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Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical
physics and it proves to deal well with systems with complex free-energy landscapes. Above all else, it promises
to deliver unrivaled parallel scaling qualities, being suitable for parallel machines of the biggest caliber. Here
we study population annealing using as the main example the two-dimensional Ising model, which allows for
particularly clean comparisons due to the available exact results and the wealth of published simulational studies
employing other approaches. We analyze in depth the accuracy and precision of the method, highlighting its
relation to older techniques such as simulated annealing and thermodynamic integration. We introduce intrinsic
approaches for the analysis of statistical and systematic errors and provide a detailed picture of the dependence of
such errors on the simulation parameters. The results are benchmarked against canonical and parallel tempering
simulations.
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I. INTRODUCTION

Over the past 70 years or so, computer simulations have
undoubtedly developed into what can be considered a third
pillar in science, complementing the classic duality of exper-
iment and analytical theory [1]. While this would not have
been possible without the enormous increase of computational
power available (spanning at least seven orders of magni-
tude), the invention of new and the improvement of existing
algorithms for many problems has made a contribution of sim-
ilar significance. The recent acceleration of the move toward
higher degrees of parallelism in computational architectures
has added a new twist to this challenge: Invent powerful
algorithms that also have the potential to parallelize well over
thousands or even millions of cores.

The hardest computational problems relate to systems
with complex free-energy landscapes, often featuring phase
transitions, entropic barriers, and slow relaxation [2]. To
cope with such systems, that cover a broad range of areas
from (spin) glasses through biopolymers to constraint opti-
mization problems, simulators require methods that ensure
a wide exploration of phase space, overcome energetic and
entropic barriers, and artificially speed up slow dynamics.
In Monte Carlo simulations, besides methods relating to the
set of moves employed, that are typically highly tailored to
the specific systems at hand such as in cluster updates for
spin systems [3,4], the most important approaches are meta-
algorithms that simulate a problem in a generalized ensemble.
The most well-known schemes of this type are multicanonical
simulations [5], simulated and parallel tempering [6,7], and
Wang-Landau sampling [8].

A more recent addition to this simulational toolbox are
population annealing Monte Carlo simulations, where an
ensemble of system copies is propagated in parallel while
undergoing a gradual cooling process accompanied by pe-
riodic resampling steps [9–11]. While this technique has
received significant attention only in recent years [12–22],
related approaches have been known and used as particle
filters in statistics [23] and as diffusion methods in quantum
Monte Carlo [24]. Also, there are closely related algorithms
such as replication techniques [25] and the pruned-enriched
Rosenbluth method (PERM) [26] for walks and polymers, or
the nested sampling method for determining the density of
states [27]. In contrast to the more widely used Markov chain
Monte Carlo (MCMC) methods, these approaches are based
on the sequential sampling paradigm [28]. While originating
in Monte Carlo, it was recently demonstrated that it is indeed
possible to generalize the scheme to molecular dynamics sim-
ulations [20], and further generalizations are likely to be found
in the future.

Due to the employment of a population of system copies,
the method is ideally suited for highly parallelized implemen-
tations, and excellent scaling results have been reported in
applications [14,19,20,29,30]. The method hence bears great
potential for attacking hard simulational problems, and in-
deed significant successes have been reported for problems
such as spin glasses [13,17,22], hard disks [18], and biopoly-
mers [20]. The theoretical understanding of the approach,
however, is still in its infancy. While population annealing
formally is a sequential Monte Carlo method [28], it requires
as a crucial ingredient a way of additionally randomizing
configurations through embedded single-replica Monte Carlo
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steps. This element is conveniently chosen to be a MCMC
method, bearing the additional advantage of further driving
the population toward equilibrium. As a consequence of this
hybrid composition of the approach, its performance hence
depends on the subtle interplay of correlations introduced
into the population through resampling and the decorrelating
effect of the MCMC moves. It is the purpose of the present
paper to illustrate the implementation and properties of the
method for a simple reference system, to provide a clear
picture of how the statistical and systematic errors depend on
the parameters of the method, and to provide techniques for
monitoring the convergence of the simulation and analyzing
the resulting data. The above-mentioned success reports for
nontrivial problems notwithstanding, the method has previ-
ously not been used for a nontrivial but well-controlled model
system (but see Ref. [31] for a simple two-well problem). We
fill this gap here by providing an in-depth study of population
annealing applied to the fruit fly of statistical physics, the
two-dimensional (2D) Ising model.

The rest of the paper is organized as follows. In Secs. II–IV,
we formally introduce the population annealing algorithm,
followed by a short illustration of potential issues in applying
it to the Ising model. Section V is devoted to an exploration
of correlations introduced into the population through re-
sampling. We show how these can be quantified through a
blocking analysis on the tree-ordered population, leading to
the introduction of the effective population size Reff , and how
this approach can be used to estimate statistical errors from a
single run. The dependence of statistical errors on the simu-
lation parameters is further explored in Sec. VI. In Sec. VII,
we introduce the free-energy estimator and illustrate its re-
lation to thermodynamic integration, as well as discussing
the relevance and choice of weights for averaging over inde-
pendent runs. Section VIII is devoted to a detailed analysis
of the systematic errors of the method and their dependence
on the simulation parameters. Finally, in Sec. IX we survey
the performance of the approach and compare it to some
more standard methods before presenting our conclusions
in Sec. X.

II. ALGORITHM

As outlined above, the approach is a hybrid of sequential
algorithm and MCMC that simulates a population of con-
figurations at each time, updating them with an embedded
MCMC step and resampling the population periodically as the
temperature is gradually lowered. Population annealing (PA)
can hence be summarized as follows:

(1) Set up an equilibrium ensemble of R0 = R indepen-
dent copies (replicas) of the system at inverse temperature β0.
Typically β0 = 0, where this can be easily achieved.

(2) Change the inverse temperature from βi−1 to βi > βi−1.
To maintain uniform weights, resample configurations
j = 1, . . . , Ri−1 with their relative Boltzmann weight
τi(Ej ) = exp[−(βi − βi−1)Ej]/Qi, where

Qi ≡ Q(βi−1, βi ) = 1

Ri−1

Ri−1∑
j=1

exp[−(βi − βi−1)Ej], (1)

resulting in a new population of size Ri.

(3) Update each replica by θ rounds of an MCMC algo-
rithm at inverse temperature βi.

(4) Calculate estimates for observable quantities O as pop-
ulation averages

∑Ri
j=1 O j/Ri.

(5) Go to step 2 unless the target temperature βf has been
reached.

If we choose β0 = 0, equilibrium configurations for the
replicas can be generated by simple sampling, i.e., by as-
signing independent, purely random configurations to each
copy. For systems without hard constraints such as typical spin
models, this process can be implemented straightforwardly.
For constrained systems such as polymers, one might need to
revert to an MCMC simulation at a sufficiently high tempera-
ture instead.

To understand the origin of the resampling factors, it is
useful to consider a more general algorithm, where resampling
occurs less frequently or it is completely omitted. It is then
necessary to keep track of the weight of each replica in the
annealing process [9,23]. On changing the temperature from
βi−1 to βi the Boltzmann weight W j

i−1 of a replica at energy

Ej is multiplied by the incremental importance weight γ
j

i to
arrive at the new weight W j

i at inverse temperature βi,

W j
i = W j

i−1γ
j

i , γ
j

i = Zβi−1

Zβi

e−(βi−βi−1 )Ei−1
j , (2)

where Zβi is the canonical partition function. Note that at
each temperature step it is the current energy Ei−1

j of replica
j before resampling that enters here, hence the additional
superscript i − 1. The initial configurations are drawn from
the uniform distribution, W0 = 1/Z0. If no MCMC steps ac-
cording to step 3 were performed such that Ei

j = E0
j for all i,

this would correspond to simple sampling and the total weight
would yield the canonical probability distribution, i.e., W j

i =
Z−1

βi
exp(−βiE j ). In any case, if resampling occurs according

to the prescription outlined in step 2 of the above algorithm,
the average number of copies created for each replica equals
τi(Ej ). To keep the overall distribution invariant, the weight of
each surviving copy needs to be reduced by a factor 1/τi(Ej ),
resulting in a modified weight of

W̃ j
i = W̃ j

i−1

γ
j

i

τi(Ej )
= W̃ j

i−1

Zβi−1

Zβi

Qi

= W j
0

Z0

Zβ1

· · · Zβi−1

Zβi

i∏
k=1

Qk = 1

Zβi

i∏
k=1

Qk . (3)

These weights are now independent of the replica number j,
such that estimates of observables follow from plain averages
over the population as indicated in step 4. The product of fac-
tors Qk , however, depends on the particular realization of PA
run. As we discuss in Sec. VII B, this has some consequences
for combining results from different runs.

The resampling process in step 2 can be implemented
in different ways [10,11]. As described in Ref. [10], in the
process of resampling a total of Ri−1 replicas are chosen
according to the probabilities τi(Ej )/Ri−1 using a multinomial
distribution. As Ri = Ri−1 = R, this amounts to a simulation
at a fixed population size that might be particularly useful for
an implementation of the algorithm on a distributed machine.
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Alternatively, one could use other resampling schemes with
a fixed population size with a similar effect [32]. Following
Ref. [11], it is also possible to use a sum of Poisson dis-
tributions, leading to a fluctuating population size. To keep
the fluctuations of the population size small in this case, it is
useful to define the rescaled probabilities

τ̂i(Ej ) = (R/Ri−1)τi(Ej ) (4)

and draw the number of copies to make of replica j ac-
cording to a Poisson distribution of mean τ̂i(Ej ). Sampling
from a multinomial or Poisson distribution using uni-
form (pseudo)random numbers efficiently is not completely
straightforward [33], so a useful and particularly simple alter-
native is to draw a random number r uniformly in [0,1) and
take the number of copies of replica j in the new population
to be

r j
i =

{�τ̂i(Ej )� if r > τ̂i(Ej ) − �τ̂i(Ej )�
�τ̂i(Ej )� + 1 otherwise . (5)

Here, �x� denotes the largest integer that is less than or
equal to x (i.e., rounding down). The new population size
is Ri = ∑Ri−1

j=1 r j
i . This method requires only a single call to

the random number generator for each replica in the current
population and no lookup tables, and additionally leads to
very small fluctuations in the total population size. In general,
it is possible to use an arbitrary distribution P (r1

i , . . . , rRi−1
i )

as long as 〈r j
i 〉 = τ̂i(Ej ), but the comparison of resampling

methods is outside of the scope of the present work [32,34].
Note that it is common that r j

i = 0 for some replicas, in which
case these copies disappear from the population, while other
configurations will be replicated several times.

In the standard setup, steps of equal size in inverse temper-
ature are taken, i.e.,

βi = βi−1 + �β, (6)

and �β is an adjustable parameter. It is also possible to
make the temperature steps self-adaptive [14], but we do not
discuss this possibility in the present paper that is focused
on an analysis of the plain vanilla algorithm in the (possibly)
simplest nontrivial system. Regarding the MCMC updates in
step 3, we focus here on single-spin-flip Metropolis and heat-
bath updates, i.e., local moves. The algorithm is completely
general, however, and a combination with other techniques
such as nonlocal cluster updates is straightforward [19]. Some
possible effects of the choice of spin-update algorithm are
discussed below in Sec. IV B.

To allow for a fair comparison between PA and standard
approaches, we usually consider simulations of the same over-
all runtime. As will be shown below in Sec. IX, the time
overhead for resampling is quite negligible in most situations;
almost all simulation time is spent flipping spins. For each
population member, θ calls to the MCMC subroutine are per-
formed after each resampling step. In the most general case,
during these updates μ measurements are taken at equidis-
tant time steps, followed by a temperature step β → β ′ =
β + �β. As a result, at each temperature step a sample of size
N = μR is available for all quantities considered. For the sake
of simplicity and because we want to analyze the behavior of
the algorithm as initially proposed, in the present work we

focus on μ = 1, but we point out that choosing μ > 1 will in
general improve the results [21].

III. MODEL AND OBSERVABLES

While many of the considerations developed below are
fairly general, the numerical work is focused on the case of the
2D ferromagnetic Ising model in zero field with Hamiltonian

H = −J
∑
〈i, j〉

sis j, (7)

where interactions are only considered between nearest neigh-
bors 〈i, j〉 on an L × L square lattice, and periodic boundary
conditions are applied throughout. In the following, we set
J = 1 to fix units. As is well known, this model undergoes
a continuous phase transition at the inverse temperature βc =
1
2 ln(1 + √

2) [35]. In addition to the closed-form solution of
the model first derived by Onsager [36], many results are
available also for finite systems [37–39], such that we can
compare our simulation results to exact data.

For the simulations discussed here, at each temperature
step we recorded the configurational energy Ek and the mag-
netization Mk , k = 1, . . . , N .1 From these, we calculate the
average energy per spin,

e = 1

Ld N

N∑
k=1

Ek, (8)

where d = 2 for the present case, the specific heat per spin,

CV = β2Ld

(
1

L2d N

N∑
k=1

E2
k − e2

)
, (9)

as well as the (modulus of the) magnetization per spin,

m = 1

Ld N

N∑
k=1

|Mk|, (10)

and the magnetic susceptibility per spin,

χ = βLd

(
1

L2d N

N∑
k=1

M2
k − m2

)
. (11)

Of course, it is easily possible to add other observables such
as correlation lengths, overlaps, or correlation functions, but
these will not be discussed explicitly here.

IV. INITIAL ASSESSMENT

A. Equilibration

All comparisons in this section are for simulations of ap-
proximately the same overall run-time. That is, if R is the
population size, θ is the number of equilibration steps, and
NT is the number of simulation temperatures, respectively, we

1Here and in the following sections, for notational convenience we
assume a constant population size even though a resampling scheme
with fluctuating population size could be used. It should be clear how
to generalize the resulting expressions to cover this case by replacing
R with Ri at each step.
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FIG. 1. (a) Specific heat as estimated from population annealing
with Metropolis update and fixed temperature steps �β = 1/300 for
L = 64. The pure Metropolis simulation shown for comparison uses
R = 1 with a total of 50 000 sweeps and measurements. The exact
reference data are calculated according to Refs. [37,38]. (b) Same as
panel (a), but for the heat-bath update. (c) Results of PA simulations
with the same parameters as in panel (a), but with the resampling step
turned off. To make the comparison as fair as possible, in contrast to
the rest of the paper all runs shown here use μ = θ measurements per
temperature step. The insets in panels (a) and (b) show detail around
the peak close to the critical point of the system.

keep the product RθNT constant. Also, the total number of
measurements (samples in averages) is the same for each data
set.

As is seen in Fig. 1(a), a small number θ of equilibration
steps is not sufficient to keep the population in equilibrium,
at least in the critical region. Nevertheless, it is clear that
the resampling itself also has an equilibrating effect, as the
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0.1
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0 0.2 0.4 0.6 0.8 1

1
/
τ i

n
t
(E

)

β

papriori = 0.5

FIG. 2. Inverse of the integrated autocorrelation time τint (E ) of
the energy estimated from simulations of a L = 128 system with a
single replica and different spin updates.

deviations are much larger for identical runs with the resam-
pling step switched off; cf. Fig. 1(c).

From these initial experiments, it becomes clear that a more
systematic understanding of the behavior of the algorithm is
required. In particular, we want to analyze the dependence of
the quality of estimation on the parameters of the approach.
In the following, we will present a principled study of the
statistical and systematic error (bias) as a function of the main
control parameters, the population size R, the size �β of the
inverse temperature step, and the number θ of calls to the
MCMC subroutine.

B. Spin updates

The efficiency of the MCMC step clearly depends on
the spin update employed. This is also visible comparing
Figs. 1(a) and 1(b), where the latter shows the specific heat
for the discussed simulations, but using the heat-bath update.
For the Ising model studied here, single-spin-flip updates es-
sentially come in the Metropolis and heat-bath variants (the
Glauber update is equivalent to heat bath for Ising spins;
see, e.g., Ref. [40]). Alternatively, one could also employ
cluster updates which would clearly lead to vastly improved
decorrelation in the critical region, but an investigation of
these updates embedded in the population annealing heuristic
is postponed to a later study.

Figure 2 shows the (inverse) integrated autocorrelation
times of the internal energy for different variants of Metropo-
lis updates as compared to the heat-bath algorithm. For most
temperatures, the sequential Metropolis update is found to
lead to the smallest values of τint (E ). It is well known that
Metropolis updates are more efficient than heat bath for Ising
spins (in contrast to systems with more microstates such as the
q-state Potts model with q > 2; see Ref. [41]). This effect is
well visible in Fig. 2, especially in the critical region. Also,
sequential updating, while (or because) it violates detailed
balance and only fulfills the necessary condition of balance,
in general leads to faster decorrelation [42,43]. Initially sur-
prisingly, however, the sequential Metropolis update does
not work well at high temperatures. As is easily seen, the
Metropolis acceptance probability min[1, exp(−β�E )] → 1
as β → 0; hence, virtually all proposed spin flips are ac-
cepted for very small β. In a sequential scheme, however,
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this means that the full spin configuration is being almost
perfectly inverted through each sweep, which clearly does
not lead to a proper decorrelation of configurations. In other
words, the sequential Metropolis update is not ergodic in
the limit β → 0. A number of modifications can be applied
to amend this, for instance, the introduction of an a priori
flipping probability less than one in the sequential update or a
return to the random-order update. As can be seen from Fig. 2,
these rectify the problem of nonergodicity for β → 0, but at
the expense of somewhat increased autocorrelation times for
all the other temperatures. In practice, the nonergodicity of
the sequential Metropolis update does not cause any major
problems in PA simulations unless one is interested in results
at very small β, and we have hence used this update for a range
of the simulations reported here. The effects of deviations for
the smallest β can be seen in some of the figures, for instance,
Figs. 5 and 10.

V. CORRELATIONS

A. Families

It is clear that the quality of approximation and, in partic-
ular, the statistical errors will crucially depend on the level
of correlations built up through resampling in the population.
A conservative way of estimating these effects is based on
the study of families [12,44], i.e., the descendants of a single
configuration in the initial population. If the simulation is
started with configurations created by simple sampling at β =
0, these are rigorously independent of each other. (This is only
approximately the case for systems with constraints where the
initial configurations might be generated by sampling them
from a single simulation at high temperatures [20].) To assess
statistical errors in a PA simulation, we would like to estimate
the variance of the mean

O = 1

R

R∑
j=1

O j (12)

of an observable O. Following arguments proposed in
Ref. [12], we first consider the case that O takes the same
value for all replicas of each family, corresponding to the
limit θ = 0. Denote the fraction of the present population that
descends from an initial replica k as nk . Then,

O =
f∑

k=1

nkOk, (13)

where Ok denotes the value of the observable O in the kth
family (at the current temperature), and f is the number of
surviving families at the current step. To estimate the variance
σ 2(O), we further assume that σ 2(Ok ) = σ 2(O), implying
that the variance is not correlated with the family size. Since
the families are uncorrelated, the individual variances add up
and one finds

σ 2(O) = σ 2(O)
∑

k

n2
k . (14)

In the fully uncorrelated case where each family has only one
member, nk equals 1/R and hence

σ 2(O) = σ 2(O)

R
, (15)

as expected for the variance of the mean of uncorrelated
random variables. More generally, we consider the quantity
Rt = R/ρt with

ρt = R
∑

k

n2
k (16)

an effective number of uncorrelated replicas in the θ = 0
limit.2 ρt represents the mean square family size [12].

Alternatively, it was also proposed in Ref. [12] to consider
the entropy of the family size distribution,

S f = −
∑

k

nk ln nk, (17)

such that Rs = R/ρs with

ρs = R/ exp(S f ) (18)

can be considered as an alternative measure of the effective
number of independent measurements. Figure 3 summarizes
the behavior of these family-related correlation measures for
runs of the 2D Ising model. It is clear that they are quite
similar to each other, showing a general decline through the
loss of diversity from resampling. It can be shown that at the
early stages of the process the decay in family numbers is
exponential, as in each step a fraction of 1 − κi is lost, where
κi is the overlap of the energy histograms (i.e., the probability
distribution of energies) at temperature steps i and i + 1. At
intermediate stages, however, the decay levels off as families
consist of more than one member and so the probability of
extinction is decreased. In the vicinity of the critical point,
there is a further steep decline in all three quantities. This
effect has two causes, namely (1) due to the overlap of energy
histograms at neighboring temperatures having a minimum
close to βc, there is a stronger multiplication of replicas in
the low-energy wing of the distribution leading to a stronger
correlation in surviving families, and (2) at least for small θ

the population members are not fully relaxed at a given tem-
perature, leading to a further reduction of the overlap of the
actual histogram at the higher temperature and the equilibrium
histogram at the lower one.

B. Effective population size

These measures related to the family statistics, however,
neglect the effect of the spin flips which, as is seen in Fig. 1,
are of crucial importance for the effectiveness of the full al-
gorithm (in order to get correct results from resampling alone,
exponentially large population sizes would be required). We

2But note that this incorporates the additional assumption of an
absence of correlations between the variance and the family size.
In Ref. [12], ρt is defined as the limit of Eq. (16) for R → ∞, but
a consideration for finite population sizes is more appropriate in
our formalism of considering an effective number of independent
replicas.
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FIG. 3. Effective number of independent replicas as estimated
from the family statistics for PA simulations with L = 64 (Metropolis
update, �β = 1/300). (a) Number f of surviving families. (b) R/ρt

according to Eq. (16). (c) R/ρs according to Eq. (18).

expect, for instance, that at low temperatures β � βc the local
dynamics will have no problem at equilibrating the population
(although, formally, the typical single-spin-flip dynamics are
not rapidly mixing as there remains a barrier between the
pure phases, but this is not seen in the behavior of energetic
quantities). Hence, it is clearly not the case that the “diversity”
in the population is minimal at the lowest temperature, but
we rather expect it to become minimal in the vicinity of the
critical point and then to come up again due to the spin-flip
updates.

This behavior is captured in correlations between different
members of the population, which are the property we are
actually trying to measure when considering the family statis-
tics. This is analogous to temporal correlations in standard
MCMC simulations which can be analyzed with a well-known

toolbox of techniques [45,46]. Consider an observable O. In
an uncorrelated sample, we know that the variance of the mean
O is inversely linear in the sample size R [47],

σ 2(O) = σ 2(O)

R
. (19)

In reality, however, there are correlations introduced through
the resampling process (but reduced by the effect of the
MCMC subroutine), such that the variance of the mean decays
only with an effective number of samples Reff (O) � R, i.e.,

σ 2(O) = σ 2(O)

Reff
= σ 2(O)

R/2τ int
R

, (20)

where τ int
R = τ int

R (O) measures the degree of correlation in
replica space. Assuming that we can estimate σ 2(O) and
σ 2(O), this provides an estimate of the effective number of
independent measurements,3

Reff (O) = σ 2(O)

σ 2(O)
. (21)

In general, the variance of the mean is given by

σ 2(O) = 1

R2

R∑
i, j=1

(〈OiO j〉 − 〈Oi〉〈O j〉) = 1

R2

R∑
i, j=1

�i j,

(22)

where �i j is the covariance matrix of the measurements Oi,
i = 1, . . . , R. Members of the population are more strongly
correlated the more recently in terms of previous temperature
steps they have originated from the same common ancestor.
We can localize these correlations by deliberately always
putting offspring of the same parent configuration next to
each other in the resampled population. We then expect the
correlations to be local, i.e., lim|i− j|→∞ �i j = 0 sufficiently
fast, such that the variance of the mean can be determined by
considering the statistics of a blocked series of n bins with
averages [48]

OB
i = 1

B

iB∑
j=(i−1)B+1

O j, i = 1, . . . , n, (23)

where B = R/n is the number of elements per block (for
simplicity, we assume that n is chosen to divide R). If blocks
are large enough, they will be effectively uncorrelated and we
can use the naive (uncorrelated) variance estimator to find the
variance of the mean,

σ̂ 2(O) = 1

n(n − 1)

n∑
i=1

(
OB

i − OB
)2

. (24)

Alternatively, in particular to reduce bias for nonlinear func-
tions of observables, one might want to use an analysis based
on jackknife blocks, where all data apart from the ith block of

3Note that we use somewhat sloppy notation here in not clearly
distinguishing between probabilistic parameters and their estimates.
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Eq. (23) are gathered in block i, i.e.,

OJ
i = B

R − B

∑
j �=i

OB
j , i = 1, . . . , n. (25)

The variance of the mean then follows from the corresponding
jackknife estimator [49],

σ̂ 2(O) = n − 1

n

n∑
i=1

(
OJ

i − OJ
)2

. (26)

Meanwhile, the variance σ 2(O) can be estimated by the
standard (uncorrelated) variance estimator on the unblocked
series, where bias corrections are proportional to τ int

R /R and
are hence not relevant in the desirable case where R � τ int

R .
For the present problem, locality of correlations can be

ensured through the resampling process by placing the r j
i

copies of each member of the parent population according
to Eq. (5) at adjacent indices of the resampled population.
Hence at each stage members of the same families are grouped
together. Correlations between population members then de-
cay with the distance |i − j| in index space since the larger
this separation the further in the past of the resampling tree
do the instances have a common ancestor, with the extreme
case being that of members of different families that are by
construction completely uncorrelated. To illustrate this, we
consider the distance dependence of the configurational over-
lap between replicas, i.e.,

Cq(i, j) = 1

Ld

Ld∑
k=1

s(i)
k s( j)

k , (27)

where s(i)
k denotes the kth spin variables in replica i. We expect

Cq(i, j) to be translationally invariant in replica-index space,
and so Fig. 4 illustrates the behavior of Cq(|i − j|) at different
temperatures for runs of R = 50 000 replicas. It is seen that
there is a clear decay of Cq(i, j) with the replica distance
|i − j|, and it is compatible with an exponential asymptotic
form,

Cq(i, j) ∼ exp(−|i − j|/τR), (28)

where τR is negligible for high temperatures. Close to critical-
ity for β = 0.44, the tail of Cq(i, j) for θ = 1 is compatible
with the form (28) with τR ≈ 32.3, while for θ = 5 it is
reduced to τR ≈ 3.0, and for θ = 10 we find τR ≈ 1.8. At
least for θ = 1 it is clearly seen that the initial decay does
not follow the same single exponential. This is in line with
the behavior of time series in MCMC, where the decay is in
general understood to be a superposition of many exponentials
[45]. One effect contributing to this behavior for the present
case of correlations in the population of PA is that even for
nearby replicas there is a chance of them belonging to differ-
ent families, which are by definition completely uncorrelated.
The decay of correlations in the regime of very small |i − j| is
therefore faster than the asymptotic decay; cf. Figs. 4(b) and
4(c).

Applying the blocking analysis to the thus-ordered pop-
ulation allows one to determine an effective number of
statistically independent replicas according to Eq. (21). The
resulting values extracted from the variances of the en-
ergy estimates are shown in Fig. 5. Initially, for β = 0, the
population is uncorrelated and hence Reff = R. On the one
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FIG. 4. Distance dependence of the overlap correlation function
Cq(i, j) according to Eq. (27) for PA runs of a L = 16 system
with R = 50 000 and θ = 1, 5, and 10, respectively. (a) At high
temperatures, the population is nearly uncorrelated. (b) Close to crit-
icality, significant correlations develop that asymptotically follow the
form Cq(i, j) ∼ exp(−|i − j|/τR ) with τR = 32.3 (θ = 1), τR = 3.0
(θ = 5), and τR = 1.8 (θ = 10), respectively. (c) For the overlap,
correlations persist in the ordered phase.

hand, the resampling generates correlations, leading to a gen-
eral decay of Reff . The spin flips, on the other hand, decorrelate
replicas and therefore work toward increasing Reff . On ap-
proaching the critical point, spin flips become less effective,
leading to a decay of Reff there, similar to what is observed
for the family-related observables R/ρt and R/ρs in Fig. 3. In
contrast to the latter quantities that do not feel the effect of
spin flips, however, Reff (E ) is able to recover to Reff (E ) = R
deep in the ordered phase. As we shall see below, Reff plays
a central role in the characterization of the performance of a
PA run. Figure 5(c) illustrates the fact that the family-related
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FIG. 5. Effective number of statistically independent samples
(for the energy measurement) in PA and standard canonical simula-
tions for an L = 64 system and different population sizes (a) for the
Metropolis and (b) for the heat-bath updates [please see panel (a) for
the legend of data sets]. Panel (c) shows the effective population
sizes Reff (E ) for the energy and Reff (M ) for the magnetization for
R = 25 000, θ = 2 in comparison to the quantity R/ρt based on
family statistics alone, illustrating that the latter is a lower bound
for the former, but it is far from being tight. All simulations shown
use inverse temperature steps of size �β = 1/300.

quantity R/ρt is a lower bound for Reff , but it is far from tight
and it can in fact be orders of magnitude below Reff . Due to the
dynamic ergodicity breaking, Reff (M ) does not recover in the
ordered phase in the way observed for Reff (E ). Note, however,
that this is dependent on the update algorithm employed and,
for instance, if using a cluster-update method [3,4,50], both
Reff (E ) and Reff (M ) approach R also in the ordered phase.
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FIG. 6. Estimated standard deviations of the mean (i.e., error
bars) of the internal energy, σ (E ), for the L = 32 Ising model as
estimated from PA simulations with the blocking technique using
Eq. (26) compared to the unbiased estimate resulting from repeating
the full simulation 200 times with different sequences of random
numbers (R = 50 000, θ = 10, �β = 0.01). All simulations use the
Metropolis update.

VI. STATISTICAL ERRORS

Note that the same blocking analysis provides estimates of
statistical errors of quantities sampled in PA from a single sim-
ulation run, such that the error estimates through multiple runs
initially proposed in Ref. [11] are no longer necessary. To this
end, one can use the blocked estimator (24) or, equivalently,
the jackknife estimator (26) for the variance of the mean. For
nonlinear observables such as the specific heat, correlation
length, etc., one should instead always use the jackknife form
(26) in order to minimize the statistical bias in error estimates
[49,51,52].

A useful check of self-consistency is to monitor the number
of independent samples estimated through Eq. (21). The ratio
R/Reff is like an integrated autocorrelation time. It should
be much smaller than the size B = R/n of a block for the
approach to be self-consistent. This is the case if

Reff � n. (29)

Since we typically use n = 100 to arrive at reliable error
estimates, Reff should not fall below a few thousand replicas to
avoid bias in the error estimation. At the same time, however,
the PA simulation itself is no longer reliable if this condition
is not met as we do not have sufficient statistically indepen-
dent information to sample the energy distribution faithfully.
As we shall see below, Reff also affects the simulation bias.
Monitoring Reff hence serves as an important indicator of the
trustability of the simulation results–much like the integrated
autocorrelation time provides such an indicator for MCMC
simulations [45].

To confirm the reliability of this way of estimating sta-
tistical errors, we show in Fig. 6 a comparison of the error
bars thus computed to the errors estimated independently
from repeating the PA simulation 200 times with independent
seeds of the random-number generator. These simulations
for L = 32, R = 50 000, and θ = 10 show full compatibility
between the two approaches. A more detailed analysis shown
in Fig. 7 illustrates the dependence on population size (which
shows no differences between the two approaches) and the
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FIG. 7. Ratio of error bars estimated from the jackknife analysis
of a single PA run and from the fluctuation between 200 independent
runs for PA simulations of the 2D Ising model with L = 32 (�β =
0.01). Deviations from the target value 1.0 occur if the number Reff of
independent measurements becomes too small and hence the blocks
in the analysis are no longer independent. As illustrated in panel (c),
in this case the blocking or jackknifing approach underestimates the
errors.

number θ of rounds of spin flips. It is clear that as soon as
the number Reff of independent samples becomes too small,
and hence the population too strongly correlated, the blocking
analysis becomes unreliable (we find that Reff ≈ 600 for R =
50 000 near criticality for θ = 1). As in the analysis of MCMC
simulations, it is hence quite easily possible to monitor the
self-consistency of the error analysis.

It remains to discuss the dependence of statistical errors
on the parameters R, �β, and θ of the PA simulation. At
each resampling step, correlations are introduced into the
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FIG. 8. Effective relative number of independent members of the
population, Reff/R, for PA simulations of the L = 64 system with
�β = 0.005 and varying population sizes in dependence of the θ

values. (a) Runs at temperature T = 2.325, close to the critical point.
(b) Runs at T = 2.5 in the disordered phase. The lines show fits of
the functional form (30) to the data with (a) τeff = 51.2 and (b) τeff =
2.2, respectively.

population through the creation of identical copies of some
members and the elimination of others, leading to a reduction
of the effective population size Reff . The subsequent applica-
tion of spin flips onto each replica, in contrast, works toward
removing such correlations between population members with
common ancestors. The quantitative effect of these processes
is discussed in more detail in Appendix A. The corresponding
correlation and decorrelation of replicas depends on the model
as well as on temperature, such that the overall effect on Reff

after a number of temperature steps is hard to infer in closed
form. Overall, however, one clearly expects an exponential
dependence of Reff on θ , and we find the following relation
to accurately describe the data,

Reff = R[1 − c exp(−θ/τeff )], (30)

where c is some constant that might depend on further simu-
lation parameters such as �β (see below). To illustrate this,
in Fig. 8 we show the behavior of Reff/R as a function of
θ for temperatures T = 2.325 and T = 2.5 and a range of
different population sizes. As the population size is increased,
Reff approaches the form (30), which is very well observed
for the largest population with R = 128 000 as is illustrated
by the fit of the form (30) shown in Fig. 8(a) that yields τeff ≈
51.2. Given that we used B = 31, 62, and 250 bins for R =
1000, 8000, and 128 000, respectively, our self-consistency
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0.43, R = 10 000). The data are averaged over 200 independent runs.
The lines show one-parameter fits of the form 1 − Reff/R = A�β.

condition Reff � n, which in practice we read as Reff > 50n,
implies that all estimates of Reff for R = 1000 are unreliable,
while this applies only to Reff/R � 0.4 for R = 8000 and
Reff/R � 0.09 for R = 128 000, which appears to be in line
with the deviations observed in Fig. 8(a).4 As is apparent from
Fig. 8(b), such problems only occur for the smallest values of
θ for the higher temperature T = 2.5. There, the functional
form (30) works well for all three population sizes, and a fit
yields τeff ≈ 2.2.

Regarding the dependence of statistical errors on �β, it
is clear that Reff should approach R as �β → 0 since there
is no correlating effect from resampling for �β = 0 and the
number of Monte Carlo sweeps performed in a given tempera-
ture interval increases inversely proportional to �β. In Fig. 9,
we show 1 − Reff/R as a function of �β for different choices
of θ , and it is clear that the behavior is linear for small �β.
In fact, it is possible to derive this scaling for the behavior
in a single temperature step from the arguments laid out in
Appendix A. We hence generalize relation (30) to include the
effect of varying temperature steps,

Reff = R

[
1 − �β

�β0
exp(−θ/τeff )

]
, (31)

which is correct in the limit �β → 0. Here, �β0 is an em-
pirical constant, and from the fits shown in Fig. 9 we find
�β0 ≈ 0.005, which is in line with the results of Fig. 8, where
we found c ≈ 1 for the step size �β = 0.005 used there.

The population size affects the statistical errors in the ex-
pected way. In well-equilibrated simulations, statistical errors
decay as 1/

√
R which is an immediate consequence of the

number of families growing linearly with R, such that the
number of independent samples must also grow linearly with
the population size. This fact is illustrated in the scaling plots

4Note that the ratio Reff/R will always be overestimated if the
blocks in the binning analysis are not sufficiently independent. This
leads to an approach of the asymptotic form of Eq. (30) from above
as is seen in Fig. 8.
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FIG. 10. Estimated standard deviation of the mean times
√

R for
the energy of the L = 64 Ising model for PA simulations with a
range of different population sizes R for (a) θ = 10 and (b) θ = 1,
respectively (�β = 0.01).

for the error bars of the energy in Fig. 10. For θ = 10, the sim-
ulations are sufficiently close to equilibrium everywhere and
clear 1/

√
R scaling of statistical errors is observed. For θ = 1,

however, such behavior is almost nowhere observed: For very
high temperatures, this is prevented by the nonergodicity of
the sequential Metropolis update (cf. Sec. IV B), and in the
critical region it is prevented by critical slowing down. Only
for very low temperatures is a scaling collapse visible.

VII. FREE ENERGIES

A. Free-energy estimate

As was already shown by Hukushima and Iba [10],
population annealing naturally allows us to estimate partition-
function ratios or, equivalently, free-energy differences. This
can be motivated by the following telescopic product expan-
sion of the partition function,

−βiF (βi ) = ln Zβi = ln

(
Zβi

Zβi−1

Zβi−1

Zβi−2

· · · Zβ1

Zβ0

Zβ0

)

= ln Zβ0 +
i−1∑
j=0

ln
Zβ j+1

Zβ j

. (32)

The partition function ratios on the right-hand side are equiv-
alent to expectation values of ratios of Boltzmann factors,
〈exp[−(βk − βk−1)E ]〉β = Zβk /Zβk−1 , which in turn are esti-
mated in PA by the normalization factors Q(βk−1, βk ); cf.
Eq. (1). As a consequence, a natural estimator of the free
energy at βi, i = 0, . . . , NT (there are NT + 1 temperatures

053301-10



UNDERSTANDING POPULATION ANNEALING MONTE … PHYSICAL REVIEW E 103, 053301 (2021)

including β0) is given by [11]

−βiF̂i = ln Zβ0 +
i∑

k=1

ln Q(βk−1, βk ). (33)

If β0 = 0 is chosen, Zβ0 corresponds to the number of mi-
crostates, which usually can be worked out exactly. For the
present case of Ising systems, we have ln Zβ0 = Ld ln 2.

While the form Eq. (33) might appear like an expression
that is specific to the PA method, it is in fact a slight gener-
alization of what is more traditionally known in the field of
Monte Carlo simulations as thermodynamic integration. This
is easily seen by noting that in the limit �β → 0 we have

−βiF (βi ) = ln Z0 + ln
i∏

k=1

〈e−(βk−βk−1 )E 〉βk−1

�βk→0−→
∑

k

(−�βk )〈E〉βk−1 + ln Zo

�βk→0−→
∫ βi

β0

〈−E (β ′)〉 dβ ′ + ln Z0, (34)

where �βk = βk − βk−1. Equation (34) is the standard ex-
pression for calculating free energies via thermodynamic
integration [15,53,54]. In fact, the above relation can be read
in the opposite direction also, telling us that a more accurate
version of thermodynamic integration that disposes of the
requirement of taking small inverse temperature steps is given
by the first line of Eq. (34).

Apart from being an interesting observation, relation (34)
provides a useful guideline allowing us to understand the
behavior of PA in the limit of small temperature steps. In
the above limit �β → 0 of thermodynamic integration, an
alternative PA estimator of the free energy is given by

−βF̃ (β ) = ln Z0 −
∫ β

β0

E (β ′) dβ ′, (35)

where E (βi ) = (1/Ri )
∑

j E j is the population average of the
internal energy. As we shall see in Sec. VII B, the variance of
the free-energy estimate is of some relevance for the reliability
of PA. According to Eq. (35), the variance of βF̃ is given by

σ 2(βF̃ ) = σ 2

[∫ β

β0

E (β ′) dβ ′
]
. (36)

If the populations at successive temperatures are statistically
independent of each other, one can interchange the variance
and the integral to find

σ 2(βF̃ ) ≈ �β

∫ β

β0

σ 2[E (β ′)] dβ ′. (37)

Hence, the variance of the free-energy estimator corresponds
to the integral (sum) of the squared error bars of the energies
along the trajectory in β. Clearly, the variance of βF̃ is propor-
tional to �β in this limit. As we shall see below in Sec. VIII B,
this implies that the bias of PA is also linear in �β. If also
the members of the population at a given temperature are

uncorrelated to each other, one concludes that

σ 2(βF̃ ) ≈ �β

R

∫ β

β0

σ 2[E (β ′)] dβ ′. (38)

Finally, if the simulation is in equilibrium at all times, one can
also write this as

σ 2(βF̃ ) ≈ �β

R

∫ β

β0

CV (β ′)Ld

β ′2 dβ ′. (39)

The inversely linear dependence of the variance of the
free-energy estimate on R is expected, and a more general
argument in support of this relation is discussed below in
Sec. VIII B. In the presence of correlations between popula-
tion members, Eq. (38) becomes instead

σ 2(βF̃ ) ≈ �β

∫ β

β0

σ 2[E (β ′)]
Reff (β ′)

dβ ′. (40)

This relation shows the intimate relation of σ 2(βF̃ ) and the
effective population size Reff . Effectively differentiating rela-
tion (35), we find for the free-energy contribution of one step
in the limit β → 0,

β�F̃ ≈ �βE (β ), (41)

and hence

σ 2(β�F̃ ) ≈ (�β )2σ 2[E (β )]

= (�β )2 σ 2(E )

Reff
= (�β )2 CV Ld

β2Reff
. (42)

To illustrate the regime of validity of the thermodynamic
integration approximation, we show in Fig. 11 the variance of
the free-energy estimator (33) as estimated from the statistics
over 200 independent runs in comparison to the approxima-
tions of Eqs. (39) and (40), respectively. For �β = 0.01,
the approximations track the independent estimate quite well
until reaching the critical regime, where significant deviations
start to appear. It is clear, however, that the expression (40)
involving Reff is a more accurate description than the esti-
mator (39). As the inverse temperature step is decreased to
�β = 0.0025 and finally to �β = 0.001, the agreement with
the independent estimate of σ 2(βF̂ ) improves significantly.

B. Weighted averages

For technical reasons, it is not always possible to consider
in a single PA run as big a population size as would be
desirable. In this case, one may resort to performing several
independent runs with smaller populations and then averaging
the results. Instead of using a plain arithmetic average, it was
proposed by Machta in Ref. [11] to employ weighted averages
of the independent runs to reduce bias and statistical errors
of the final answers. The necessity of such weighting follows
immediately from the configurational weights W j

i discussed
in Sec. II. For the version of the algorithm where resampling
according to τi(Ej ) is performed at each temperature step, at
inverse temperature βi the replicas carry a weight W̃ j

i accord-
ing to Eq. (3),

W̃ j
i = 1

Zβi

i∏
k=1

Qk = 1

Z0Zβi

exp(−βiF̂i ). (43)
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FIG. 11. Variance of the free-energy estimator βF̂ for different
choices of �β. The purple crosses show the variance of the quantity
(33) as estimated from 200 independent PA runs. The green squares
and blue circles show the estimates derived via Eqs. (39) and (40), re-
spectively, from the same simulations (L = 64, R = 10 000, θ = 50).
For clarity of presentation, only every 10th temperature point is
plotted with a symbol.

While these weights are the same for all replicas of the same
run, and so they do not enter any of the thermal averages for
one run, they should be taken into account when combining
data from different PA simulations. If we perform M indepen-
dent PA runs with initial population sizes Rm, we hence should
take a weighted average of observables according to

O(βi ) =
M∑

m=1

ωm
i Om(βi ), (44)

with

ωm
i = Rm

i exp
(−βiF̂ m

i

)∑
m Rm

i exp
(−βiF̂ m

i

) . (45)

Note that W̃ j
i refers to single replicas, and so the prefactors Rm

i
in Eq. (45) make sure that each replica gets the same weight
in the average over several runs. It is worthwhile to point out
that these weights are temperature dependent; in particular,
they are different at each temperature step of the simulation.
As resampling proportional to τi(Ej ) is only really reasonable
for the case of a constant population size, in practice one has
Rm

i = Rm in Eq. (45).
For resampling procedures with a fluctuating population

size such as the Poisson and nearest-integer schemes, how-
ever, the considerations of Ref. [11] need to be generalized.
In this case, population members are replicated proportional
to τ̂i(Ej ) = (R/Ri−1)τi(Ej ); cf. Eq. (4). As a consequence, in
this case the weights W̃ j

i become

W̃ j
i = 1

Z0Zβi

i∏
k=1

(
Rk−1

R

)
exp(−βiF̂i ), (46)

such that in this more general situation the weights of Eq. (45)
turn into

ωm
i = Rm

i

∏i
k=1

(
Rm

k−1/Rm
)

exp
(−βiF̂ m

i

)∑
m Rm

i

∏i
k=1

(
Rm

k−1/Rm
)

exp
(−βiF̂ m

i

) , (47)

and hence the standard choice (45) is formally not correct for
fluctuating population size. In practice, the difference between
the weights (45) and (47) is rather small, however.5 Note that
the R related factors in Eq. (47) incorporate the effect of two
types of variations in population size: (1) independent PA runs
with different target population sizes Rm (extrinsic fluctua-
tions) and (2) the fluctuations of actual population size Rm

i in
a given simulation at inverse temperature βi induced by using
a resampling method such as the Poisson or nearest-integer
schemes (intrinsic fluctuations).

Regarding the behavior of the weights ωm
i , one sees from

the small �β expression (35) that βF̂ m
i should follow a nor-

mal distribution for small �β and large R. We expect this to
be the case also for �β that are not very small. Disregarding
the effect of the much more slowly fluctuating denominator
in Eq. (45), it is then clear that ωm

i will follow a log-normal
distribution. [While this is for the case of constant population
size, similar conclusions would be reached when considering
Eq. (47) representing the more general situation of fluctuating
Rm

i .] If F̂ m
i ∼ N (μ, σ 2), we see that

ωm
i = Rm exp

(−βF̂ m
i

)∑
m Rm exp

(−βF̂ m
i

) = Rm exp
(−βF̂

m
i

)∑
m Rm exp

(−βF̂
m
i

) , (48)

5To see this, consider the variance of the product
∏i

k=1(Rm
k−1/Rm ).

If the population sizes Rm
k−1 are uncorrelated, we can approximate

σ 2

(
i∏

k=1

Rm
k−1

Rm

)
≈ iσ 2

(
Rm

i

)
(Rm )2

� Nβ

Rm
,

where we used the fact that 〈Rm
i 〉 ≈ Rm and σ 2(Rm

i ) � Rm. Hence, the
effect of the additional factors depending on Rm

k−1 is small whenever
Nβ � R, which should normally be the case.
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where F̂
m
i ∼ N (0, σ 2). Checking the properties of the log-

normal distribution, we see that the mean of exp(−βF̂
m
i )

is exp[σ 2(βF̂
m
i )/2] and the most likely value (mode) is at

exp[−σ 2(βF̂
m
i )]. If σ 2(βF̂

m
i ) ≡ σ 2(βF̂ m

i ) is at least of order
1, average and typical value are substantially different and
hence the weighted average will be dominated by the tails
of the distribution. Numerical estimates will then be unsta-
ble. Interestingly, there is no further scale in this relation
and it is indeed the comparison of σ 2(βF̂ m

i ) and unity that
distinguishes the two limiting cases. Also note that it is the
variance of the total free energy and not the free energy per site
that matters here, so there is an important size dependence.
For σ 2(βF̂ m

i ) > 1 weighted averages will be poor, but this
does not mean that bias and/or statistical error for any other
observable of a single run must be bad. A clear-cut case would
be the Ising model simulated with PA using cluster updates. In
that case, the dynamics are rapidly mixing everywhere [55],
in particular also in the ordered phase where single-spin flips
are not able to connect configurations in the two pure phases
in polynomial time. Hence, for a Swendsen-Wang update in
the ordered phase, there are no biases if we simulate for long
enough (θ sufficiently large); however, depending on the other
parameters, it could well be that σ 2(βF̂ m

i ) > 1. This clearly
shows that the value of σ 2(βF̂ m

i ) is not suitable as a sole
general measure of equilibration. Numerically, we find that
the range of situations where weighted averaging is beneficial
is rather limited as when σ 2(βF̂ m

i ) � 1 the weights are very
nearly equal to each other, such that the weighted average
reduces to a plain average, whereas for σ 2(βF̂ m

i ) > 1 the
weighting scheme breaks down for the reasons outlined above.

It is also useful to revisit the estimates of σ 2(βF̃ ) found in
the previous section. In the limit θ → ∞ where the popula-
tion is perfectly in equilibrium and perfectly uncorrelated at
each step, Eq. (39) implies that there is still some variance
of βF̃ which could well be larger than one if the specific
heat is large enough, although the population is perfectly in
equilibrium. Hence, there is an intrinsic component of the
variance of the free energy that is independent of any cor-
relations in the population, but which might lead to biased
estimates.

VIII. BIAS

Bias in PA results from two sources: the finite population
size affecting the resampling step and the usual equilibration
bias present in the MCMC subroutine. The former is related to
the reweighting bias well known from reweighting techniques
in MCMC [56]: On using the distribution at inverse temper-
ature β for estimating that at β ′ > β, events in the relatively
badly sampled wing of the current distribution are amplified,
whereas those in the peak are suppressed, leading to bias from
bad statistics in this wing, especially if �β = β ′ − β is cho-
sen (too) large. There is a second bias effect connected to the
resampling which is through the introduction of correlations
in the population effected by the resampling step, thus also
deteriorating the quality of the representation of the energy
distribution pβ (E ) by the population of replicas through a
reduction of the effective population size (see the discussion
in Sec. V).

A. Behavior without resampling

We first consider the case of the PA algorithm without
resampling, where the only source of bias is the relaxation
process as the population is cooled in steps. Assume that
the population is in equilibrium at inverse temperature β. If
a temperature step �β is taken, the system needs to relax
toward the new equilibrium energy at β + �β. Assuming
a purely exponential relaxation process,6 the energy will
decay as

E (t ) = 〈E〉β+�β − [〈E〉β+�β − 〈E〉β ]e−t/τrel , (49)

where τrel = τE
rel(β + �β ) is the exponential relaxation time

of the internal energy at β + �β [45]. For sufficiently small
temperature steps, a first-order Taylor expansion of the energy
as a function of (inverse) temperature implies that [40]

〈E〉β+�β − 〈E〉β ≈ ∂〈E〉
∂β

�β = −β−2LdCV �β, (50)

and hence we find that the remaining bias �E after θ sweeps
of spin flips is

�E = E (θ ) − 〈E〉β+�β ≈ β−2LdCV �βe−θ/τrel . (51)

To simplify notation, in the following we use E ′ = ∂E/∂β =
−β−2LdCV . For an annealing sweep starting in equilibrium
from temperature β0 (for instance, for β0 = 0) that arrives at
temperature β, there are remaining biases from all previous
temperature steps,

�Ei = −E ′
i �βe−θ/τrel,i + �Ei−1e−θ/τrel,i , (52)

where E ′
i = E ′(βi ) refers to the slope of the energy curve at

step i, and τrel,i = τE
rel(βi ). Iterating one finds with �E0 = 0

that

�Ei ≈ −
i−1∑
j=0

E ′
i− j�β exp

[
−θ

j∑
k=0

1/τrel,i−k

]
. (53)

While this expression yields the expected bias at inverse tem-
perature βi, in order to study the dependence on �β, we need
to express the bias directly as a function of β,

�E (β ) ≈ −
n(β )∑
j=1

E ′(β0 + j�β )�β exp

⎡⎣−θ

n(β )∑
k= j

1/τrel,k

⎤⎦,

(54)

where n(β ) = (β − β0)/�β is the number of temperature
steps up to inverse temperature β. Often one will use small
inverse temperature steps �β such that we can approximate
the sums by integrals to find

�E (β ) ≈ −
∫ β

β0

E ′(β̃ ) exp

[
− 1

κ

∫ β

β̃

dβ̂

τrel(β̂ )

]
dβ̃, (55)

where κ = �β/θ is the cooling rate. Inspecting Eq. (54), we
immediately see that to leading order �Ei ∼ �β, but note

6This is, in general, a simplification, but the scaling results derived
below are expected to carry over to the case of a more general
spectrum of superimposed exponential decays.
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that a change of inverse temperature step changes the whole
sequence of the βi and hence has additional effects on �Ei.
Considering the dependence on θ , we note that �Ei depends
on a sequence of exponentials for all higher temperatures that
decay with the harmonic mean of the corresponding relaxation
times.

We cannot proceed any further in evaluating the bias of
(54) without further simplifying assumptions. In the extreme
case where all τrel,i = τrel are equal and E ′ is independent of
β, we have from Eq. (54)

�E (β ) ≈ −E ′�β

n(β )∑
j=1

exp

[
− θ

�βτrel
[β − ( j − 1)�β]

]

= −E ′�β
e−θ/τrel

1 − e−θ/τrel

[
1 − exp

(
− θβ

τrel�β

)]
, (56)

where we have set β0 = 0 for simplicity. We note that while
these assumptions are not accurate in general for the 2D
Ising model studied here, they will be a good approximation
for small �β when the rates of change of τrel and E ′ are
small. For small �β, the term in square brackets will be
negligible. In this case, we expect the θ dependence to be
purely exponential �E = −E ′�βe−θ/τrel for θ/τrel � 1, with
a crossover to the inverse linear behavior �E ≈ −E ′�βτrel/θ

for θ/τrel � 1. Note also that for this simple scenario the
form (56) ensures that �E (β0 = 0) = 0 (which will always
be the case by assumption) and bias increases away from
β0 in an exponential fashion to its temperature-independent
limiting form. Regarding the dependence on temperature step,
we see that for small �β this is linear, with an exponential
crossover to the constant �E ≈ −E ′β(1 − θ/2τrel ) expected
in the limit of large steps �β. In Fig. 12, we show the relative
deviation of internal energies at the critical coupling βc from
the exact result, ε(E ) = (E − Eexact )/Eexact, calculated from
PA runs for L = 32 with resampling turned off. The data
have been averaged over m = 200 runs to reduce statistical er-
rors, such that ε(E ) is indeed representative of the systematic
error. As is seen from the fits shown together with the data,
which are of the form derived above but with independent
amplitudes to take account of the approximations involved,
the simplified model fits the simulation data very well. The
effective relaxation time τrel = 45.4(6) (extracted from the fit
for �β = 0.1) is comparable, but somewhat smaller than the
integrated critical autocorrelation time of τint = 72 ± 14 ex-
tracted from a blocking analysis. Note that in general the bias
is not a function of the cooling rate κ alone as might be naively
assumed, although as the analysis of the simplified form (56)
above shows, this is the dependence in certain limiting cases.

We note that while these calculations are for the en-
ergy bias �E , similar results hold for biases in other
quantities with the energy derivative ∂〈E〉/∂β = −β−2LdCV

replaced by the corresponding derivative of the observ-
able considered and with using the corresponding relaxation
times.

B. Effect of resampling

We now turn to the situation of PA with the resampling
step enabled. We find that resampling leads to a reduction
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FIG. 12. Relative deviation ε(E ) = (E − Eexact )/Eexact of the in-
ternal energy at the critical inverse temperature βc = 1

2 ln(1 + √
2)

for an L = 32 system sampled in PA runs without resampling on
a population of size R = 10 000. The results are averaged over
m = 200 independent runs to reduce statistical errors. (a) Relative
deviation as a function of θ together with fits of the functional form
ε(E ) = ae−θ/τrel (1 + b/θ ) motivated by (56) to the data. (b) Rela-
tive deviation as a function of �β with fits of the functional form
ε(E ) = a�β(1 − e−b/�β ).

in bias that is almost independent of θ , such that in this
respect it is similar to choosing a reduced inverse tempera-
ture step. This is illustrated for �β = 0.05 in the additional
data set in Fig. 12(a). The resampling procedure introduces
an additional dependence on the step size �β due to his-
togram overlap as outlined above. To understand this effect,
we extend the analysis proposed by Wang et al. [12]. It was
shown there that in the limit of large population sizes the
bias �O = 〈Ô〉 − 〈O〉 of an observable O, i.e., the differ-
ence of the expected value of the estimator Ô from PA runs
with a given set of parameters and the thermal expectation
value of O is given by its covariance with the free-energy
estimate,

�O = cov(Ô, βF̂ ). (57)

In Ref. [12], it is argued that the size of this bias is essentially
determined by the variance σ 2(βF̂ ), namely if one decom-
poses

�O = cov(Ô, βF̂ ) = σ 2(βF̂ )

[
cov(Ô, βF̂ )

σ 2(βF̂ )

]
, (58)

the quantity in square brackets is claimed to be asymptot-
ically independent of R. If and when the estimator βF̂ of
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Eq. (33) [together with Eq. (1)] is a sum of many uncorrelated
contributions of finite variance stemming from effectively
uncorrelated subpopulations, the central limit theorem im-
plies that its variance σ 2(βF̂ ) ∝ 1/R. In these cases, we
can expect the bias in R to decay as 1/R. We will discuss
the numerical findings regarding this behavior below. For
completeness, let us mention that it is useful to define the
quantity [12]

ρ f = R σ 2(βF̂ ), (59)

which will attain a finite value in the limit R → ∞ if the
above scaling holds. As was discussed above in Sec. VII B,
weighted averages are dominated by outliers for σ 2(βF̂ ) � 1,
and it is hence reasonable to demand that R � ρ f for reliable
results, justifying the name equilibration population size for
ρ f [12].

Before turning to our numerical results for the R depen-
dence of bias, we study the dependence of cov(Ô, βF̂ ) and
σ 2(βF̂ ) on �β. To investigate σ 2(βF̂ ), we note that the
estimator (33) is a sum of i + 1 terms. Neglecting correlations
between these terms, the variance of the sum will be the
sum of the variances [47]. While the constant ln Zβ0 does not
contribute to the variance, each of the other terms δβkF̂k ≡
ln Q(βk−1, βk ) yields

σ 2(δβkF̂k ) = σ 2[ln Q(βk−1, βk )]

≈ σ 2

[
ln

Rk−1∑
j=1

e−�βEj

]
, (60)

where we have used the fact that the prefactor Rk−1 in Eq. (1)
has only tiny fluctuations or the algorithm could also be for-
mulated for fixed Rk−1 = R. Error propagation implies that to
leading order and neglecting correlations between the random
variables Ej , j = 1, . . . , Rk−1 we have

σ 2(δβkF̂k ) ≈ (�β )2
∑

j

e−2�βEj

[
∑

l e−�βEl ]2 σ 2(Ej ). (61)

Since the number of temperature steps up to a given, fixed
inverse temperature β is inversely proportional to �β, we find
the leading behavior

σ 2(βF̂ ) ≈
∑

k

σ 2(δβkF̂k ) ∝ �β. (62)

While in reality there will be correlations between the es-
timates of the different free-energy differences as well as
between the energies in the population, we do not expect
these to alter the leading scaling behavior. For the covari-
ance cov(Ô, βF̂ ), an analogous argument shows that in one
step cov(Ô, δβkF̂k ) ∝ �β. However, in contrast to σ 2(βF̂ ) =
cov(βF̂ , βF̂ ) where O = βF̂ depends on all previous temper-
ature steps, for a “regular” observable O such as the energy
or magnetization that is a function only of the population at
inverse temperature β, there are no contributions of previous
temperature steps to the covariance, and hence the dependence
of the total number of temperature steps on �β is not rele-
vant for the scaling of cov(Ô, δβkF̂k ) with �β such that we
have

cov(Ô, βF̂ ) ∝ �β. (63)
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FIG. 13. (a) Relative deviation ε(E ) = (E − Eexact )/Eexact of the
internal energy at the critical inverse temperature βc for an L = 32
system sampled in PA runs with resampling on a population of size
R = 10 000 as a function of inverse temperature step �β. The inter-
polating lines are merely guides to the eye. The red dashed line shows
the exact histogram overlap α at criticality as a function of step size
(right scale). (b) Bias |�E | = |E − Eexact| for the run with θ = 10 as
compared to the covariance cov(E , βF̂ ) of Eq. (57) together with a
linear fit for small values of �β.

To check these predictions of limiting behaviors, we per-
formed simulations for a wide range of step sizes 0.5 ×
10−5 � �β � 10−1 and MCMC steps 1 � θ � 200. The re-
sults are summarized in Fig. 13(a). For larger values of �β,
we find a moderate reduction of bias as compared to the
algorithm without resampling [cf. Fig. 12(b)] but substan-
tially increased fluctuations. [Note that the topmost data set in
Fig. 12(b) is for θ = 10 while that in Fig. 13(a) is for θ = 1.]
Such increased fluctuations occur due to the loss of diversity
in the population induced by the resampling. For �β � 0.05,
we have an overlap of energy histograms at inverse tem-
peratures βc and βc + �β of less than 10% [right scale of
Fig. 13(a)], such that the amount of statistically independent
information in the population is reduced by more than a factor
of 10 in each step—an effect that is only partially made up
by the intermediate equilibration sweeps. Only for �β � 0.02
is the histogram overlap large enough to counterbalance this
effect and lead to a significantly reduced bias without an
accompanying increase in statistical fluctuation (cf. also the
discussion of the balance of these effects in Appendix A).
We note that the histogram overlap decays exponentially away
from �β = 0. It is minimal around the critical point and, as
one reads off from Fig. 13(a), for the L = 32 system it is about
0.3 for �β = 0.02 at βc, which could therefore be consid-
ered a reasonable maximal inverse temperature step for this
case.
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FIG. 14. Variance σ 2(βF̂ ) and covariance cov(βF̂ , E ) averaged
over the temperature range 0 � β � 1 for L = 32 as a function of
�β. Both scale proportional to �β in the limit of small steps, as the
linear fits illustrate.

To investigate the functional dependence of �E on �β,
consider Fig. 13(b), where �E from Fig. 13(a) is shown for
the case of θ = 10, but now in a doubly logarithmic plot, dis-
played together with the expected bias cov(E , βF̂ ) according
to Eq. (57). One can distinguish three regimes: For �β � 0.04
the actual bias clearly exceeds cov(E , βF̂ ), indicating that
the assumptions made in the derivation leading to the form
(57) (in particular the Gaussian nature of fluctuations) are
not fulfilled there. For 0.01 � �β � 0.04, the measured bias
agrees with the prediction from the covariance. Finally, for
�β � 0.01 the bias in the actual simulation drops below the
noise level and hence its further reduction cannot be observed.
In this latter regime, the predicted bias cov(E , βF̂ ) follows the
linear decay ∝ �β expected from Eq. (63). That the variance
σ 2(βF̂ ) as well as the covariance cov(E , βF̂ ) indeed decay
proportional to �β for sufficiently small steps is more cleanly
demonstrated by the data for the temperature-averaged bias
presented in Fig. 14 (the dependence on �β is found to be
uniform in β), showing the linear decay to hold over sev-
eral orders of magnitude for sufficiently small �β for both
quantities. It again turns out to be crucial to ensure sufficient
histogram overlap to observe this behavior, which is achieved
for �β � 0.02 for this system size.

C. Dependence on population size

It remains to discuss the dependence of systematic errors
on the population size. The analysis in Ref. [31] for a double-
well model in the absence of any autocorrelations as well
as the arguments from Ref. [12] discussed in the previous
subsection suggesting that σ 2(F̂ ) ∝ 1/R for large R would
indicate that bias decays inversely in R. To scrutinize the
behavior for the PA simulations of the Ising model consid-
ered here, in Fig. 15(a) we show the relative deviation in the
internal energy, ε(E ) = (E − Eexact )/Eexact, as a function of
R. In the critical region, it decays much more slowly than
1/R and one sees hardly any reduction in bias although R is
varied over three orders of magnitude. In contrast, Fig. 15(b)
shows the bias as a function of θ , where corresponding data
sets in the two panels belong to calculations with the same
computational effort (and the scales on the axes are the same).
Here, the decay is fast and consistent with an asymptotically
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FIG. 15. (a) Relative deviation |ε(E )| = |(E − Eexact )/Eexact| of
the internal energy from PA simulations for L = 64, �β = 0.01,
and θ = 1 (heat-bath update) and population sizes ranging from
R = 103 to R = 106. (b) The same bias for a population R = 1000
for different choices of 1 � θ � 1000. (c) Energy deviation relative
to the statistical error in a logarithmic representation, illustrating that
for θ � 50, the bias drops below the statistical fluctuations [symbols
of data sets as in panel (b)]. Corresponding data sets in all panels
amount to the same total computational effort.

exponential drop as expected. As is illustrated in Fig. 15(c)
showing the deviation relative to the statistical error, for
θ � 50 the bias drops below the level of the noise.

It is also instructive to examine the expression for the bias
in the “thermodynamic integration limit” �β → 0 discussed
above. To the extent that the MC is efficient and hence the pop-
ulations at successive temperature points are not very strongly
correlated, one could replace the free-energy estimate βF̂ in
Eq. (57) by the last increment β�F̂ ,

�O ≈ cov(Ô, β�F̂ ). (64)
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In the limit �β � 1, one then finds from Eq. (41) and recall-
ing Eq. (20)

�O ≈ �β cov[Ô, E (β )] = �βσ 2(E )
cov(Ô, E )

σ 2(E )

≈ �β
σ 2(E )

Reff

[
cov(Ô, E )

σ 2(E )

]
. (65)

Assuming that the term in square brackets has only a weak
dependence on R (analogous to the argument used above in
Sec. VIII B), one would conclude that

�O ∝ 1

Reff
. (66)

The significance of this observation for the performance of the
algorithm is discussed in the following section.

D. Pure resampling and effective population size

Above, we have considered the PA algorithm and its bias
in the absence of resampling. It is also possible and instructive
to analyze the method in the opposite limit of a pure resam-
pling method, i.e., for θ → 0. In this case, the size of the
temperature step does not matter as one works only with the
configurations of the initial population. Since the resampling
factors multiply over different temperature steps,

exp(−βkE j ) = exp[−(βk − β0)Ej]

=
k∏

i=1

exp[−(βi − βi−1)Ej], (67)

the statistical weight of a configuration of the initial popula-
tion (β0 = 0) at a given lower temperature βk is independent
of the number (and spacing) of temperature steps taken in be-
tween. Due to the normalization of resampling factors, which
suppresses fluctuations, the above identity is only approxi-
mately realized in the actual PA method, but numerically we
find that (for reasonable values of R) the results for θ = 0 are
almost perfectly independent of �β.

In PA with θ = 0, estimating the energy distribution Pβ (E )
(or any derived quantity) amounts to reweighting from the
distribution at β0 = 0. This is in fact just the situation encoun-
tered for simple-sampling Monte Carlo, and so the following
analysis applies to this problem as well. Because of the finite
number R of samples in the histogram P̂β0 (E ), there are no
samples with energies very far away from the peak of the
distribution at E = 0. We assume that the width of these
histograms is smaller than their distance; cf. Fig. 16(a). If
Pβ0 (E = 〈E〉β ) � 1/R, there will essentially be no events in
P̂β0 (E ) that have substantial weight in the distribution Pβ (E ).
In this case, the resampled histogram will be dominated by the
few replicas of smallest energies in P̂β0 (E ), and all replicas at
inverse temperature β will be copies of these few replicas.
Hence, in this limit we have Reff ≈ 1. Since Pβ0 (E ) is Gaus-
sian (for not too small system size), we can determine β for
the marginal case by requiring

Pβ0 (E = 〈E〉β ) = 1√
2πσ 2

0

e−〈E〉2
β/2σ 2

0 = 1

R0
, (68)

E β 0

(a)

Pβ(E)

Pβ0=0(E)

P
(E

)

E

−E∗ E β 0

(b)

Pβ(E)

Pβ0=0(E)

P
(E

)

E

FIG. 16. Schematic of energy distributions in θ = 0 population
annealing. (a) Pβ0=0 corresponds to the initial population, and Pβ to
the distribution at a lower temperature. (b) In a finite population of
size R at β0 = 0, there are typically no replicas with energies lower
than −E∗ (and similarly none with energies higher than E∗), where
Pβ0 (E∗) = 1/R.

where R0 is the population size starting from which one can
expect to find a reasonable result for Pβ (E ) without MCMC
steps, and σ 2

0 = zLd/2 with z = 4 and d = 2 for the square
lattice. In other words, one expects substantial biases to occur
as soon as the point from which on there are no entries in the
population at β0 reaches the peak of the distribution at β. The
required population size therefore grows as

R0 ∼ e〈E〉2
β/2σ 2

0 , (69)

i.e., exponentially in the total energy 〈E〉β ∝ Ld . Conversely,
for a given population size R strong biases are expected for
inverse temperatures β � β∗, where

〈E〉2
β∗ = 2σ 2

0 ln
R√

2πσ 2
0

. (70)

This is illustrated in Fig. 17, showing results of PA simu-
lations with θ = 0. The vertical lines in the detailed view
of Fig. 17(b) indicate the values of β∗ corresponding to the
chosen R.

To understand the behavior of the bias as a function of
β and R, we use a simplified analysis based on the above
argument for R0 and a Gaussian shape of the energy distri-
bution. If we want to estimate 〈E〉β from the population at
β0, the above arguments imply that there are no events in
the empirical (reweighted) histogram at β for energies below
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FIG. 17. (a) Bias of the (total, not per site) internal energy es-
timate from PA simulations for L = 32 and θ = 0 and different
population sizes. The lines show the conservative bias estimate re-
sulting from Eq. (74) [see panel (c) for key of line types]. (b) Detail of
panel (a). The vertical lines indicate the maximum inverse tempera-
ture, β∗, from which strong biases are expected according to Eq. (70).
(c) Value of the normalized cutoff energy e< = (−E∗ − 〈E〉β )/σβ .

−E∗ determined by Eq. (70) for E∗ = 〈E〉β∗ ; see Fig. 16(b).
Hence, the PA estimate of the average energy will be system-
atically too large, namely

Êβ =
∫ ∞

−∞
P̂β (E )E dE ≈ 〈E〉β −

∫ −E∗

−∞
Pβ (E )E dE . (71)

If we assume that Pβ (E ) is Gaussian, which is exact for
β = 0 but otherwise will be a good approximation for all
temperatures apart from the critical regime, the resulting

bias is

�E = Êβ − 〈E〉β = −
∫ −E∗

−∞
Pβ (E )E dE

= − 1√
2πσ 2

β

∫ −E∗

−∞
e
− (E−〈E〉β )2

2σ2
β E dE . (72)

We note that σ 2
β = CV (β )Ld/β2, where CV is the specific heat.

With the abbreviation

e< = (−E∗ − 〈E〉β )/σβ, (73)

we find

�E = −〈E〉β�(e<) + σβ√
2π

exp(−e<
2/2)

≡ �E1 + �E2. (74)

Here, � denotes the cumulative standard normal distribution
function. Figure 17 shows the bias in energy observed from
PA simulations with θ = 0 performed for the L = 32 model
as well as the estimate from Eq. (74). The latter follows the
general behavior of the actual bias but systematically overes-
timates it. This is expected, however, as in reality there can
be occasional events with energies less than −E∗, just with
a probability less than one per energy bin. From the data of
Fig. 17 it seems clear that while for very small β � 0.1 one
can see a decay of bias toward zero, this is not the case for
significantly lower temperatures, where the bias is almost un-
changed even on increasing R over three orders of magnitude.
This is in quite strong contrast to the general law of a 1/R
decay of bias proposed in Ref. [12] (and earlier in Ref. [31])
but in line with the observations for the Ising model shown
above in Fig. 15.

To understand the R dependence of bias more systemati-
cally, we study the functional form of Eq. (74). The behavior
crucially depends on the normalized cutoff energy e< of
Eq. (73), which according to Fig. 17(c) changes sign on mov-
ing away from β = 0. This sign change occurs when the cutoff
energy −E∗ coincides with the average energy 〈E〉β , such that
beyond that point there are practically no relevant events in the
histogram at β0 = 0 that would allow us to estimate the energy
at β. Hence, any reasonable reweighting can only occur in
the regime where e< < 0. For very small β, we can use the
asymptotic expansion of �(z) [57],

�(z) = −exp(−z2/2)√
2πz

(
1 − 1

z2
+ · · ·

)
, (75)

for z → −∞ to see that the leading-order R dependence of
both �E1 and �E2 is due to ∼ exp(−e2

</2). On substituting
e< from Eq. (73) and using Eq. (70), one finds

e−e2
</2 =

⎛⎝
√

2πσ 2
0

R

⎞⎠α(R,β )

e−〈E〉2
β/2σ 2

β , (76)

where the exponent α(R, β ) is given by

α(R, β ) = σ 2
0

σ 2
β

−
√

2σ 2
0

σ 2
β

|〈E〉β |
⎛⎝ln

R√
2πσ 2

0

⎞⎠−1/2

. (77)
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This is a rather interesting relation: Asymptotically, it indi-
cates power-law decay in 1/R with an exponent that depends
on the ratio σ0/σβ of widths of the corresponding energy
distributions. In the limit of small β considered here, cor-
responding to small temperature steps in the θ > 0 case,
σ0/σβ → 1 and so the bias decays as 1/R. However, due to
the second term in Eq. (77), the crossover to the leading 1/R
behavior is extremely (logarithmically) slow and, for exam-
ple, for R = 106 and β = 0.03 one finds α(R, β ) ≈ 0.36 for
L = 32.

In the opposite limit of large β, which for the L = 32 Ising
system and population sizes between 103 and 106 already sets
in for β � 0.2 where e< � 5 and hence 1 − �(e<) � 10−7

[cf. Fig. 17(c)], �(e<) ≈ 1 to a high accuracy, such that
�E1 ≈ −〈E〉β , while �E2 no longer decays [but note that it
is strongly suppressed by a factor exp(−〈E〉2

β/2σ 2
β )]. Hence,

the bias is essentially independent of population size in this
regime. Clearly, the onset of this regime gradually shifts to
larger β for increasing R, but according to Eq. (70) this hap-
pens logarithmically slowly in R.

For a PA simulation with θ > 0, the strength of bias effects
will depend on the efficiency of the Monte Carlo sweeps. In
temperature regions where θ � τrel, we will always be in the
weak-bias regime and the 1/R decay can be observed at least
asymptotically. In contrast, in regions where θ � τrel, such as
close to the critical point in the Ising model for small values of
θ or big systems, one is in the strong-bias regime found above
for e< > 0, where there is essentially no population-size de-
pendence of the bias within practically achievable population
sizes. This is exactly the behavior found for simulations of
the Ising model as reported in Fig. 15. Note that this effect
only occurs for problems where the energy is a relatively slow
mode. For spin glasses, this is not the case, and so it is much
easier to see the 1/R decay of the bias there (see also the data
presented in Ref. [12]).

Another effect of the tail domination of the resampling
weights with a lack of (efficient) MC moves is that for popu-
lation sizes below R0 the resampled population is dominated
by copies of one or a few replicas in the parent population
that happen to have the lowest energies. In these cases, the
effective population size following the discussion in Sec. V B
is essentially Reff ≈ 1.7 Hence, for θ = 0 the effective popu-
lation size is

Reff =
{≈1 for R � R0

const. × R for R > R0
. (78)

For θ > 0, we expect a similar behavior unless the MCMC
alone is able to equilibrate the replicas; i.e., we expect Reff =
R[1 − exp(−θ/τeff )] to hold only for R > R0. (But note that
R0 should depend on θ too in this case.) This is illustrated in
Fig. 18 that shows the effective population size as determined
from the energy observable for β = 0.44, very close to the
critical point. We observe that Reff is approximately constant
and equal to a minimal value (limited by the choice of the

7Note that for a determination of Reff via the blocking method using
B blocks the estimate of Reff is (up to fluctuations) bounded by B.
In this case, the degree of correlation is actually too strong to be
determined from the given population and number of blocks.
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FIG. 18. Effective population size Reff at β = 0.44 as estimated
from the blocking analysis for PA runs for L = 64 and the indicated
values of R and θ . For R < R0(θ ), Reff is essentially independent of
R, while for R � R0(θ ), Reff ∝ R.

number of bins for the blocking analysis which is B = 100
here) for R < R0(θ ) and only proportional to R for R � R0.
For θ = 30, R0 appears to be around R = 2×105.

IX. PERFORMANCE

Population annealing requires only relatively moderate
modifications of standard simulation codes that are typically
based on MCMC, such as the single-spin-flip Metropolis or
heat-bath dynamics for the Ising model considered here. The
main change relates to the simulation of an ensemble of con-
figurations rather than a single copy. The resulting potential
for the efficient utilization of highly parallel architectures
has been discussed elsewhere [14,20]. The computational
overhead incurred by the resampling step results from the
calculation of the resampling weights Q and τ̂i(Ej ) of Eqs. (1)
and (4), drawing the numbers r j

i of copies from the chosen
resampling distribution, and the actual copy operations of con-
figurations in memory or, for a distributed implementation,
over the network. In shared memory systems, this overhead
is often rather moderate. For the serial CPU reference code
used for the present study, we show a comparison of a PA
simulation and the pure single-spin flip code in Fig. 19. At
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FIG. 19. Run times of sample PA simulations for the 2D Ising
model and system sizes L = 16, . . . , 128 for R = 5000, θ = 10,
�β = 16/75L. The inset shows the relative excess time as compared
to simulations with the resampling step turned off.
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the scale of the total simulation time, no difference is visible
for the chosen parameters. As the inset illustrates, the relative
overhead of performing the resampling step is below 1% for
L = 16 and dropping to less than 1‰ for L > 128. For a dis-
cussion of simulations on graphics processing units (GPUs),
see Ref. [14]. As here the temperature step was chosen to scale
with L as �β = 16/75L to follow the expected scaling of
the histogram overlap in this model [40], the overall runtime
scales with L3 as is illustrated by the straight line in Fig. 19.

The algorithmic performance of population annealing as
a meta-algorithm is clearly dependent on the model under
consideration. For the reference case of the 2D Ising model
studied here, we do not expect massive improvements over
the underlying MCMC dynamics as the main difficulty in
simulating the Ising model’s continuous transition lies in the
critical slowing down near the transition and not in a complex
free-energy landscape. The Ising model can in fact be very
efficiently simulated with the help of cluster algorithms [3,4],
which can also be combined with PA, but this is not the subject
of the present study. Here, instead, we focus on any possible
reductions in bias and statistical errors that result from im-
planting the MCMC into the PA framework. Figures 20(a)
and 20(b) show the ratio of squared error bars for the specific
heat and susceptibility, respectively, for simulations using PA
as compared to single-spin-flip runs with the same statistics.
While for most temperatures where the MCMC is easily able
to decorrelate configurations the statistics are equivalent lead-
ing to a unit ratio of variances, in the critical regime the
consideration of an ensemble of configurations together with
resampling leads to decreased correlations as compared to the
time series of a single MCMC run and hence reduced error
bars. The “speedup” displayed in Fig. 20 corresponds to the
number of such single-spin-flip simulations required to get
the statistical errors to the same level as in a single PA run.
It is found to reach up to about 10 for the specific heat and
up to about 20 for the susceptibility, but no particularly clear
scaling behavior is found with increasing the system size.
Note that it is crucial for the relatively good performance of
the single-spin-flip simulations that the final configuration at
βi−1 is used as starting configuration at βi (hence these runs
correspond to what is called equilibrium simulated annealing
in Ref. [21]). For the chosen parameter combinations, bias
is far below the threshold of statistical error, so we do not
provide a detailed comparison of methods in this respect, but
overall for the Ising model we do expect the exponential decay
of bias with the number of MCMC sweeps as compared to the
inverse decay with population size as discussed in Sec. VIII to
put the single-spin-flip simulations in a position of advantage
as compared to PA runs in this respect.

It is further instructive to compare the effect of the PA
metaheuristic to that of the more established parallel temper-
ing method [6,7]. To allow for a relatively fair comparison,
we employ the same temperature sequence and the same total
number of spin flips. As is clear from the presentation of the
results in Fig. 20(c), the reduction achieved in statistical errors
by applying parallel tempering on top of the Metropolis spin-
flip dynamics is practically identical to that seen for PA, at
least for the parameters used here. This is in line with previous
observations indicating that the algorithmic performance of
PA in improving simulations and exploring the state space
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FIG. 20. Relative squared error bars of observable estimates
from Metropolis temperature sweeps against PA runs with the
same number of spin flips. The resulting “speedups” relate to
(a) the specific heat and (b) the magnetic susceptibility, respectively.
PA updates are for R = 50 000, θ = (L/16)2, �β = 16/75L and
Metropolis runs are for R = 1, θ = 50 000 × (L/16)2, and the same
temperature sequence. (c) Error bar of the specific heat estimate
for L = 32 and Metropolis and parallel tempering simulations as
compared to standard and adaptive PA runs.

is quite comparable to that effected by the more traditional
parallel-tempering heuristic [12,20,44]. In this respect, the
main advantage of the PA method must be sought in the far
superior parallel scaling in large simulations [20].

There is a great potential for further improvements to the
PA method, however, and while these haven been [14,17–19]
and will be [58] discussed elsewhere, we show for compar-
ison in Fig. 20(c) the error bars achieved by combining an
adaptive temperature schedule [14] with overlap α = 0.9 and
an adaptive flip schedule that dynamically modifies θ to en-
sure sufficient decorrelation. In addition to the reduction in
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statistical errors, through the dynamic flip schedule the adap-
tive simulation needs only about a fifth of the runtime as
compared to the other methods.

X. CONCLUSIONS

We have provided a detailed analysis of the properties of
the population annealing algorithm, using as a controlled and
generic example the case of the two-dimensional Ising model
for which manifold exact and previous numerical results are
available. Our focus was on a systematic study of the depen-
dence of systematic and statistical errors on the parameters of
the simulation, most notably the population size R, the number
of rounds of spin flips θ , and the inverse temperature step �β.

At the core of population annealing is the resampling step
that replicates particularly well-equilibrated replicas while
eliminating those that are not representative of the current
temperature; cf. Fig. 1. While selective replication helps
to drive the simulation toward equilibrium, the correlations
between replicas built up in this process naturally increase sta-
tistical errors. At the same time, resampling also works toward
increasing the fluctuations in the distribution of configuration
weights that are responsible for systematic error (bias). The
strength of such correlations is hence the central quantity for
assessing the quality of approximation. A particularly useful
proxy of the actual correlations taking the correlating effect
of replication as well as the decorrelation of the Monte Carlo
moves into account is given by the effective population size
Reff that can be readily estimated using a standard blocking
procedure. For the Ising model, Reff (E ) is dramatically re-
duced in the critical regime—indicative of the presence of
critical slowing down—but can recover in the ordered phase,
in contrast to correlation measures based entirely on the anal-
ysis of the family tree.

Apart from providing Reff , the blocking and jackknifing
procedure also allows for estimates of statistical errors from
within a single PA simulation. Such error estimates are reli-
able as long as Reff is never less than a few thousand replicas.
It should hence be monitored in any PA simulation, preferably
for several relevant observables. We established an effective
description of the dependence of Reff on the PA parameters,
namely

Reff = R

[
1 − �β

�β0
exp(−θ/τeff )

]
,

that holds for small �β and Reff satisfying the self-
consistency condition. Here, τeff is an effective autocorrelation
time that is related to the relaxation time of the underlying
MCMC algorithm. By definition, statistical errors decay as
1/

√
Reff .

For systematic errors �O (bias), we have provided a de-
scription of PA without resampling, where the behavior is
determined by the spectrum of relaxation times at all tem-
perature points above the one considered. Including selective
replication does not affect the exponential functional depen-
dence on θ but leads to a much stronger sensitivity with
respect to �β since alike to the swap moves in parallel
tempering it is only in the presence of sufficient overlap of
the energy histograms at neighboring temperatures that the
resampling works reliably. For small steps, the bias is linear in

�β—we find this to hold numerically and additionally derive
it from the relation of bias to the covariance of the considered
observable with the free-energy estimator that was previously
suggested in Ref. [12]. Studying this estimator in the limit
of small (inverse) temperature steps reveals that it is in fact
thermodynamic integration in disguise, and it is possible to
understand that in this limit the variance of the free-energy
estimator is proportional to �β/Reff ∝ �β/R. These findings
can be summarized as

�O ∼ �β

Reff
e−θ/τrel .

In practice, however, it can be quite difficult to reach the
asymptotic regime where �O ∝ 1/R. In cases where the en-
ergy itself is slow to relax and if θ is too small to keep the
population in equilibrium at a given temperature step, Reff is
effectively independent of population size up to large values
of R. Increasing the size of the population is an extremely
inefficient way of improving equilibration in such situations,
and instead the only viable option is to increase θ and/or
choose a more efficient MCMC algorithm.

In view of the above, one might wonder how to best choose
the simulation parameters R, θ and �β. Unfortunately, the
above relations for statistical error and bias are asymptotic,
and hence rules derived from them might not yield the best
compromise for a given computational budget. Nevertheless,
it is possible to derive a number of guiding principles for the
implementation of successful PA simulations:

(1) Choose �β to (just) ensure sufficient histogram over-
lap, for instance, α > 0.7. This might involve different inverse
temperature steps at different temperatures. Ideally revert to
using adaptive stepping [14,18].

(2) In the regime where the MCMC is efficient, ensure
that θ is chosen large enough to ascertain equilibration of the
population at each temperature step. In a regime where the
relaxation times become too large—for example, on entering
a phase of broken ergodicity—spin flips will likely become
less relevant [21]. Potentially choose a more efficient MCMC
algorithm if it is available.

(3) With any remaining computational resources, adapt
the population size to bring down statistical errors (that will
asymptotically dominate) to the desired level.

(4) Monitor Reff during the course of the simulation, en-
suring that it is �1000-5000 at all times; potentially consider
Reff for different relevant observables, including the configu-
rational overlap.

(5) Make use of the potential for extensive parallelization
of the algorithm, potentially allowing to arbitrarily reduce
statistical and systematic errors of the estimates at the same
overall wall-clock time if and when sufficient parallel re-
sources are available [29].

(6) Evaluate statistical errors, including the variance and
covariances involving the free-energy estimator using a
jackknife block analysis of the tree-ordered population of
replicas.

When considering any such general guidelines for optimiz-
ing population annealing, it is important to also keep in mind
the different levels of relevance of bias and statistical errors
in different applications. While in studies of pure systems
systematic errors can typically be brought under control by the
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employment of suitable MCMC algorithms and long runs, the
situation is different for simulations of systems with quenched
disorder, where the main source of error are sample-to-sample
fluctuations and hence runs for individual disorder configura-
tions are relatively short compared to the relevant relaxation
times [12]. Further, so far unexplored applications might have
yet different intricacies.

While the present study delivers a rather detailed picture
of the performance of the established population anneal-
ing algorithm following Ref. [11], a range of improvements
have already been proposed [14,17–19], and many more are
conceivable, including adaptive θ and R schedules [58], the
study of further thermodynamic ensembles [21], and gen-
eralized resampling schemes [32]. This flexibility, together
with the essentially unlimited potential for parallelization,
turn population annealing into one of the most versa-
tile and promising generalized-ensemble simulation schemes
available.
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APPENDIX A: EFFECTIVE POPULATION SIZE

In view of the observed relation Eq. (30) for Reff , it is
worthwhile to consider the effect of the individual elements of
the algorithm on the effective population size. The resampling
step creates identical copies of some replicas while eliminat-
ing other members of the population and hence must normally
reduce the effective population size. To understand this effect,
we consider the variance of the mean. In a population of
perfectly uncorrelated members, the behavior follows Eq. (19)
and hence Reff = R initially.8 After resampling (but before
applying the spin flips), each copy k of the original population
at temperature step i has been replaced by rk

i identical copies
in the descendant population (where rk

i = 0 for replicas that
have died out); cf. Eq. (5). If we assume that σ 2(O) is the
same for all replicas (i.e., the variance is not correlated with
the number of children), it is easy to see that the variance of
the mean becomes

σ 2(O) = σ 2(O)

(∑
k

rk
i

2

R2

)
. (A1)

8As in Sec. V B, we ignore the effect of fluctuating population size
here, but it is straightforward to adapt the resulting expressions to
account for this factor.
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FIG. 21. Ratio of effective population sizes before and after the
resampling step as compared to the inverse of the one-step mean-
square family size according to Eq. (A2) for two sizes of the inverse
temperature steps (L = 32, θ = 20, R = 50 000).

It is then natural to define a generalization of the mean square
family size ρt as

ρt (β j, βi ) = R
∑

k

nk (β j, βi )
2, j < i, (A2)

where nk (β j, βi ) is the fraction of the population at βi coming
down from the kth member of the population at β j . Clearly,
ρt ≡ ρt (β0, βi ). Since rk

i /R = nk (βi−1, βi ), we have

σ 2(O) = σ 2(O)

R/ρt (βi−1, βi )
.

Repeating these arguments for a correlated population with
Reff < R, one concludes that after resampling

Reff,i = Reff,i−1

ρt (βi−1, βi )
. (A3)

As is shown in Fig. 21, this relation indeed describes the
overall behavior correctly. The deviations, which are partic-
ularly visible for β < βc, remind us that the variance (and
indeed the mean) of O is not necessarily independent of the
number of children. In particular, for O = E as considered
here, we note that such correlations must exist since replicas
with lower energies will have more children than those with
higher energies.

Note that there should be good reasons to assume that
maximizing ρt (βi−1, βi ) and hence minimizing the reduc-
tion of Reff through the resampling step should be a
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FIG. 22. Effective population size Reff,i at inverse temperature
β = 0.41, 0.43, and 0.48, respectively, after applying a number of
θi MCMC steps. The effective population size relaxes to the total
population size R according to Eq. (A4) as θi is increased. The lines
show fits of the form (A4) with parameter τrel,i to the data, the best fit
being achieved for τrel,i = 5.3 (β = 0.41), 33.9 (β = 0.43), and 0.8
(β = 0.48), respectively (L = 32, θ = 10, R = 50 000, �β = 0.01).

desirable goal for choosing among different possible resam-
pling schemes (although the effect on bias is not completely
clear at present).

After the resampling step that tends to reduce Reff , the
spin flips serve to remove some of the correlations in the
population. As these are here assumed to be implemented
as an MCMC process, such decorrelation will have an ex-
ponential time dependence. Focusing on the single leading
exponential and taking into account that Reff → R as θ → ∞,
the expected behavior is

Reff,i = Reff,i−1 + (R − Reff,i−1)(1 − e−θi/τrel,i ). (A4)

Here, τrel,i denotes the relevant relaxation time at the inverse
temperature βi. This functional form is indeed consistent with
the observed data, see the results presented in Fig. 22, show-
ing the behavior of Reff,i as a function of the number θi of
MCMC steps applied. The lines show one-parameter fits of the
functional form (A4) to the data, with R = 50 000 and Reff,i−1

determined after resampling, but before the MCMC steps, via
the blocking scheme of Sec. V B.

From relations (A3) and (A4), one might deduce conditions
for adjusting the population size Ri or the number of rounds
of spin flips θi at each temperature step such as to avoid a
possible drop in Reff , but such attempts are left for future work.

APPENDIX B: BIAS—FURTHER
NUMERICAL OBSERVATIONS

Is the bias really represented fully by the covariance with
the free-energy estimator? How accurate are the estimates of
covariance and variance from the blocking method? These
questions are addressed in the plots of Fig. 23 showing the
result of a PA run for L = 32 with a target population size
R = 50 000 and fixed temperature steps �β = 0.01 with θ = 1.
Here, we compare for the energy observable (1) the error
bars (standard deviation) as estimated from a jackknife block
analysis as well as from m = 200 independent runs and (2) the
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FIG. 23. (a) Bias and statistical errors of the average internal
energy E for the L = 32 square-lattice Ising model as estimated
from independent runs as well as from the jackknife blocking method
(R = 50 000, θ = 1, �β = 0.01). (b) The same data in a logarithmic
scale shown in comparison to the effective population size Reff (solid
line, right scale).

bias estimated via cov(E , βF̂ ) [cf. Eq. (57)], as determined
either from the jackknife or from independent runs with the
actual bias as computed via comparison of the simulation
data to the exact result [37,38]. Relevant observations are the
following:

(1) As expected, bias and statistical errors are small every-
where but in the critical region.

(2) Bias is below statistical error everywhere, even in the
critical region, such that (at least for the observable E and
for the choice of parameters considered here), a dynamical
comparison of bias and statistical error in the sense of an
adaptive algorithm would never have suggested to increase θ .

(3) The covariance with the free energy estimator (as es-
timated from independent runs) is consistent with the actual
bias everywhere. (There might be some small deviations very
close to the peak, though.)

(4) The estimates of both the statistical error and the
covariance from the blocking method are consistent with
the results from independent runs apart from in the critical
regime.

(5) The deviations of the blocking estimates from the cor-
rect results set in exactly when Reff gets small and hence
estimates from blocking can naturally not be trusted.

We note that the data from “independent runs” were pro-
duced on GPU while the data for the blocking method are
from a CPU run. Since a checkerboard update is used on GPU
but sequential updates on CPU, this should lead to slightly
different decorrelation properties, which might have resulted
in some differences between the shown data sets.
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