps at each tem-
perature and the resampling method as a four-tuple.

that when all target distributions are Gaussian with the same
variance, then the �β∗ that minimizes �ρt will give rise to
the overlap

α∗ = 1 − erf(1/4) ≈ 0.72367 . . . , (25)

where erf is the error function. As is shown in the inset, for
small β the measured overlap coincides with α∗.

Further, this consideration does not apply to nearest-integer
and systematic resampling as the resampling cost in these
cases approaches a constant value as �β → 0. For these
methods, a linear schedule with small enough �β will give
a final ρt close to

∫ βs

β0
〈|E − 〈E〉β |〉β dβ, which corresponds to

the (0,∞,∞, ni) dataset in the bottom panel of Fig. 14 and
which is well below ρt obtained with multinomial resampling.
As too small temperature steps might still result in higher
computational cost [14], it should nonetheless be beneficial
to use adaptive temperature steps when using nearest-integer
or systematic resampling. The datasets (αx,∞,∞, ni) show
the resulting ρt (β ) when using nearest integer or systematic
resampling with a target overlap-parameter equal to x. As can
be seen, when using the nearest-integer resampling method
an overlap as low as 0.6 still outperforms multinomial resam-
pling. Increasing x further reduces ρt . Note that in case one
chooses an overlap of 0.9 for this setup one achieves a value
of ρt that is only slightly above the minimal ρt observed.

E. System size dependence

As outlined at the end of Sec. V C, we expect the resam-
pling cost for nearest-integer resampling to be close to the
MAD of the energy, independently of the model and system
size considered. The MAD is bounded from above by the
standard deviation, yielding the inequality

MAD = 〈|E − 〈E〉β |〉β �
√

σ 2(E )︸ ︷︷ ︸
CV Ld /β2

= C1/2
V Ld/2β−1. (26)

If we further assume the energy distribution Pβ (E ) to be Gaus-
sian, then the inequality can be replaced by an equality with√

2/π [σ 2(E )]1/2 [37]. It can be shown (see Appendix D) that
the integral over C1/2

V /β has a system-size independent upper
bound. Thus, we expect ρt for nearest-integer resampling and
with small enough temperature steps to behave as

ρt ∝ Ld/2. (27)

As we expect PA to perform poorly when ρt is of the order
of magnitude of the population size R, we require ρt/R not
to grow as the system size increases. Thus, this relation is
noteworthy as it motivates choosing the target population
size proportional to Ld/2 when using the PA algorithm for
multiple system sizes (without any further assumptions on the
underlying model). Note that this is not in contradiction with
critical slowing down, as the number of sweeps θ near Tc to
achieve equilibration still has to scale as O(Lz ). In the case of
the two-dimensional Ising model, ρt hence scales proportional
to L. In Fig. 15 we show the resampling cost divided by L.
The collapse of the curves for small �β demonstrates that
�ρt scales with L for each temperature and thus agrees with
ρt ∝ Ld/2.

To follow the scaling of the histogram overlap [1], Ref. [11]
suggested to choose �β ∝ 1/L. By choosing �βL as
abscissa in Fig. 15 it can be seen that the inverse temperature
at which the resampling cost starts deviating from the MAD
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FIG. 15. Resampling cost divided by linear system size L as a
function of inverse temperature step size scaled by the linear system
size for nearest-integer and systematic resampling for different sys-
tem sizes and temperatures. Line style (respectively, color) encodes
system size (respectively, temperature). For small enough �β the
resampling cost approaches the energy MAD which for the two-
dimensional Ising model scales with L. The maximal temperature
step at which the resampling cost is close to the MAD scales approx-
imately with 1/L. See text for further detail.

also scales with 1/L, thus confirming �β ∝ 1/L to be a good
choice. Furthermore, in the figure it is highlighted where the
histogram overlap α takes values 0.8 and 0.9 for 1 000 inverse
temperature points between β = 0 and 1 for the three system
sizes.

Similar scaling is observed for other resampling methods
as can be seen for the example of the multinomial resam-
pling technique (see Fig. 16). �ρt also scales with L and
the position of the optimum �β∗ with 1/L (top panel). It
is highlighted where α takes the value α∗ ≈ 0.72 . . . which
shows that indeed this value for α is close to the minimum
of the resampling cost for the considered inverse temperatures
and system sizes. In the bottom panel ρt (β )/L for adaptive
temperature steps is shown. From there one clearly sees that
ρt does scale as L. So, doubling the system size means that the
number of temperature steps and the population size should be
doubled as well (in d = 2).

F. Comparison to MCMC simulations

In this last part, we once again return to more realistic
population annealing simulations to probe how applicable our
theoretical findings are to (close-to-equilibrium) MC simula-
tions. Clearly, unlike the artificial simulations, they are not
in perfect equilibrium and thus results will differ. Further,
we expect this difference to be weak (respectively, strong)
when close to (respectively, far from) equilibrium. As a con-
sequence, the previously introduced resampling cost for small
�β should not vary much in either setting, whereas for large
�β we anticipate strong differences.

Experimentally, it is not immediately clear how to measure
�ρt/�β at a given β. As the asymptotic estimator (18) for ρt

is only correct in the limit θ → ∞, we have to fall back to the
standard estimator which explicitly depends on the population
at β, raising the question of how to initialize the population at

FIG. 16. Adaptive temperature steps for different system sizes
and multinomial resampling. Top panel: Resampling cost rescaled by
the system size shows that the optimal temperature step �β∗ behaves
as L−1. Bottom panel: ρt as a function of β using the optimized
temperature steps scales proportional to L.

β prior to the �ρt/�β measurement. A number of options
come to mind:

(1) For each �β, run a PA simulation with this tempera-
ture step from β0 = 0 to βi = β.

(2) Create an uncorrelated population sample by equili-
brating each replica (either from a hot or a cold start) for a
very long time.

(3) Pick a temperature step �̃β and initialize the popula-
tion by running a simulation with �̃β up until β.

Best results are most likely obtained through option 1 but
we have rejected this option as it is computationally pro-
hibitively expensive, particularly for small �β. Option 2 may
work well but also produces uncorrelated replicas, which is
rather unrealistic for PA simulations. Option 3 is straight-
forward to implement and produces realistic populations at
inverse temperature β although care must be taken of how to
choose �̃β which we set to �̃β = 1/300. This value we know
from previous studies to work well on the considered model.
An overview of the resampling cost for realistic simulations is
presented in Fig. 17, where for each data set (each line) we ran
400 individual PA simulations. For the simulations initialized
at β = 0.44, we used θ = 100 sweeps at each temperature,
and θ = 10 for the ones at β = 0.1. As system size we used
L = 64.
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FIG. 17. Resampling cost measurements on realistic standard PA
simulations compared to the R, θ → ∞ limit. Upper panel: Multi-
nomial resampling and nearest-integer resampling for two different
temperatures. Lower panel: Nearest-integer and systematic resam-
pling. At very small �β measurements deviate from the prediction,
more strongly for nearest-integer resampling where population size
fluctuations lead to a ∝ 1/�β divergence (see main text).

The upper panel of Fig. 17 shows MC results obtained
with multinomial and nearest-integer resampling which are
very compatible with the theoretical data up until �β � 10−2

even when β is close to the critical temperature. At very small
�β we observe an unexpected divergence (see lower panel)
in �ρt/�β for nearest-integer resampling, which is strongly
population-size dependent and which is absent when repeat-
ing the same measurement for systematic resampling. This is
not in contradiction to our original expectation but rather an
artifact of the way the population was initialized: Following
the procedure described above, the 400 initialized populations
will vary in population size (dictated by the choice of �̃β).
The nonzero population-size fluctuation results in a nonzero
increase of �ρt as �β → 0, which leads to the divergent
behavior for �ρt/�β observed in Fig. 17. The fluctuation of
the population size is of the order of

√
R which explains the

strong dependence on R in the plot. Without this fluctuation
(albeit when using systematic resampling) this effect is absent.

As has become clear before, in a poorly equilibrated pop-
ulation ρt is much larger than in the θ → ∞ limit, cf. Fig. 8.
Thus, there ought to be a contribution not taken into account
in the calculation of �ρt in the θ → ∞ limit, that leads

to a sharp increase of ρt at the inverse critical temperature
βc ≈ 0.44. The crucial assumption that leads to the expres-
sions in the θ → ∞ limit was that the weights of replicas are
distributed independently, i.e., that the covariance of weights
of replicas i and j (with i �= j) is zero. This however, is not
the case when θ is finite. In this case the covariance can
roughly be estimated through the effective population size
Reff(τ ) giving rise to an extra contribution δ to �ρt that is

δ ∼
(

R

Reff(τ )
− 1

)
. (28)

Note that when Reff(τ ) = R this contribution is zero (perfect
equilibration), whereas it becomes large when the population
is very correlated, i.e., when Reff(τ ) � R. As �β and θ were
chosen constant for each simulation in Fig. 8, the population
is well-equilibrated even for small θ except around criticality.
Hence, Eq. (28) explains the jump at βc and away from
criticality the lines are almost parallel.

VI. CONCLUSIONS

Combining data from numerical simulations as well as
theoretical considerations we provide strong evidence that the
chosen resampling method in PA can have a significant effect
on the quality of the obtained data. Out of all the methods we
have considered, we find a range of results that suggest that
using multinomial or Poisson resampling (which both have
been used extensively in practice before) should be avoided.
Both lead to higher systematic and statistical errors as well
as worse values in all other benchmark quantities studied
here. Instead, nearest-integer and systematic resampling con-
sistently outperform all other methods in almost all considered
metrics and work equally well in the remaining comparisons.

Besides simply answering the question of which resam-
pling method to choose, we further aimed to improve our
understanding of the genuine effects of resampling on the
simulation results. Replacing MCMC sweeps with exact sam-
pling from the energy distribution (corresponding to θ → ∞)
allowed us to systematically scan the parameter space of PA
at very little computational cost. What is more, however,
it isolated the potential negative effects of resampling from
the systematic error caused by imperfect equilibration due to
finitely many MCMC sweeps.

In this setting we varied the population size R while keep-
ing all other parameters constant and found that when R grows
large, the family quantities smoothly converge in R, which
is in agreement with previous reports [11,21]. This further
motivated us to consider PA in the double limit of perfect equi-
libration (θ → ∞) and infinite population sizes (R → ∞),
where we indeed see that the replica-averaged family size ρt

for large R behaves in the same way as for R → ∞. We eval-
uated ρt in this (double) limit by expressing it as the sum of
the accumulated weight variances and sample variances [see
Eq. (18)]. Computationally this limit is even less demanding
than the previous exact sampling approach as every setting can
be evaluated by a single summation over O(L2) terms which
allowed us to thoroughly investigate the interplay between
resampling and the chosen annealing schedule.

This interplay can best be observed by considering the
increase in ρt per inverse temperature step �β at a given
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temperature, which we dubbed the resampling cost. For all
methods but nearest-integer and systematic resampling the
resampling cost exhibits a minimum at an intermediate tem-
perature step and diverges as �β → 0. This divergence is
the reason why we observe worse statistics with very small
temperature steps for most methods, which at first might have
seemed counterintuitive.

Furthermore, we show that by choosing temperature steps
that minimize the resampling cost, even with multinomial
and Poisson resampling acceptable results can be achieved,
although nearest-integer and systematic resampling still yield
smaller family growth. Comparing our adaptive schedule with
the adaptive schedule resulting from fixing the histogram
overlap [11], we observe that for multinomial resampling the
target overlap should not be chosen much larger than ≈0.72
as then ρt will take suboptimal values. As the resampling
cost for systematic and nearest-integer resampling does not
diverge in the small step limit, adaptive steps minimizing the
resampling cost are not applicable to these two methods. Thus,
a linear annealing schedule with small enough steps yields
close-to-minimal family growth with these two methods. As
for these two methods, we find that with a target overlap
parameter of α ≈ 0.8 . . . 0.9 the replica-averaged family size
ρt takes close-to-minimal values, that is the value it would
attain for α → 1.

As a last test in this artificial setting, we repeated the ex-
periment for different linear system sizes L. In agreement with
Ref. [11] we find that for the two-dimensional Ising model the
temperature step should be proportional to 1/L, i.e., the posi-
tion of the minimum (respectively, the length of the plateau for
nearest-integer and systematic resampling) of the resampling
cost scales as 1/L. Most strikingly, we find that, assuming
good equilibration and an appropriate annealing schedule, ρt

should scale as Ld/2 independent of the underlying model
which gives rise to the simple rule of how large the population
size R should at least be when studying multiple system sizes
of the same model.

Finally, we repeat some of these experiments with MCMC
simulations to confirm that indeed close-to-equilibrium sim-
ulations behave similar to the idealized case. The agreement
is surprisingly good although one should stress that the two-
dimensional Ising model is easy to equilibrate as compared
to spin glasses, which are notoriously hard to equilibrate and
form one of the main applications of PA [2,21]. We find that in
out-of-equilibrium PA simulations there is an extra contribu-
tion to the family growth that can be linked to the correlation
within the population. Thus, we expect that by introducing
a target effective population size Reff family growth may be
well-controlled.

Although we set out to understand one aspect of PA,
namely resampling, we can extract a few guiding principles
from these studies regarding the question of how to choose R,
θ and βi (for further rules of thumb of how to successfully
implement a PA simulation we refer to Sec. X in Ref. [11]):

(i) Use nearest-integer resampling. If a constant popu-
lation size is required, then use systematic resampling. In
particular, avoid the use of Poisson and multinomial resam-
pling.

(ii) Small enough temperature steps generally will give
very good results when using one of the two preferred resam-

pling methods. However, very small �β still come at a high
computational cost and adaptive temperature steps will be
more resource-efficient [11]. Unless adaptive steps are used,
�β should be scaled accordingly when studying multiple
system sizes.

(iii) When studying multiple linear system sizes L of the
same model, the population size should be scaled at least with
Ld/2 ≡ √

N as this is the expected behavior for ρt in the well-
equilibrated regime.

(iv) Section V shows what to expect from well-
equilibrated PA simulations. If you suspect poor equilibration,
then increase θ if possible.

While we have discussed resampling in PA in rather gen-
eral terms, not all possible variations are contained in this
work. This includes resampling only at some of the tempera-
ture steps (as originally suggested by Hukushima and Iba [2])
or not resetting all weights after resampling [16], which could
also be explored. Another interesting direction is to temporar-
ily increase the population size before resampling by selecting
multiple configurations per replica and then resample to the
original population size as was recently proposed by Amey
and Machta [4]. Last, when using PA on distributed parallel
architectures resampling is directly linked to communication
overhead. Thus, one potential area of focus is optimizing
resampling for maximal parallel performance on these setups.
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APPENDIX A: REPLICA-AVERAGED FAMILY SIZE

To elaborate on how the term “mean-square family size”
for ρt is misleading, consider a population of R replicas and
replica-averaged family size ρ

(R)
t . Now, if we were to copy

every replica exactly twice, thus obtaining a new population
of size 2R with ρ

(2R)
t , then we would expect the mean-square

family size to quadruple. However, ρ
(2R)
t = 2ρ

(R)
t .

We motivate the term “replica-averaged family size” as
follows. Let o j be the index of the replica at β0 from which
replica j originates. Then j will be part of a family with no j R
members. If we pick a replica uniformly at random (out of
the entire population), then we expect its family size to be
1
R

∑R
j=1 no j R. Clearly, for each family of descendants from

the original replica k there are Rnk contributions in this sum
and thus we can rewrite it as

1

R

R∑
j=1

no j R = 1

R

R∑
k=1

nkR nkR = R
R∑

k=1

n2
k ≡ ρt , (A1)

which coincides with the previous definition of ρt .

APPENDIX B: PROOF OF EQUATION (18)

We set out to prove Eq. (18), i.e., ρ
(i)
t ≈ ρ

(i−1)
t + σ 2(r (i)

k ),
under the assumption that all r (i)

k are i.i.d. We denote by (∗)
when this assumption is used. In the limit of θ → ∞, τ

(i)
k
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are i.i.d. by design. When r (i)
k (for a single k) is a univariate

random variable only dependent on τ
(i)
k (as is the case for all

methods with variable population size considered here), the
i.i.d. property of r (i)

k follows immediately. Special attention
is required for the population-size preserving methods, see
below.

The replica-averaged family size [see Eq. (11)] is ρt =
R
∑R

k=1 n
2
k . When expressed in terms of the family size Nk =

Rnk it becomes

ρt = 1

R

R∑
k=1

N2
k = N2

k ∼ 〈N2
k

〉
. (B1)

Above equality shows that ρt is the population average of
N2

k and thus estimates 〈N2
k〉 which is closely related to the

variance of the size of a family, Nk , i.e.,

Var(Nk ) = 〈N2
k

〉− 〈Nk〉2 = 〈N2
k

〉− 1, (B2)

where 〈Nk〉 = 1 because otherwise the (expected) population
size would change throughout the anneal.

In the following a time superscript (i) is added to all time-
dependent quantities, where time corresponds to the number
of resampling steps already carried out. Further, let F (i)

k be
the set of replica indices belonging to the family k at time i.
By design, this set contains N

(i)
k elements, i.e., N(i)

k = |F (i)
k |.

Last, r (i)
k is the number of copies created of replica k at the ith

resampling step.
From the setup of the algorithm (see Sec. II A), the size of

family k at time i + 1 is given by

N
(i+1)
k =

∑
j∈F (i)

k

r (i+1)
j . (B3)

Carefully note that all terms in above equation are random
variables. Fixing one initial replica k and the corresponding
set of family indices F (i)

k gives rise to the conditional variance

Var
(
N

(i+1)
k

∣∣F (i)
k

)
= Var

⎛⎜⎝∑
j∈F (i)

k

r (i+1)
j

∣∣∣∣F (i)
k

⎞⎟⎠ (∗)= ∣∣F (i)
k

∣∣︸ ︷︷ ︸
N

(i)
k

Var
(
r (i+1)

1

)
,

⇒ Var
(
N

(i+1)
k

∣∣N(i)
k

) = N
(i)
k Var

(
r (i+1)

1

)
, (B4)

where we have used the fact that Var(N(i+1)
k |F (i)

k ) only de-
pends on |F (i)

k | instead of F (i)
k . Using the law of total variance

Var(N(i+1)
k ) can be expressed as

Var
(
N

(i+1)
k

) = E

⎡⎢⎢⎢⎣Var(N(i+1)
k

∣∣N(i)
k

)︸ ︷︷ ︸
(B4)= N

(i)
k Var(r(i+1)

j )

⎤⎥⎥⎥⎦

+ Var

⎡⎢⎢⎣E(N(i+1)
k

∣∣N(i)
k

)︸ ︷︷ ︸
=N

(i)
k

⎤⎥⎥⎦. (B5)

This further simplifies to

Var
(
N

(i+1)
k

) = E
(
N

(i)
k

)︸ ︷︷ ︸
=1

Var
(
r (i+1)

j

)+ Var
(
N

(i)
k

)
. (B6)

Plugging in Eq. (B2) for Var(N(i)
k ) and Var(N(i+1)

k ) gives rise
to 〈(

N
(i+1)
k

)2〉 = Var
(
r (i+1)

j

)+ 〈(N(i)
k

)2〉
. (B7)

Substituting ρ
(i)
t and ρ

(i+1)
t for 〈(N(i)

k )2〉 and 〈(N(i+1)
k )2〉 [using

Eq. (B1)] completes the proof and gives rise to Eq. (18).
Regarding population-size preserving methods, if all r j were
i.i.d., then their sum would have to be a random variable,
too. Thus, for these methods the r j cannot be i.i.d. In the
case of multinomial, and thus residual resampling, in the limit
R → ∞ the correlation between any two ri and r j vanishes
and therefore the r j can be assumed to be approximately i.i.d.
Only for stratified and systematic resampling this is not the
case, making Eq. (18) only approximately true due to nonva-
nishing spatial correlations (in replica space). The correlation
in those two methods causes Eq. (18) to slightly overestimate
ρt as compared to the standard definition.

Last, Eq. (19) is found by using the law of total variance:
Var(r (i)

j ) can be expressed as

Var
(
r (i)

j

) = E
[
Var
(
r (i)

j

∣∣τ (i)
j

)]︸ ︷︷ ︸
SV(βi−1,βi−1−βi )

+Var

⎡⎢⎢⎢⎣E(r (i)
j |τ (i)

j

)︸ ︷︷ ︸
=τ

(i)
j

⎤⎥⎥⎥⎦, (B8)

which yields Eq. (19).

APPENDIX C: SAMPLING VARIANCE CALCULATIONS

For all following calculations τ denotes the expectation
value of the number of descendants r of an arbitrary popu-
lation member at time of resampling. More precisely, τ and
r should carry a replica index k. Unless strictly necessary,
however, k will be omitted for better readability. Further, ε

denotes the fractional part of τ , i.e., ε = τ − �τ�.

1. Nearest-integer resampling

r is �τ� + 1 with probability ε and �τ� with probability
1 − ε. Thus, it is easy to see that r − τ is 1 − ε with proba-
bility ε, and −ε with probability 1 − ε. Hence, the sampling
variance is

sv = E[(r − τ )2] = ε(1 − ε)2 + (1 − ε)ε2 = ε(1 − ε).

(C1)

2. Systematic resampling

Systematic resampling uses the following protocol to find
ri, provided τi:

ri =
∣∣∣∣∣∣
⎧⎨⎩Uj :

j−1∑
i=1

τi � Uj �
j∑

i=1

τi

⎫⎬⎭
∣∣∣∣∣∣ with Uj = ( j − 1) + u1,

(C2)
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Case I:

Case II:

Case II:

FIG. 18. Visualization of systematic resampling.

where u1 ∈ [0, 1] is a random number. Intuitively, one might
convince oneself that systematic resampling also chooses r
as �τ� + 1 with probability ε and �τ� with probability 1 − ε

and thus should have the same sampling variance as nearest-
integer resampling, i.e., sv = ε(1 − ε).

In the following this is shown in a rather detailed cal-
culation which then can be used analogously in stratified
resampling. Figure 18 shows the most important quantities
used in the calculation.

The integer x is equal to �τ� if εl + εr < 1 and �τ� − 1
otherwise. In the first case εl + εr = ε, in the second case εl +
εr = 1 + ε.

Case I: τ > 1. Let a, b ∈ {0, 1} such that a (respectively,
b) are equal 1 iff Uj (respectively, Uj+x+1) is within the high-
lighted region of εl (respectively, εr), i.e.,

a =
{

1, u1 � 1 − εl ,

0, else,
b =

{
1, u1 � εr,

0, else.
(C3)

Then the number of replicas made is r = x + a + b with some
probability Pτ (r = k). Plugging in the minimal and maximal
values of x, a, and b gives lower and upper bounds for r,
namely, �τ� − 1 and �τ� + 2. From Eq. (C3) it can be con-
cluded that

a + b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2, 1 − εl � u1 � er,

1, (1 − εl � u1 and εr > u1)

or (1 − εl > u1 and u1 � εr ),

0, 1 − εl > u1 > er .

(C4)

Using the condition that u1 is uniformly distributed on the
interval [0,1], one obtains the probabilities for the possible
outcomes of a + b:

P(a + b = 2) = max(0, εl + εr − 1),

P(a + b = 1) = min(1 − εl , εr ) + min(1 − εr, εl ),

P(a + b = 0) = max(0, 1 − εl − εr ).

(C5)

These can be reformulated conveniently as

P(a + b = 2) =
{

0, εl + εr < 1,

εl + εr − 1 = ε, εl + εr � 1,

P(a + b = 1) =
{

εl + εr = ε, εl + εr < 1,

2 − εl − εr = 1 − ε, εl + εr � 1,

(C6)

P(a + b = 0) =
{

1 − εl − εr = 1 − ε, εl + εr < 1,

0, εl + εr � 1.

Next, using τ = x + εl + εr , the probability distribution
Pτ (r = k) can be obtained as

Pτ (r > �τ� + 2) = 0,

Pτ (r = �τ� + 2)

=
{

P(a + b = 2|εl + εr < 1) = 0, εl + εr < 1,

0, εl + εr � 1,

= 0,

Pτ (r = �τ� + 1)

=
{

P(a + b = 1|εl + εr < 1) = ε, εl + εr < 1,

P(a + b = 2|εl + εr � 1) = ε, εl + εr � 1,

= ε,

Pτ (r = �τ�) (C7)

=
{

P(a + b = 0|εl + εr < 1) = 1 − ε, εl + εr < 1,

P(a + b = 1|εl + εr � 1) = 1 − ε, εl + εr � 1,

= 1 − ε,

Pτ (r = �τ� − 1)

=
{

0, εl + εr < 1,

P(a + b = 0|εl + εr � 1) = 0, εl + εr � 1,

= 0,

Pτ (r < �τ� − 1) = 0,

which is identical to the distribution from nearest-integer re-
sampling.

Case II: τ � 1. In the special case that τ < 1 and that
it does not overlap an integer boundary, the above calcu-
lation does not work, as εl and εr are not well defined
[case II(b)]. Even in the case that it does overlap an
integer boundary [case II(a)], the calculation above does
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not apply as the case εl + εr > 1 is impossible. Instead,
a new parameter y ∈ [0, 1] is introduced (see Fig. 18)
which, assuming uniform distribution of y, can be averaged
over y to obtain the probability distribution Pτ (r = k) for
τ � 1. Fortunately, Eq. (C7) is only a function of ε without
any assumptions on εl or εr such that it applies as long as εl

and εr are defined. Thus, in case II(a) the sampling variance is
equal to the one in nearest-integer resampling.

In the case of εl and εr not being well defined, meaning that
the highlighted region does not overlap an integer boundary,
the argument is as follows: Under the condition that u1 is
equally distributed over [0,1] the probability of the arrow (see
Fig. 18) to be within the highlighted region is τ = ε. Hence,
again the probability distribution of systematic resampling
is identical to the one in nearest-integer resampling. As the
sampling variance in all cases I, II(a), and II(b) is equal to the
nearest-integer sv, no averaging is necessary, i.e.,

sv(τ ) = sv(ε) = ε(1 − ε). (C8)

3. Stratified resampling

Stratified resampling is quite similar to systematic resam-
pling, with the difference that instead of using one random
number u1 for the entire population, for each integer strata an
independent pseudorandom number u j ∈ [0, 1] is drawn. The
resampling protocol is given by

ri =
∣∣∣∣∣∣
⎧⎨⎩Uj :

j−1∑
i=1

τi � Uj �
j∑

i=1

τi

⎫⎬⎭
∣∣∣∣∣∣ with Uj = ( j − 1) + uj .

(C9)

The calculation for stratified resampling is analogous to the
one for systematic resampling just that instead of using u1

for left and right boundary two independent random numbers,
ul and ur , are used. ul (respectively, ur) corresponds to u j

(respectively, u j+x+1) in Fig. 19.
Case I: τ > 1. Quantities are defined very similarly:

τ = x + εl + εr, r = x + a + b,

a =
{

1, ul � 1 − εl ,

0, ul < 1 − εl ,
b =

{
1, ur � εr,

0, ur > εr .
(C10)

From this

a + b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, 1 − εl � ul and ur � er,

1, (1 − εl � ul and εr < ur )
or (1 − εl > ul and εr � ur ),

0, 1 − εl > ul and ur > er

(C11)

can be found and assuming uniform distributions of ul and ur

on [0,1] gives

P(a + b = 2) = εlεr,

P(a + b = 1) = εl (1 − εr ) + (1 − εl )εr = εl + εr − 2εlεr,

P(a + b = 0) = (1 − εl )(1 − εr ). (C12)

Case I:

Case II:

Case II:

FIG. 19. Visualization of stratified resampling. The only differ-
ence compared to Fig. 18 is the different location of the arrows Uk .

Next, using τ = x + εl + εr , the probability distribution
Pτ,εl ,εr (r = k) can be obtained, i.e.,

Pτ,εl ,εr (r > �τ� + 2) = 0,

Pτ,εl ,εr (r = �τ� + 2) =
{

εlεr, εl + εr < 1,

0, εl + εr � 1,

Pτ,εl ,εr (r = �τ� + 1) =
{

εl + εr − 2εlεr, εl + εr < 1,

εlεr, εl + εr � 1,

(C13)

Pτ,εl ,εr (r = �τ�) =
{

(1 − εl )(1 − εr ), εl + εr < 1,

εl + εr − 2εlεr, εl + εr � 1,

Pτ,εl ,εr (r = �τ� − 1) =
{

0, εl + εr < 1,

(1 − εl )(1 − εr ), εl + εr � 1,

Pτ,εl ,εr (r < �τ� − 1) = 0,

which is no longer independent of εl and εr . One can regain
independence of εl and εr by assuming that εl (or equivalently
εr) is uniformly distributed on [0,1] and then averaging over
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εl , i.e.,

Pτ (r = �τ� + k) =
∫ 1

0
dεl Pτ,εl ,εr (εl )(r = �τ� + k), (C14)

with

εr (εl ) =
{
ε − εl , ε � εl ,

1 + ε − εl , ε < εl .
(C15)

As a consequence of the averaging procedure the possibility
of εl + εr > 1 is integrated into the term and thus does not
apply when εl + εr > 1 is impossible, i.e., in case II(a). Next,
this yields the probability distribution

Pτ (r > �τ� + 2) = 0,

Pτ (r = �τ� + 2) = ε3

6
,

Pτ (r = �τ� + 1) = (1 + ε)3

6
− 2

3
ε3,

Pτ (r = �τ�) = ε3

2
− ε2 + 2

3
,

Pτ (r = �τ� − 1) = (1 − ε)3

6
,

Pτ (r < �τ� − 1) = 0.

(C16)

Using this distribution, the sampling variance can be calcu-
lated (for case I) as

sv(τ ) =
2∑

i=−1

(ε − i)2Pτ (r = �τ� + i) = 1

3
. (C17)

As complicated as the probability distribution may appear, un-
der the assumption that εl is uniformly distributed the average
sampling variance is constant at 1/3.

Case II: τ � 1. In this case, depending on y and τ , the
highlighted region might partially occupy one or two integer
strata. This yields the probability distribution

Pτ,y(r > 2) = 0,

Pτ,y(r = 2) =
{

0, y + τ < 1,

(1 − y)(τ + y − 1), y + τ � 1,

Pτ,y(r = 1) =

⎧⎪⎨⎪⎩
τ, y + τ < 1,

(1 − y)(2 − τ − y)

+y(τ + y − 1), y + τ � 1,

Pτ,y(r = 0) =
{

1 − τ, y + τ < 1,

y(2 − τ − y), y + τ � 1.

(C18)

Assuming a uniform distribution of y and integrating over y,
i.e.,

Pτ (r = k) =
∫ 1

0
dyPτ,y(r = k), (C19)

then gives

Pτ (r > 2) = 0,

Pτ (r = 2) = τ 3

6
,

Pτ (r = 1) =
(

1 − τ 2

3

)
τ,

Pτ (r = 0) = τ 3

6
− τ + 1,

(C20)

and the sampling variance follows from

sv(τ ) =
∑

r

(r − τ )2Pτ (r) =
(

τ 2

3
− τ + 1

)
τ. (C21)

Putting both cases I and II together gives

sv(τ ) =
{

1
3 , τ > 1,(
τ 2

3 − τ + 1
)
τ, τ � 1.

(C22)

4. Poisson and Multinomial resampling

For both the Poisson and the multinomial distribution the
sampling variance is equal to 〈τ 〉 = 1 independently of tem-
perature.

The input argument for the Poisson distribution is λ where
λ is the mean. In the case here λ is equal to τk . The variance
of the Poisson distribution is also λ. Hence, sv(τ ) is equal to
τ which on average is one.

Similarly, for the multinomial distribution the input param-
eters are n and pk (

∑
k pk = 1). n here corresponds to the

population size R and pk = τk/R. The variance of rk is given
by npk (1 − pk ) = τk (1 − τk/R) which for R large enough also
gives

sv(τ ) = τ. (C23)

Again, averaging over all individuals yields

〈(rk − τk )2〉 = 1

n

∑
k

npk (1 − pk ) =
∑

k

pk︸ ︷︷ ︸
=1

−
∑

k

p2
k︸ ︷︷ ︸

≈0 for large n

≈ 1.

(C24)

5. Residual resampling

In residual resampling the resampling protocol is as fol-
lows: Each replica is replicated �τ� times which temporarily
reduces the population size to R′. In a second step the popula-
tion is brought to its original size R by drawing R − R′ times
from a multinomial distribution where each replica weight is
proportional to its ε = τ − �τ�.

As multinomial resampling has a sampling variance equal
to the number of replicas created on average and since this
average is ε, the sampling variance for residual resampling
follows

sv(τ ) = ε. (C25)

Clearly, this function (also sometimes referred to as the saw-
tooth function) has a discontinuity for every integer value
τ where it jumps from one to zero. This discontinuity in τ
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cascades to a discontinuity SV(β ) when averaging over all
energies, as can be seen in Figs. 4 and 11. This only becomes
apparent at low temperatures when due to the discreteness
of the Ising model the energy and thus also the τk take only
few values. A jump in the average sampling variance occurs
at βi when some energy Ej has τβi−1 (Ej ) > 1 at βi−1 and
τβi (Ej ) < 1 at βi. This can be observed for β � 0.8 in Figs. 4
and 11. As the number of occupied energy levels decreases
with increasing inverse temperature each jump is bigger than
the previous one.

In Fig. 12 the resampling cost �ρt/�β diverges as
0.5/�β in the limit �β → 0, where 0.5 is the sampling
variance residual resampling takes for small �β. This value
can be understood as follows: With all τ ’s close to one and
on average equal to one, half of the τ ’s are less than one
and the other half larger than and equal to one. The expected
sampling variance sv for τ � 1 (respectively, τ � 1) is one
(respectively, zero). Thus, the measured sv is the average of
zero and one, namely, 0.5.

APPENDIX D: SPECIFIC-HEAT INTEGRAL

We aim to show that∫ β2

β1

√
CV (β,V )/βdβ � D(β1, β2) (D1)

for some constant D(β1, β2), independent of system size.

Given the integrals are finite, it follows from the Cauchy-
Schwarz inequality that[∫ β2

β1

√
CV (β,V )/βdβ

]2

� (β2 − β1)
∫ β2

β1

CV (β,V )/β2dβ.

(D2)
From the definition of CV and setting the Boltzmann constant
equal to one, we can express CV as

CV = −β2

V

∂E

∂β
. (D3)

Thus, ∫ β2

β1

CV /β2dβ = − 1

V

∫ β2

β1

∂E

∂β
dβ

= − 1

V
[E (β2) − E (β1)] (D4)

� emax − emin ≡ D2/(β2 − β1),

where emin and emax are the lowest and highest energy den-
sities, respectively. This proves the original statement and
D(β1, β2) = √

(emax − emin)(β2 − β1), which is independent
of system size. For the ferromagnetic Ising model on a
d-dimensional hypercubic lattice one has emin = −2d and
emax = 0, leading to D(β1, β2) = √

2d (β2 − β1), J being
equal to unity.
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