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Nonflat histogram techniques for spin glasses
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We study the bimodal Edwards-Anderson spin glass comparing established methods, namely the multicanon-
ical method, the 1/k ensemble, and parallel tempering, to an approach where the ensemble is modified by
simulating power-law-shaped histograms in energy instead of flat histograms as in the standard multicanonical
case. We show that by this modification a significant speed-up in terms of mean round-trip times can be achieved
for all lattice sizes taken into consideration.

DOI: 10.1103/PhysRevE.102.053303

I. INTRODUCTION

Simulations of systems with rugged free-energy landscape
[1] suffer from massive slowing down of the dynamics in the
low-temperature phase. This problem encountered in many
physical systems, e.g., folding polymers or spin glasses, ren-
ders the investigation of the thermodynamical properties of
such systems in the low-temperature phase a very challenging
task.

The Metropolis algorithm [2] is designed to sample config-
urations according to their statistical weight in the canonical
ensemble. At low temperatures it fails dramatically for sys-
tems with rugged free-energy landscape because of the
effectively broken ergodicity. The simulations get stuck in
local minima (metastable states) and the thermal energy is
not sufficient to overcome the huge free-energy barriers. There
has been a wide range of algorithmic developments tackling
this problem that can all be subsumed in the term of broad-
energy ensembles.

One commonly employed method is the parallel tempering
(PT) [3–5] method where Metropolis simulations of copies of
the system (replicas) at different temperatures are performed.
After certain time intervals exchanges of the replicas between
the different temperatures are attempted. This procedure en-
ables the replicas at low temperature to fully explore deep
free-energy valleys and at high temperature to travel freely
through the phase space and thus to decorrelate. Thereby,
the different replicas can explore the rugged structure of the
free-energy landscape much more efficiently than in a sim-
ple Metropolis simulation. Using this method at temperatures
close to the transition, studies of spin-glass systems of sizes
up to 403 spins have been reported [6,7]. For ground-state
searches, systems of about 103 are feasible [8]. The great
advantage of PT is its simplicity: The algorithm only needs
a suitable temperature set and exhibits good performance,
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which makes it probably the most employed method in the
investigation of systems with rugged free-energy landscape.

Another recent development is the population annealing
Monte Carlo [9–13] method, which proceeds similarly to
simulated annealing [14] as the system is gradually cooled
down according to an annealing schedule. The annealing is
performed on a big population of replicas and by introducing
intermediate resampling of the population of replicas after
lowering the temperature the simulation is kept at thermal
equilibrium. This permits the evaluation of thermodynamic
observables in contrast to simple simulated annealing. De-
spite the attempts of optimizing the method for spin glasses
[10,12,15] it is not able to outperform PT. Its optimization,
however, remains more cumbersome due to the additional
complexity. The main advantage of this algorithm is its suit-
ability for massively parallel implementation. For disordered
systems, however, this advantage does not come into play,
because the necessity of simulating many different disorder
realizations allows the efficient use of parallel computing for
any method.

The multicanonical (MUCA) method [16–18] is another
well-established algorithm designed for the simulation of sys-
tems with first-order phase transitions which performs well
in the simulation of systems with rugged free-energy land-
scape, too. It has already been applied to spin glasses in
Refs. [19,20]. In this method the simulation is set up to visit
all possible energies with the same probability yielding a flat
histogram in energy. However, it has been noted by different
researchers that this ensemble is not optimal. One suggested
improvement is the 1/k ensemble by Hesselbo and Stinch-
combe [21], where the sampling distribution is the inverse of
the integrated density of states. As the authors point out, this
description samples the low-energy region more often than
the high-energy region, resulting in energy histograms which
grow toward the low-temperature phase.

Another nonparametric optimization of the MUCA al-
gorithm was proposed in Ref. [22]. The method uses an
estimator of the local diffusivity in order to maximize the
number of performed round trips in energy. The method is
among others applied to the ferromagnetic Ising model for
which it improves the scaling behavior of the round-trip
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times in energy. The improved performance for the models
considered in that work and the nature of the algorithm of
automatically identifying the bottlenecks of the simulation
and concentrating the simulation effort on this region suggest
that the round-trip times of the simulations should diminish
independently of the underlying system. However, in our
implementation, in the case of the three-dimensional (3D)
bimodal Edwards-Anderson (EA) spin glass [23], the round-
trip times did not systematically improve with this method.
Instead, the simulation got stuck for some of the consid-
ered samples, rendering a comparison to the other methods
impossible.

In this work we present a different approach: We prescribe
parametric profiles for the histograms of the simulation and
adjust the simulation weights accordingly. As for the three
previous MUCA variants, it requires the knowledge of the
underlying density of states, but it is much more flexible. The
profiles are all chosen to be shifted power laws having two
free parameters.

As an example we consider the 3D bimodal EA spin glass.
This is one of the simplest models exhibiting a rugged free-
energy landscape and is also interesting from the point of
view of an optimization problem where finding ground states
of hard disorder realizations is NP-hard [24]. Despite the ex-
ponential growth of the computational resources fundamental
questions regarding the nature of the spin-glass phase still
remain. For the progress in understanding the open questions,
the development of new methods and an improvement of the
existing methods is crucial.

The rest of the paper is organized as follows. In Sec. II the
spin-glass model and the simulation methods are explained.
The direct comparison of the round-trip times of the indi-
vidual methods is performed in Sec. III. The framework of
extreme-value statistics is introduced in Sec. IV. In Sec. V
benchmarks for the global comparison are discussed and the
different methods are compared in terms of those benchmarks.
The results are summarized in Sec. VI.

II. MODEL AND EMPLOYED METHODS

We take into consideration the 3D bimodal EA model
whose Hamiltonian takes the form

H = −
∑
〈i j〉

Ji jSiS j, (1)

where the bonds Ji j and the spins Si can take values ±1. The
sum runs over all neighboring spins in the simple-cubic lattice
with periodic boundary conditions.

Due to the disordered nature of spin glasses the study has
to take into account a sufficiently large set of disorder real-
izations on which the averaged quantities can be computed.
In this case one disorder realization consists of a set of 3V
couplings Ji j which are either positive or negative unity with
a probability of 50%, where V = L3 is number of spins in a
lattice of linear lattice size L. The disorder realizations are
generated prior to the simulation and then kept fixed for all
times (quenched disorder). As an adequate set of disorder re-
alizations, 4000 samples with L = 3 and L = 4 are generated
and 5000, 6000, and 4000 samples of size L = 5, 6, and 8,
respectively.
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FIG. 1. The recorded histograms H (E ) of the different methods
and the profile function PSH(E ) for one disorder realization of linear
lattice size L = 8. The dotted and the dashed vertical lines indicate
the position of the ground-state energy Eg and the position of the pole
of the power law (5), respectively.

The method which we adapted is the well-established
MUCA method [17] employing a generalized Metropolis cri-
terion with an energy-dependent weight function,

Pacc = min

[
1,

W (Enew)

W (Eold)

]
, (2)

where the weight function is proportional to the inverse of the
density of states �(E ),

W (E ) ∝ �−1(E ). (3)

For the MUCA simulations �(E ) has to be sufficiently well-
known a priori for each disorder realization. An estimator for
it can, for instance, be obtained by means of the Wang-Landau
algorithm [25] or, as in this work, by other iterative proce-
dures which are explained, e.g., in Ref. [26]. This ensemble
produces histograms which are flat in energy and is, therefore,
often also referred to as “flat histogram method.”

A straightforward generalization of the flat histogram
methods are the nonflat histogram methods. If the simulation
weights for the flat MUCA method are multiplied with the
desired energy-dependent shape (or profile) function PSH(E ),

W (E ) ∝ �−1(E )PSH(E ), (4)

then the resulting histograms will be shaped according to
PSH(E ). In this work all the profiles are shifted power laws
of the form

PSH(E ,�E , α) =
(

E

�E − Eg
+ 1

)α

, (5)

where the exponent α < 0 and �E > 0 is the position of the
pole relative to the ground-state energy Eg of the respective
spin-glass realization. In this parametrization the power laws
are normalized to unity at E = 0.

In Fig. 1 the recorded histograms of the different meth-
ods are displayed on a logarithmic y scale for one disorder
realization with L = 8. In contrast to flat MUCA, all methods
have in common that the distribution of sampled states grows
toward the ground-state energy. The recorded histogram of
nonflat MUCA matches perfectly the imposed profile and
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its histogram in the ground-state region is similar to that of
PT. We are convinced that this feature, which among the
existing methods is strongest for PT, enhances the ability of
sampling the low-energy region and especially the ability of
finding low-energy states of investigated systems. There are
different possible choices of functional forms which enhance
the sampling of the low-energy region and even a stepwise
defined function could be employed and might even yield
better results. We chose a power law because the two involved
parameters allow for a good adaptation but the tuning of the
parameters in the two-dimensional parameter space remains
feasible.

For the above parametrization we found a fixed parameter
set, namely α = −3.6 and �E = 96, which independently
of the lattice size yielded the shortest mean round-trip times
among the considered profiles. Subsequently, we will refer to
the nonflat MUCA setting with the power-law shape belong-
ing to this parameter set just as the power-law (PL) setting
or nonflat MUCA method. While the overall best results are
obtained with this parameter set, we want to point out that an
improvement compared to flat MUCA was visible for each
of the considered parameter sets. The parametrization with
a fixed offset from the ground-state energy yields different
relative distributions depending on the ground-state energy
encountered in the respective disorder realization. The value
of the profile function at the ground-state energy is given by

PSH(Eg,�E , α) =
(

1

1 − Eg

�E

)α

. (6)

The sampling at the ground-state energy compared to zero
energy is thus enhanced by a factor of ≈ 13 for a disorder
realization with L = 4 and a typical ground-state energy of
≈ −100. For a sample with L = 8 and typical ground-state
energy of ≈ −900 instead it is enhanced by a factor of ≈
4500. Due to this feature this parametrization of the profile
function does not require any adjustments of the parameters
in the system sizes which we considered. Presumably such a
profile will also yield good results for larger systems, although
we cannot be certain.

Next, the 1/k ensemble [21] is considered, which is defined
by setting the simulation weights equal to the inverse of the
integrated density of states up to the energy of the respective
bin,

W1/k (E ) ∝ 1/k =
[∫ E

Eg

dE ′�(E ′)
]−1

. (7)

Here, a first-order Taylor expansion of ln � at E leads to
W (E ) ≈ W1/k (E ) if PSH(E ) = d ln �(E ′)/dE ′|E ′=E . This pre-
scription again relies on the knowledge of the density of states.
The authors of Ref. [21] stress its robust ergodicity and apply
it to spin glasses and the traveling salesman problem [27].

Since for the above-mentioned methods the density of
states is the only needed input, it was determined only once to
high accuracy employing the iterative procedure adapted from
Ref. [26] but with power-law-shaped distributions in energy.
In this case, and generally when the ground-state energy of
the system is not known, a priori the profile function has to be
adapted whenever a lower energy is found.

Last, the PT method, being probably the most employed
algorithm for spin-glass simulations, is included in the com-
parison. The ensemble in this case is defined by a set of
M temperatures {Ti, i = 1, . . . , M}. For each temperature Ti

a Metropolis simulation of a copy of the system (replica)
is performed. The temperatures of the replicas i and j are
allowed to exchange configuration according to

Pex
i j = min

[
1, e

( 1
Tj

− 1
Ti

)(Ej−Ei )]
, (8)

where Ei and Ej are the energies of replica i and j and
kB = 1. This prescription allows for fast decorrelation when
a replica travels to high temperature and the exploration of
the local minima at low temperatures. Among the vast choice
of different PT protocols available [28] we opted for the con-
stant exchange rate protocol with acceptance rates between
40% and 60% [29]. For all simulations the maximal temper-
ature was chosen to be well above the critical temperature,
Tmax > 3 > Tc ≈ 1. The exchange rates were imposed on each
individual disorder realization in an initial equilibration run
during which the temperatures were modified accordingly.
The number of replicas was set to M = 7, 7, 12, 14, and 20
for L = 3, 4, 5, 6, and 8, respectively. We note that the choice
of the temperature set is crucial for the PT algorithm and also
provides the possibility of optimizations as, for example, in
Ref. [30]. However, in this work we rather limit ourselves to a
well-established protocol for PT focusing on the optimization
of the nonflat histogram technique.

III. COMPARISON OF THE ROUND-TRIP TIMES

The observable taken into account for this study is the
round-trip time. For all methods except PT and each disorder
realization it is defined as the time needed by the simulation
to travel from the highest energy (E ≈ 0) to the ground-state
energy and back. For PT, instead, the round trip is measured
between the ground-state energy and an energy typical for a
canonical ensemble with a temperature well above the freez-
ing point of the disorder realization [31,32]. This time can
be taken as an upper bound of the autocorrelation time of
the energy of the respective disorder realization at the ground
state. We want to stress that the energies we refer to as ground-
state energies are the lowest encountered energies and may
not be the true ground states. However, the round-trip times
were always measured performing at least 100 round trips for
each individual sample and method so that several hundred
round trips have been performed on each disorder realization.
In case lower energies were measured during this process,
the disorder realization was requeued and simulated again
until the desired number of round trips was achieved. This
procedure renders the discovery of the true ground state very
probable. After at least 100 round trips the relative statistical
error in the round-trip time τi is of the order of �τi/τi ≈ 0.1.

The first property we want to look at is the dependence
of the round-trip times for the individual disorder realizations
on the employed method. The scatter plots in Fig. 2 show
the round-trip times of the same disorder realization for two
different methods for all the simulated disorder realizations of
size L = 4 and L = 8 on a log-log scale. The strong correla-
tion of the round-trip times for each single disorder realization
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FIG. 2. Scatter plots of the round-trip times comparing the nonflat power-law histogram technique (PL) to the standard flat MUCA (flat)
and parallel tempering (PT) methods for sizes L = 4 (upper panels) and L = 8 (lower panels). All points scattered above the identity line have
longer round-trip times for the method on the y axis.

should be noted, indicating that the hardness of the underly-
ing optimization problem is primarily a characteristic of the
disorder realization and mostly independent of the employed
method. This fact allows us to categorize the disorder real-
izations and speak of easy and hard instances. Comparing the
round-trip times τi for the flat MUCA method and the parallel
tempering method (left panels) for both lattice sizes L = 4 and
L = 8, the τi are systematically lower for PT, indicating its
superior performance for the whole classes of the bimodal EA
spin glasses of the respective lattice sizes.

When comparing the performance of the nonflat histogram
method to the flat MUCA method (central panels), the sur-
rounding area of the scattered round-trip times shows a
bending, i.e., for L = 4 the flat histogram method displays
only slightly higher round trip times for the easy disorder
realizations. With increasing hardness the round-trip times
for the flat histogram method grow faster than for the PL
setting. This effect gets enhanced with a further increase of
the lattice size (see lower panel) where for the case of L = 8
the round-trip times of the easiest samples for the flat MUCA
method are similar to those for PL. However, as will become
apparent in the next section, the hard samples contribute most
to the mean round-trip time so that even a slightly weaker
performance for the easier samples would hardly contribute
to the total computation time.

The right panels show the comparison of PL to PT. For
L = 4 PT outperforms the nonflat histogram method for the
easy disorder realizations, while for the hard ones PL displays
shorter round-trip times. For L = 8 a large fraction of the

disorder realizations is characterized by shorter round-trip
times for PT, but the tail of the distribution describing the hard
samples exhibits shorter round-trip times for PL.

IV. ROUND-TRIP TIME DISTRIBUTIONS

In order to quantify the observations of the previous section
the distributions of the round-trip times can be examined.
Round trips in energy include the visit of the ground state of
the respective disorder realization which is an extreme event.
Their statistics must thus be described in the framework of
extreme-value statistics. One of the main results in this field
is given by the Fisher-Tippet-Gnedenko theorem [33], which
characterizes the type of distributions to which extreme-value
distributions can converge. The round-trip time distributions
of the bimodal EA spin glass all seem to converge to Fréchet
distributions independently of the method and the system size.
This has already been suggested in Ref. [34] for the round-trip
time distributions of the 3D EA model employing the flat
histogram ensemble.

One parametrization of the cumulative distribution func-
tion (CDF) of the Fréchet distribution is given by

F (τ ) = exp

[
−

(
1 + ξ

τ − μ

β

)−1/ξ]
, (9)

with τ ∈ [μ − β/ξ,∞). The location of the distribution along
the τ axis is determined by μ, β is the scale parameter, and
the shape parameter ξ describes the decay of the tail of the
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FIG. 3. Round-trip time distributions (symbols) and best fitting cumulative distribution functions (lines) for the different methods and
lattice size L = 4 (a) and L = 8 (b). The inset of the left panel shows the PDF form of the distribution.

distribution, i.e., the occurrence of rare events. The CDF is
the integrated form of the probability density function (PDF)
f (τ ). The round-trip time distributions are thus all defined by
sets of parameters μ, β, ξ which are determined by fitting the
CDF to the recorded round-trip times.

The measured round-trip times and the respectively best-
fitting Fréchet distribution for lattice sizes L = 4 and L = 8
are plotted in Fig. 3. The points represent the measured data
and the solid lines are the best-fitting Fréchet distributions.
The varying performance of the methods in dependence on the
difficulty of the disorder realizations which became visible in
the last section also reflects in the distribution of the round-
trip times. For both lattice sizes the CDF belonging to the flat
MUCA method is lower for all τ than the one belonging to
PT. The maximum increase which corresponds to the bulk of
the distribution is shifted to higher τ for MUCA as compared
to PT.

Comparing PT instead to the PL setting yields a different
picture: The cumulative distribution functions for lattice size
L = 4 cross at F (τ ) ≈ 1/3, corresponding to a round-trip time
τ ≈ 2 × 102. This means that for the PT algorithm the easiest
one-third of all samples has smaller round-trip times than the
easiest third for the PL method, while PL is faster for the
harder two-thirds. For L = 8 the PL round-trip times are larger
for the easier half of the samples and smaller for the harder
half. The round-trip times for the hard disorder realizations
have most influence on the decay of the distribution and thus
on the shape parameter ξ . In Fig. 4 the scaling of the shape
parameter for the different methods is displayed, where the
errors of the best fitting parameters are estimated via jackknif-
ing [35]. For the considered lattice sizes the shape parameter
scales similarly for all the different methods. However, the
values for PL are systematically lower for L � 4. This is in
good agreement with its superior performance for the difficult
disorder realizations.

V. ASSESSING THE PERFORMANCE OF THE
DIFFERENT METHODS

Next, we want to compare the performance of the different
simulation methods. The most intuitive observable would be
the disorder average of the round-trip times over the set of

considered disorder realizations. However, as it turns out, the
rare-state events which have a dominating influence on the
distribution mean are not within the set of simulated disor-
der realizations. This effect is accounted for by considering
distribution means up to large quantiles of the underlying
extreme-value distributions, yielding a more reliable measure
of the real performance of the different methods.

A. Finding a benchmark

In principle, the real performance could be determined
by measuring the round-trip time of every possible disorder
realization. This procedure is discarded due to the enormous
number of possible disorder realizations [36]. Instead, we
generate a subset of all possible disorder realizations and from
those we try to infer the expected mean round-trip time of
all the disorder realizations belonging to the same problem
class by means of the population mean τpop. This is a standard
approach in all Monte Carlo studies and the law of large
numbers assures its convergence for all random variables from
distributions with a well-defined mean. However, this prereq-
uisite is not fulfilled for all of the round-time distributions
encountered in this work.

3 4 5 6 7 8
L

0.0

0.5

1.0

1.5

ξ(
L

)

flat
1/k
PT

power law

FIG. 4. The figure shows the shape parameter of the best fitting
Fréchet distribution in dependence of the lattice size for the different
employed simulation methods. The dotted line indicates the thresh-
old value from which on the distribution mean diverges.
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The expected mean round-trip time resulting from the
underlying probability density could be estimated by the dis-
tribution mean,

〈τ 〉 =
∫ ∞

μ−β/ξ

dττ f (τ ). (10)

This integral can be computed analytically, yielding

〈τ 〉 =
{
μ + β

ξ
[�(1 − ξ ) − 1] for ξ < 1

∞ otherwise
, (11)

with �(x) being the gamma function. The distribution mean
is, therefore, only defined as long as the shape parameter ξ

is smaller than 1 [37]. To illustrate this difficulty one can
consider the running mean which is defined as the population
mean over the first n generated disorder realizations keeping
them in a fixed order,

τ (n) = 1

n

n∑
i=1

τi, (12)

implying τpop = τ (N ), where N is the number of all simulated
disorder realizations. In Fig. 5 the running mean for the flat
MUCA method and different system sizes is plotted together
with the respective distribution mean if it is defined. For L = 4
(ξ 	 1) the running mean quickly converges to the distribu-
tion mean indicated by the dotted line. For L = 6 (ξ ≈ 1) the
jumps due to rare events in the tail of the distribution become

more pronounced. The running mean is still expected to ap-
proach the distribution mean for a finite number of disorder
realizations. For the 6000 samples considered in our work
this is still not the case. For L = 8 (ξ > 1) the distribution
mean is not defined. In the picture of the running mean, jumps
represent round-trip times in the tail of the distribution. In
the case of ξ > 1 those jumps τn/n in the running mean are
clearly visible in Fig. 5 and will lead to a divergence of the
population mean the more disorder realizations are taken into
account and hence the more rigorously the tail of the distribu-
tion is explored. This illustrates that the population mean as a
measure for the performance of the different methods must be
taken with a grain of salt.

In order to retain the characteristics of the underlying
round-trip time distribution into the estimator of the perfor-
mance of the different methods the distribution mean up to
a certain quantile can instead be taken into account. The
quantile function is the inverse of the CDF (9),

Q(p) = F−1(p) = μ + β

ξ
[(− ln p)−ξ − 1], p ∈ (0, 1),

(13)

yielding the round-trip time τp = Q(p) at which a certain
fraction p of the distribution is accumulated. For each ε < 1
we define the quantile mean 〈τ 〉ε disregarding a fraction ε of
the tail of the distribution as the integral (10) with the upper
bound replaced by Q(1 − ε),

〈τ 〉ε =
∫ Q(1−ε)

μ−β/ξ

dττ f (τ ). (14)

The integral is evaluated with the parameters of the best-fitting
distributions to the measured round-trip times; see Fig. 3.
This enables a well-defined extrapolation beyond the mea-
sured round-trip times of the simulated disorder realizations
of the underlying study and thus a comparison of the different
methods beyond the mere population mean, which may be
strongly dependent on the set of disorder realizations taken
into account for the study.

B. Comparison of the different methods

Finally, for the comparison of the mean round-trip times
only the population mean τpop and the quantile mean 〈τ 〉ε=10−4

neglecting a fraction ε = 10−4 of the tail of the distribution
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TABLE I. Ratios of the population mean τpop and the quantile
mean 〈τ 〉ε=10−4 of the round-trip times for flat MUCA, the 1/k
ensemble, and parallel tempering with respect to the same quantities
for the power-law MUCA method.

Flat MUCA 1/k ensemble Parallel tempering

L rpop rε=10−4 rpop rε=10−4 rpop rε=10−4

3 1.160(2) 1.174(3) 1.0146(6) 1.0193(9) 1.637(4) 1.640(5)
4 1.622(8) 1.68(2) 1.288(5) 1.328(10) 1.175(6) 1.25(2)
5 2.28(5) 2.44(6) 1.63(3) 1.75(4) 1.136(5) 1.185(8)
6 3.8(2) 3.9(2) 2.59(9) 2.6(2) 2.8(2) 3.4(3)
8 10.5(2) 14.2(6) 6.9(3) 9.4(4) 2.1(2) 2.62(7)

are taken into account as the distribution mean for the parallel
tempering method is already ill defined for L = 6.

The two definitions are evaluated for all simulated lattice
sizes and plotted in Fig. 6. Both definitions of the mean
grow exponentially up to linear system size L = 6 until which
the mean is defined, while for L > 6, where the distribu-
tion means diverge, they seem to be growing faster than
exponentially. We have also looked at the scaling of the
more commonly used quantiles including the median [38,39],
which are derived directly from the τ values without the inter-
mediate step of fitting to a statistical model. These quantiles
behave similarly to the quantile means (14) being, however,
less stable for small ε.

For the direct comparison of PL with the existing methods
we introduce the relative performance r which we define as
the fraction of the mean of the respective method and the one
of PL. In Table I, the relative performance for all different
system sizes is listed. The errors in r are estimated using the
Jackknife resampling technique. It consists of generating a set
of ratios {ri}, where for the calculation of each ri only a subset
of all disorder realizations is taken. The error in r is derived
from the variance of the so-generated Jackknife sample.

The speedup of PL compared to flat MUCA increases with
system size, reaching a factor of more than 10 for L = 8 for
both definitions of the mean, while compared to the 1/k en-
semble the speedup for the biggest system size is still a factor
of r ≈ 7–9. Compared to PT the speedup is less pronounced

and not steadily growing with system size, reaching a factor
of r ≈ 2–3 for our largest system sizes.

VI. CONCLUSION

Setting up multicanonical simulations such that the out-
coming histograms are shaped according to power laws
instead of being flat is trivially achievable. Nevertheless,
this simple approach enables us to gather significantly more
independent statistics at the ground-state energy, which is
important because the thermodynamic contributions of the
ground state of spin glasses are believed to be significant. It is
likely that similar techniques will also improve the sampling
of the ground state of other systems with complex free-energy
landscape such as polymers and in particular proteins, for
which the importance of the native state is well known.

While PT has been the most employed method in the sim-
ulation of spin glasses probably also due to its good ability to
investigate the ground-state region, we were able to show that
the power-law setting considerably improves the performance
of multicanonical simulations in this respect, rendering them
at least comparable to PT.

The overall gain in performance grows with increasing
lattice size and reaches a factor of up to 10–15 in comparison
to flat MUCA and still a factor of up to 2–3 compared to PT.
In terms of round-trip time distributions, the heaviness of the
tails is reduced by its superior ability to deal with the hard
disorder realizations.

This improved ability of the here proposed power-law
MUCA method of finding ground states for the hard instances
implies its usefulness in the application to general optimiza-
tion problems. This is particularly useful because many other
optimization problems can be rephrased in terms of spin-
glass Hamiltonians [40] and thus solved employing the same
methodology.
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