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Zero-temperature coarsening in the two-dimensional long-range Ising model
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We investigate the nonequilibrium dynamics following a quench to zero temperature of the nonconserved
Ising model with power-law decaying long-range interactions ∝ 1/rd+σ in d = 2 spatial dimensions. The zero-
temperature coarsening is always of special interest among nonequilibrium processes, because often peculiar
behavior is observed. We provide estimates of the nonequilibrium exponents, viz., the growth exponent α, the
persistence exponent θ , and the fractal dimension df . It is found that the growth exponent α ≈ 3/4 is independent
of σ and different from α = 1/2, as expected for nearest-neighbor models. In the large σ regime of the tunable
interactions only the fractal dimension df of the nearest-neighbor Ising model is recovered, while the other
exponents differ significantly. For the persistence exponents θ this is a direct consequence of the different growth
exponents α as can be understood from the relation d − df = θ/α; they just differ by the ratio of the growth
exponents ≈3/2. This relation has been proposed for annihilation processes and later numerically tested for the
d = 2 nearest-neighbor Ising model. We confirm this relation for all σ studied, reinforcing its general validity.

DOI: 10.1103/PhysRevE.103.052122

I. INTRODUCTION

The nonequilibrium dynamics of systems quenched from
a random start configuration to an ordered state is of funda-
mental interest and has been studied in numerous systems,
ranging, e.g., from spin systems [1–3] to polymers [4–7]. The
process of coarsening or phase ordering kinetics of a system
starting from a random starting configuration to zero tempera-
ture, i.e., during a pure energy-minimization procedure, can be
described and classified by a number of nonequilibrium expo-
nents. One can directly observe the growth of ordered regions
in every such process, which is quantified by estimating the
characteristic length �(t ) and the associated growth exponent
α. Another class of observations can be summarized under the
term “persistence,” which is a concept directly related to the
first-passage properties of systems [8]. It is defined only for
quenches to T ≡ 0, although there have been attempts to also
extract these properties from simulations at finite T [9,10].
We investigate both those properties and related observables
for the long-range Ising model with algebraically decaying
interactions, for which very little is known both analytically
and numerically. This process is especially interesting at zero
temperature, since exceptional behavior has been shown to
often be observable under such special circumstances.

In the following section, Sec. II, we first recall the models
and present some scaling predictions, followed by a discus-
sion of the used methods in Sec. III. Subsequently, results
are presented which are expected to be in the short-range-like
regime of the long-range Ising model [11–17] in Sec. IV A.
Next, in Sec. IV B we will have a closer look at the “truly”
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long-range regime, which is still treatable without too over-
whelming finite-size effects. The behavior for intermediate
interaction strengths will be investigated in Sec. IV C before
concluding in Sec. V.

II. MODELS AND SCALING PREDICTIONS

The most studied model in coarsening phenomena is the
nearest-neighbor Ising model (NNIM) with Hamiltonian

H = −J
∑
〈i j〉

sis j (1)

in d = 2 spatial dimensions on a square lattice with periodic
boundary conditions. In the Hamiltonian, si = ±1 are the
spins and J is the coupling constant, where J > 0 for ferro-
magnetic interactions. Here 〈i j〉 symbolizes a summation over
all nearest-neighbor pairs. The main system under considera-
tion is an alteration, where every spin interacts with all other
spins, the long-range Ising model (LRIM) with Hamiltonian

H = −
∑
i< j

J (ri j )sis j . (2)

Here J (ri j ) is the power-law decaying potential of form

J (ri j ) = 1

rd+σ
, (3)

where si = ±1 are again spins located on a square lattice with
periodic boundary conditions in d = 2 spatial dimensions.

In most cases, the growth of the characteristic length is
given by a power law

�(t ) ∼ tα, (4)

where α is the growth exponent. For many models, such as the
NNIM in d = 2, it is well established that the nonequilibrium
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growth exponent is directly related to the equilibrium dynam-
ical exponent, i.e., α = 1/z, where with nonconserved order
parameter z = 2 for all quench temperatures T < Tc.

Persistence [18,19] has been studied in various other
contexts, ranging from random-walk-like systems [20–24]
over surface growth [25–28] to disordered systems [28]. Its
definition and methods have also found application to the
description of economic data [29]. Some analytical and nu-
merical predictions have been confirmed experimentally for
liquid crystals [30], diffusive systems [31], and fluctuating
steps [32]. Most studies have focused on the persistence prob-
ability

P(t ) = 1 − Nf (t )

V
, (5)

where V = Ld is the volume of the system, and Nf (t ) quanti-
fies the number of elements of the system that have had a first
passage in the time interval [0, t]. The first-passage time for
the Ising model can be defined as the time at which the local
order parameter changes its sign, i.e., a spin flips for the first
time. For many systems, one finds a power-law decay of the
persistence probability as a function of time,

P(t ) ∼ t−θ . (6)

For the persistence exponent θ there exists no exact estimate
in d = 2 dimensions, even for the NNIM [19]. For a quench
from an uncorrelated starting configuration to T = 0, numeri-
cally a value of θ = 0.22 [33–35] is found, whereas analytical
approximations suggest θ ≈ 0.19 [21,23]. In the more recent
analysis of Ref. [36], an influence of finite-time effects was
recognized. Incorporating these effects led to an estimate of
θ = 0.198(3), i.e., a value closer to the analytic approxima-
tion. Commonly, a value of θ = 0.225 is quoted [37,38].

For some systems additional information may be extracted
from investigating the correlation between persistent ele-
ments. In Ref. [39] it was noted, for example, that a flip of
a spin at a given site at time t increases the chance of a
neighboring spin flipping at time t ′ > t . This naturally im-
plies a spatial correlation of persistent spins. They proposed
to quantify these correlations by introducing the correlation
function of persistent spins as

D(r, t ) = 〈ρ(x, t )ρ(x + r, t )〉
〈ρ(x, t )〉 , (7)

where ρ(x, t ) = 1 if site x is persistent and zero otherwise.
The angular brackets 〈. . .〉 denote the average over initial
conditions and independent trajectories. With this definition,
one has 〈ρ(x, t )〉 = P(t ). A length scale of this persistent
lattice, �p(t ), quantifying the separation of correlated and
uncorrelated regions, grows akin to the length scale of the
direct lattice �(t ) as a power-law function of time as

�p(t ) ∼ tα, (8)

where α is again the growth exponent. D(r, t ) has the dynamic
scaling relation

D(r, t ) = P(t ) f (r/�p(t )). (9)

For the scaling function f (x) one finds

f (x) = D(r, t )/P(t ) ∼
{

x−κ x 	 1

1 x 
 1
, (10)

where x = r/�p(t ), and κ is an a priori independent exponent.
For the NNIM it is known [40] that the two-point correlator
is independent of t for r 	 �p(t ). A numerical confirmation
that this is also true for the LRIM is presented below in
Figs. 3(a) and 8(a) for σ = 8 and 0.6, respectively. The only
relation guaranteeing this is requiring �−κ

p ∼ t−θ . This implies
D(r, t ) ∼ r−κ for �p 
 r, and plugging it into Eq. (8) one
arrives at the scaling relation

κα = θ. (11)

The exponent κ is directly related to the fractal dimension
of the persistent structures, as can be seen from analytically
analyzing the number of persistent spins in the square grid,
which yields the relation [35,39,40]

d f = d − κ. (12)

Combining Eqs. (11) and (12), one arrives at a relationship
between the nonequilibrium exponents, given as

d − d f = θ/α. (13)

Inserting the extreme estimates of θ into (11), one arrives
at an a priori estimate of 1.55 < d f < 1.62. These bounds
are in agreement with all values estimated in the literature
for d f [38,40]. To conclude, for the NNIM one has α = 0.5,
0.19 < θ < 0.225, 0.38 < κ < 0.45, and 1.55 < d f < 1.62.

For the LRIM with Hamiltonian (2) there exists a pre-
diction of the asymptotic growth behavior reading �(t ) ∼
t1/(1+σ ) for σ < 1 and �(t ) ∼ t1/2 for σ > 1, with an addi-
tional multiplicative logarithmic correction at σ = 1 [11–13].
This was derived using the deterministic time-dependent
Ginzburg-Landau equation (without thermal contributions)
and a continuous order parameter. Numerically, this predic-
tion has been confirmed in the d = 2 LRIM [14,15] for
quench temperature T = 0.1Tc �= 0 and subsequently in d =
1 [16]. In d = 1 it was found in Ref. [16] via a mapping to
a two-domain approximation and onto the one-dimensional
convection-diffusion equation that, apart from the above
asymptotic growth law, one observes different initial growth
regimes. The scaling of the characteristic length in these three
regimes depends on σ ; at early times one observes a “bal-
listic” growth with �(t ) ∼ t , followed always by a regime
where �(t ) ∼ t1/(1+σ ), and finally only for σ > 1 one has
�(t ) ∼ t1/2. For long-range interacting systems in d = 1 with
any σ at T = 0 only spins at domain boundaries can flip and
will, within the framework of a two-domain approximation,
always lead to a growth of the bigger domain, since this is
energetically favorable. This means that at T = 0 the ballistic
regime becomes the asymptotic one and the other regimes
are not observed. We expect in d = 2 at T = 0 a similar
and σ -independent growth law; only the value of the growth
exponent cannot be derived as in d = 1, and we do not expect
to see exactly �(t ) ∼ t .

For the investigation of the persistence in long-range in-
teracting systems, only very little is known. There exists
one study [41] that investigates the case of zero-temperature
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coarsening in the d = 1 LRIM modeled via Langevin dynam-
ics which observes the above-mentioned asymptotic predic-
tion (and not the ballistic growth as in the NNIM), and P(t ) ∼
�(t )−θ with θ ≈ 0.175 075 88 as for the nearest-neighbor
time-dependent Ginzburg-Landau equation [42]. This cor-
responds trivially to P(t ) ∼ t−αθ , i.e., there a σ -dependent
persistence exponent θ = αθ was found. For the one-
dimensional NNIM, one instead finds θ = 3/8 [33,34,43–45].

III. METHODS

We simulate the LRIM with nonconserved order parame-
ter in d = 2 spatial dimensions with Hamiltonian (2) using
a local Markov chain Monte Carlo algorithm. When doing
zero-temperature dynamics Monte Carlo, this algorithm de-
generates to an energy minimization. A randomly chosen spin
is flipped if the flip results in a lower energy of the system.
If using the Glauber algorithm, a spin-flip resulting in zero
energy change is accepted with 50% probability. Using the
Metropolis algorithm, such a spin-flip is always accepted. For
this work, we use the Glauber criterion, although in practice
for systems with long-range interactions a proposed spin-flip
with zero energy change is very unlikely. We define the unit
of time as one sweep consisting of L × L spin-flip attempts.

When simulating systems with long-range interactions,
the needed computational resources for a given system size
are significantly increased when compared to the nearest-
neighbor counterpart. We recently proposed an approach
where a simulation during a coarsening process is signifi-
cantly sped up [14,15]. Additionally, finite-size effects are
very prominent in long-range interacting systems. Therefore
we use Ewald summation to calculate the effective interac-
tions Ji, j between spin i and j [46,47], which are said to
reduce the effects of a finite system. Nonetheless, this still
makes a careful treatment of finite-size effects in systems with
strongly long-range interactions necessary, which we will put
an emphasis on in Sec. IV B.

The length �(t ) entering the asymptotic scaling law (4) is
extracted by taking the intersection of the two-point equal-
time correlation function

C(r, t ) = 〈si(t )s j (t )〉 − 〈si(t )〉〈s j (t )〉, (14)

with a reasonable choice of a constant value in the range (0,1)
(here we chose 0.5). The value of r at this intersection is then
interpreted as the characteristic length �(t ) at this time. When
plotting self-consistently C(r, t ) versus r/�(t ), due to this
being a scaling process, one expects the curves for all times
t to collapse in the scaling regime. The calculation of this
correlation function is numerically sped up via a fast Fourier
transform. The length of the persistent structures �p(t ) is,
somewhat similarly, extracted by determining r where D(r, t )
first crosses P(t ).

All simulation results, apart from the snapshots, are ob-
tained by averaging over at least 40 independent runs. This
is realized by running the simulation with otherwise identi-
cal parameters for different random number generator seeds,
corresponding to an average over different initial conditions
and time evolutions. For reference, a single run of system
size L = 4096 takes roughly 3.5 weeks on 20 cores when
parallelized with OpenMP.

For our fits, we make use of Jackknifing, i.e., when we have
N independent runs, we also perform N fits each on data sets
containing the information from N − 1 runs. This allows us to
calculate (reliable) error bars on the fit parameters by taking
care of the (trivially) introduced correlation by using the same
data many times [48].

IV. RESULTS

Naively, one would expect to recover all exponents as in
the NNIM for σ → ∞. As we have already discussed in the
Introduction, however, we strongly suspect that the growth ex-
ponent α will indeed not be recovered. To check the specifics
and for estimating the value of α, we first focus on the case of
σ = 8, which for quenches to T �= 0 [14,17] and in equilib-
rium [49,50] undoubtedly corresponds to the short-range-like
regime of the long-range interacting model.

A. Large σ

In Fig. 1 we first show snapshots of the direct (upper row)
and persistent (lower row) lattice for t = 100, 200, 400 from
a single quench for σ = 8 and system size L = 2048. As ex-
pected, we observe the growth of ordered structures. Here we
want to note a difference between the NNIM and this model.
While for the NNIM roughly 1/3 of the simulations at zero
temperature get stuck in (in principle metastable) stripelike
configurations [51–54], this is much less likely in the LRIM.

To be able to investigate any growth laws, we have to
establish that the data for the correlation functions C(r, t ) and
D(r, t ) fall on a master curve when properly rescaled. This
exercise is shown in Fig. 2 for the correlation function of the
direct lattice C(r, t ). In Fig. 3(a) we first present the unscaled
correlation function of the persistent spins D(r, t ) for times
t = 100, 200, 400, 800, 1200, confirming that D(r, t ) does not
depend on t for r 	 lp(t ). In Fig. 3(b) we show for the
same data the corresponding scaled plot according to Eq. (9).
Both correlation functions collapse well; dynamic scaling is
found and both �(t ) and �p(t ) are properly estimated. We
perform fits of the power-law part of Eq. (10), where error
bars are estimated using Jackknifing. The data considered is
for t = 1200 [the largest time plotted in Fig. 3(b)] in the
range 0.15 < r/�p(t ) < 0.5. We find κ = 0.430(2) and χ2

r =
1.9(9), which is shown as a dashed black line in Fig. 3(b).
Here, the reduced chi-square χ2

r = χ2/DOF measures the
goodness of fit, where DOF denotes the degrees of freedom.
This value of κ corresponds via Eq. (12) to d f = 1.570(2)
and is in good agreement with the results observed in the
NNIM [38,40]. We want to stress that this estimate is not to
be taken too seriously, because the data is well compatible
with a relatively wide range of κ when only slightly adjusting
the fitting range (0.42 < κ < 0.44 cannot be unambiguously
ruled out), corresponding to 1.56 < d f < 1.58.

We next investigate in Fig. 4 both the length scales �(t )
and �p(t ) already used as a rescaling factor. We expect both of
them to follow the same power law with growth exponent α.
In Fig. 4, both lengths are plotted against time t for σ = 8 and
L = 2048. To extract a numerical estimate of α, we perform
fits in the range 102 � t � 103, giving α = 0.724(6) with
χ2

r ≈ 0.4 for � and α = 0.743(9) with χ2
r ≈ 1 for �p. These
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t = 100 t = 200 t = 400

FIG. 1. Upper row: Configuration snapshots of the lattice after a quench from T = ∞ to T = 0 for σ = 8 and a system size of L = 2048.
The growth of ordered regions is apparent as the time t = 100, 200, 400 increases. Lower row: Corresponding snapshots from the same
simulation of the persistent lattice for the identical times. The fractal structure of these configurations is clearly visible.

values are suggestively close to α = 3/4, so that we plot as
a dashed line a power law with exponent α = 3/4, which
appears to be compatible with the data for both lengths. To
further consolidate this claim numerically, we plot �(t )/tα as
dotted yellow line, which should be constant in the scaling
region if this is the correct exponent. In the interval [102, 103],

0
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(r

,t
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r/ (t)

t = 100
t = 200
t = 400
t = 800
t = 1200

FIG. 2. Correlation function of the direct lattice C(r, t ) for σ = 8
and L = 2048 plotted against distance r scaled by the characteristic
length �(t ) extracted from the intersection of this correlation function
with 0.5.

this very much is the case, as could also be appreciated from a
plot on a linear scale (not shown). This confirms our expecta-
tion that one should observe at zero temperature in the LRIM a
different growth exponent α than in the NNIM and the LRIM
quenched to T �= 0. It remains to be checked whether also at
T = 0 this exponent is σ independent, which will be investi-
gated in the next sections. Apart from this empirical evidence,
however, we have at the time being no simple theoretical
explanation for this rational exponent. Finally, to confirm that
both lengths follow the same power law, we plot �(t )/�p(t ) as
dotted blue line which correspondingly should be constant as
well in this region. Within the available data accuracy this can
be again easily appreciated from Fig. 4.

Finally, the persistence probability P(t ) is presented in
Fig. 5. To check the validity of Eq. (11) we calculate the value
of θ ≈ 0.319 from the fitted values using α extracted from
�p(t ). We also perform a fit in the range of 102 � t � 103 as
before and find θ = 0.321(2). By varying the fit range, we
cannot rule out a slightly different exponent 0.31 < θ < 0.34;
however, the numeric value is very suggestive of the “nice”
rational exponent 1/3 for σ → ∞. Inserting θ = 1/3 and
α = 3/4 into Eq. (11) gives a value of κ = 4/9 = 0.444 or
d f = 14/9 = 1.555. This value appears to be approximately
compatible with the estimated value of d f = 1.570. Clearly,
this is only a relatively weak numerical conjecture, but we
nonetheless hope this to be suggestive for further analytical
considerations.
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FIG. 3. (a) Correlation function of the persistent spins D(r, t )
against distance r for σ = 8 and times t = 100, 200, 400, 800, 1200.
(b) Same data as in (a), but D(r, t ) scaled by P(t ) now plotted
against the scaled distance r/�p(t ), as described in Eq. (10). The
dashed black line in (b) corresponds to a power law with exponent
κ = d − df = 0.430.

For the NNIM one can make a similar (albeit less obvi-
ous) assumption that θ = 2/9 = 0.222, which is very close to
the numerically often observed value of θ ≈ 0.22. Thus the
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L
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hs
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p(t)
(t) p(t)
(t)/t3/4

∼ t3/4

FIG. 4. The relevant lengths �(t ) and �p(t ) for σ = 8 and L =
2048. The statistical errors are of the order of the linewidth. The
dashed black line corresponds to a power law in time t with growth
exponent α = 3/4. Additionally plotted is �(t )/�p(t ) as a dotted blue
line, which is expected to be constant as both lengths follow the same
power law, and �(t )/t3/4 as a dotted yellow line, which is also roughly
constant in a relatively long time window, indicating that the growth
follows �(t ) ∼ t3/4.

10−1

100

101 102 103

P
(t

)

t

P (t)
P (t)/t−0.321

∼ t−0.321

FIG. 5. Persistence probability P(t ) vs time t for σ = 8 and L =
2048. The dashed black line corresponds to a power-law decay with
exponent θ = 0.321. To confirm that this exponent is compatible
with the data, we have additionally plotted P(t )/t−θ as a dotted black
line.

value of θ in the NNIM and the LRIM with σ → ∞ differ
by factor 3/2, which can be understood by the ratios of the
growth exponents (3/4)/(1/2) = 3/2 of those two models via
Eq. (13). Inserting θ = 2/9 and α = 1/2 in Eq. (13) predicts
d f = 14/9 = 1.555, in perfect agreement with the limiting
value of the LRIM for σ → ∞.

Thus it is not surprising that we do not find θ for σ = 8 to
be compatible with the value for the NNIM. The most robust
exponent in this context appears to be the fractal dimension
d f , so that a universal fractal dimension for short-range-
like interacting models can be conjectured. As suggested by
Eq. (11), a d f compatible to the NNIM, but with a different
growth exponent α, implies a change of the persistence expo-
nent θ . To conclude, we conjecture that even for σ → ∞ (but
still finite) as expected from d = 1 [16], the NNIM results are
not fully recovered for all exponents.

B. Small σ

Next, we target stronger long-range interacting systems
in order to check the σ dependence of α and determine the
values of θ and d f (and their relation). We focus on the most
long-range case of σ = 0.6 we can still treat without encoun-
tering too strong finite-size effects. Here it is necessary to use
even larger lattices with L = 4096 to avoid finite-size effects.
Even smaller values of σ naturally lead to significantly more
pronounced finite-size effects [17], so that even bigger system
sizes than L = 4096 would be needed. Since the complexity
of a sweep is V 2 (where V = L2 is the total number of spins),
the computing time would increase by a factor of 16 per sweep
when doubling the system size. Additionally, control of the
onset of finite-size effects would require another factor of 2–3
times more computing time, since on the larger lattice they
would only become clearly visible at a later time. This is
currently unfeasible, so that our smallest σ considered is 0.6.

As for σ = 8, we start by investigating the snapshots of the
direct and persistent lattice in Fig. 6. Again, the domains grow
with time for the direct lattice, although the growth appears
to be faster than for σ = 8. Whether this is reflected in the
growth exponent α or the amplitude is a priori unclear. For
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t = 100 t = 200 t = 400

FIG. 6. Upper row: Configuration snapshots of the lattice after a quench from T = ∞ to T = 0 for σ = 0.6 and a system size of L = 2048.
The growth of ordered regions is apparent as the time t = 100, 200, 400 increases. Lower row: Corresponding snapshots from the same
simulation of the persistent lattice for the identical times. The fractal structure of these configurations is clearly visible.

the persistent lattice, it appears that the persistent spins are
more correlated, suggesting a larger fractal dimension. Also,
here the dynamics appears to be faster.

We, however, first need to establish that we are dealing with
a scaling phenomenon. While especially the scaling plot of the
correlation function of the direct lattice C(r, t ) in Fig. 7 is not
as good as in Fig. 2, akin to what we observed already for
quenches to T �= 0 (< Tc) [14], we still observe satisfactory
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FIG. 7. Correlation function of the direct lattice C(r, t ) for σ =
0.6 and L = 4096 plotted against distance r scaled by the charac-
teristic length �(t ) extracted from the intersection of this correlation
function with 0.5 for times t = 100, 200, 400, 800, 1200.

scaling for small r. The (unscaled) correlation functions of
the persistent spins D(r, t ), plotted in Fig. 8(a) for several t ,
confirm again the t independence for r 	 �p(t ). Figure 8(b)
shows the scaling plot of D(r, t ) according to Eq. (9). Here the
data collapse looks better than for C(r, t ), albeit this is plotted
on a log-log scale. An objective measure of data collapse
is very hard to obtain, thus we abstain ourselves from such
an approach. Note that the form of the persistent correlation
function D(r, t ) changed (the minimum is less pronounced).

The dashed line in Fig. 8(b) is a power law [cf. Eq. (10)] fit-
ted to the data for t = 800 in the range 0.03 < r/�p(t ) < 0.5,
giving κ = d − d f = 0.268(2) or d f = 1.732(2). This value
of d f is significantly different from d f ≈ 1.57 found for the
NNIM or the LRIM with σ = 8. Already the snapshots of the
persistent lattice in Fig. 6 indicated a larger d f , so this does
not come as a surprise.

We next consider the direct length �(t ) plotted for the three
different system sizes in Fig. 9(a). The dashed black line is a
power law with exponent α = 3/4, which appears consistent
with our data. A direct fit of the data for L = 4096 in the range
from 100 � t � 750 provides α = 0.723(8). The finite-size
effects become apparent from the earlier onset of a downward
tendency of the data for smaller values of L. Note that the
finite-size effects play a role even before they are visible in
this figure. The dotted lines in the same color as the solid lines
show �(t )/t3/4 to demonstrate that asymptotically the data is
consistent with this exponent, as the region with a constant
value increases for increasing system size.
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FIG. 8. (a) Correlation function of the persistent spins D(r, t )
against distance r for σ = 0.6, L = 4096, and times t =
100, 200, 400, 800, 1200. (b) Same data as in (a), but D(r, t ) scaled
by P(t ) now plotted against the scaled distance r/�p(t ), as described
in Eq. (10). The dashed black line in (b) corresponds to a power law
with exponent κ = d − df = 0.268.

The finite-size effects for �p(t ) in Fig. 9(b) are much less
pronounced and only by a very careful investigation occur
with slightly higher values of �p(t ) for the smaller system
sizes, whereas the finite-size effects for the direct length �(t )
appear in opposite direction, i.e., towards smaller values and
not higher values. Performing a fit in the range 100 � t � 750
for �p gives α = 0.773(5). Here, also, we instead plot as a
dashed black line a power law with exponent α = 3/4, and
the dotted lines in the same color as the original data are
�p(t )/t3/4. There exists a region where �p(t )/t3/4 is constant.
Thus we conclude that also in this case, the growth exponent
is approximately given by α ≈ 3/4, suggesting that α is σ

independent.
In Fig. 10 we show the persistence probability for σ = 0.6

and different L. The dashed black line is a power law ∼t−θ ,
where θ = 0.1964(6) was obtained from a fit to the data for
L = 4096 in the range 20 � t � 200. To consolidate this,
as before, we plot P(t )/t−θ as a dotted black line, which
is approximately constant over the entire time frame and
thus confirms the fit. By using the scaling relation (11) with
κ = 0.268(2) and α = 0.75(3)1 one gets θ = 0.201(8), which
would also be compatible with the data from roughly t ≈ 30

1The error bar on α reflects the systematic deviations stemming
from the fits of �(t ) and �p(t ) using different σ and fitting ranges.
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FIG. 9. (a) Characteristic length �(t ) for σ = 0.6 and L = 1024,
2048, and 4096 as dotted colored lines. The statistical errors are of
the order of the linewidth. The dashed black line corresponds to a
power law in time t with growth exponent α = 3/4. Additionally
plotted is �(t )/t3/4 for all system sizes as dotted colored lines, which
for the correct scaling law should approach a constant. (b) Similar to
(a), but for �p(t ).

to t ≈ 500. Using α estimated from the growth of �p changes
this estimate only slightly to θ = 0.207(2).
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FIG. 10. Persistence probability P(t ) vs time t for σ = 0.6
and L = 1024, 2048, 4096. The dashed black line corresponds to a
power-law decay with exponent θ = 0.1964. To confirm that this
exponent is compatible with the data, we have additionally plotted
P(t )/t−θ as dotted black line for L = 4096.
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FIG. 11. Direct length �(t ) for different values of σ ∈ [0.6, 8]
(from top to bottom) with system size L = 2048. The dashed black
line corresponds to a power law ∝ tα , with growth exponent α = 3/4
as estimated before.

C. Intermediate σ

We now inspect the scaling behavior for σ in between the
two extremes studied before, covering a wide range of inter-
actions. In Fig. 11 we plot the direct length �(t ) on a log-log
plot for σ = 0.6, 0.8, 1.0, 1.5, and 8, where we use L = 2048
for all σ in order to allow for an easier direct comparison. It is
apparent that all data are more or less parallel to each other in
a relatively long region, and thus the estimate of α = 3/4 for
all σ is compatible with the data.

In Table I we present results from power-law fits of
form (10) to D(r, t ), giving estimates for d f and the good-
ness of fit χ2

r . We perform the fits in the range rmin/�p(t ) to
rmax/�p(t ), where we vary rmin/�p(t ) and set rmax/�p(t ) = 0.5
for all σ . We also give the time t used, which we want to
choose as large as possible without experiencing finite-size
effects, so that we chose t = 800 for σ � 1.5 and t = 1200
otherwise. The reduced chi-square value χ2

r is relatively big
for σ = 0.6 and σ = 0.8 (also due to the smaller system
size L = 2048), but since we have carefully estimated the
finite-size effects in the previous section these fits should
nonetheless be appropriate. Additionally, we present the val-
ues of θ f obtained from fits of the form P(t ) = At−θ f and
the corresponding fitting range. This allows to directly test

1.56
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1.64
1.66
1.68
1.7

1.72
1.74

0 1 2 3 4 5 6 7 8

(a)

d
f

σ
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(b)

P
(t

)
t
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σ = 0.8
σ = 1.0

σ = 1.5
σ = 8.0

FIG. 12. (a) Fractal dimension df against σ as compiled in Ta-
ble I. The solid black line is a fit of form df (σ ) = df ,∞ + Aσ−B

with df ,∞ = 1.555 fixed and fit parameters A = 0.1001(7) and B =
1.17(2). (b) Persistence probability P(t ) for different σ ∈ [0.6, 8]
(from top to bottom) vs time t . The perfectly matching dashed
magenta lines are power laws t−θ with exponents θ obtained from
Eq. (13) by plugging in the values of df from Table I and using
α = 3/4.

the validity (and thereby general applicability) of Eq. (13) by
comparing θ = (d − d f )α with θ f , which agree very well.

To get a better idea of the functional dependency obtained
for the exponents, we plot d f versus σ in Fig. 12(a). From
our results for quenches to T �= 0, one would expect some
kind of transition at σ = 1, whereas from equilibrium studies
one could expect a transition at σ = 2 [49] or σ = 1.75 [50].

TABLE I. Values of the fractal dimension df from power-law fits of form f (x) = axd f −d to D(r, t ) for different σ and L = 2048 for all σ .
We fix the upper bound of the fitting range to rmax/�p(t ) = 0.5 and vary the lower bound rmin/�p(t ), where the corresponding values are noted
in the table. The time used for the fit was varied from t = 800 to t = 1200 to allow for the longest, but still finite-size unaffected, regime.
Mentioned are also the reduced chi-squares χ2

r , indicating the goodness of fit. To be able to quantitatively compare the resulting values for θ

using Eq. (13) (assuming α = 0.75(3)) with the values obtained from a fit of form P(t ) = At−θ f , we have included both in the table. For the fit
of θ f , the corresponding fitting ranges are also given.

σ 0.60 0.80 1.00 1.50 1.75 2.00 2.25 4.00 8.00
df 1.732(1) 1.692(2) 1.662(2) 1.618(2) 1.599(3) 1.592(3) 1.587(3) 1.571(2) 1.570(2)
t 800 800 800 800 1200 1200 1200 1200 1200
rmin/�p(t ) 0.03 0.05 0.1 0.15 0.15 0.15 0.15 0.15 0.15
χ 2

r 6(2) 5(2) 1.4(5) 1.1(3) 3(2) 3(1) 3(2) 1.1(7) 1.9(9)
θ = (d − df )α 0.201(8) 0.231(9) 0.25(1) 0.29(1) 0.30(1) 0.31(1) 0.31(1) 0.32(1) 0.32(1)
θ f 0.1998(5) 0.2315(9) 0.258(1) 0.288(1) 0.288(1) 0.302(1) 0.299(1) 0.317(1) 0.321(2)
Fitting range of θ f [20,200] [30,400] [40,700] [50,900] [50,900] [50,950] [50,950] [50,950] [100,1000]
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The correct value for the crossover from the intermediate
to short-range-like regime in equilibrium is still disputed in
the literature [47,55–59]. In our setting, however, no distinct
crossover at any σ is observed. Thus one has to conclude that
this equilibrium phase transition does not manifest itself in
the nonequilibrium dynamical behavior at T = 0. We rather
observe a smooth approach of d f to a value compatible with
the NNIM fractal dimension. We are not aware of any the-
oretical conjecture for the functional dependency of d f on
σ . We therefore empirically fitted a power law of the form
d f (σ ) = d f ,∞ + Aσ−B, where d f ,∞ = 1.555 is the estimate
of d f obtained by assuming α = 3/4 and θ = 1/3. The corre-
sponding fit is also shown in Fig. 12(a), having A = 0.1001(7)
and B = 1.17(2). This gives us a rough idea about the func-
tional dependency, but it cannot be taken too seriously, as the
fit has χ2

r ≈ 17, which, of course, indicates a very bad fit.
We want to point out that the persistence probability is of-

ten investigated as a function of the characteristic length �(t ),
as already mentioned in the previous sections, i.e., P(t ) ∼
�(t )−θ , where if �(t ) ∼ tα one has θ = θ/α = d − d f [but
P(�(t )) may also be investigated in situations where �(t ) is not
a power law]. Thus instead of considering d f , we also could
have investigated θ and obtained that θ would approach the
same value θ/α = 0.444 for all short-range-like models (by
assuming θ = 2/9 and α = 1/2 for the NNIM and θ = 1/3
and α = 3/4 for the LRIM with σ → ∞). In this sense, none
of the observed values appear “odd” and their relationship can
be well understood.

In Fig. 12(b) we show the persistence probability P(t ) for
different σ . We use Eq. (13) to obtain estimates for θ , which
are used in the power laws t−θ plotted as dashed magenta
lines. For a relatively large range, the power laws are con-
sistent with the data for P(t ). Of course, the scaling regime
gets smaller the smaller σ is. Having considered the finite-size
effects carefully, however, we are confident that the values
for the exponents we quote are the true asymptotic values for
all σ .

V. CONCLUSION

We have studied the zero-temperature coarsening of the
two-dimensional long-range Ising model with nonconserved
order parameter by tuning the degree of the long-range in-
teractions via the power-law exponent σ . It is found that the
growth exponent α ≈ 3/4 is independent of σ and in the limit
σ → ∞ does not seem to approach the value α = 1/2 of the
nearest-neighbor model. For our most short-range-like case of
σ = 8, we find that the fractal dimension is compatible with

the value found for the nearest-neighbor Ising model and reads
d f ≈ 1.57. Evidence was provided in favor of the relation d −
d f = θ/α, which relates the nonequilibrium exponents. Here
θ is the persistence exponent and d is the spatial dimension.
For σ = 8 we find θ ≈ 0.32, which a priori is significantly
different from the value for the nearest-neighbor Ising model
with θ ≈ 0.22. However, this can be still understood, since
those two exponents just differ by a factor of ≈1.5, which
is exactly the ratio of the growth exponents for those two
models, as expected from the above relationship. In fact, if
one considers the scaling of the persistence probability P(t )

with the characteristic length scale �(t ), P(t ) ∼ �(t )−θ , as in
Refs. [41,42], θ = θ/α of the long-range model would agree
in the asymptotic limit σ → ∞ with θ of the nearest-neighbor
model.

In the most long-range-like system under consideration
with σ = 0.6, we find that above relation relating the nonequi-
librium exponents still is valid. Here, we find d f ≈ 1.73 and
thus θ ≈ 0.20. The value of θ is most probably only coinci-
dentally close to the nearest-neighbor Ising model value.

Finally, when investigating a range of different σ one finds
that d f (and thereby θ ) varies continuously with σ . There does
not appear to be any distinct crossover.

As a further direction of investigation, one could redo this
kind of analysis also in d = 1 and d = 3 dimensions. Such an
endeavor could be even helpful in (more accurate) estimates of
the fractal dimension exponent found in the nearest-neighbor
Ising model in d = 3 at zero temperature, where finite-size ef-
fects are enormous, since much fewer simulations get trapped
in (meta-) stable confirmations and the ground state is reached
much more often.

Note added in proof. We recently became aware of
work [60] where the authors focus on the growth exponent α

and also find �(t ) ∼ t3/4 independent of σ . They additionally
provide some arguments for the value of this exponent using
a simplified model, but there does not appear to be a simple
explanation for the observed rational exponent.
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