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We consider two versions of quantum Regge calculus: the standard Regge calculus where the quadratic link
lengths of the simplicial manifold vary continuously and theZ2 Regge model where they are restricted to two
possible values. The goal is to determine whether the computationally more easily accessibleZ2 model still
retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observ-
ables such as the average curvature or Liouville field susceptibility, we use in both models the same functional
integration measure, which is chosen to render theZ2 Regge model particularly simple. Expectation values are
computed numerically and agree qualitatively for positive bare couplings. The phase transition within theZ2

Regge model is analyzed by mean-field theory.@S0556-2821~99!02212-2#

PACS number~s!: 04.60.Nc
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I. INTRODUCTION

Standard Regge calculus~SRC! @1# provides an interest
ing method to explore quantum gravity in a nonperturbat
fashion@2#. The infinite degrees of freedom of Riemanni
manifolds are reduced by discretization; that is, SRC de
with piecewise linear spaces described by a finite numbe
parameters. A manifold is approximated by a simplicial l
tice with fixedcoordination numbers, as opposed to the d
namical triangulated random surface~DTRS! method @3#
where the coordination numbers are treated as the dynam
degrees of freedom. This leaves in SRC the quadratic
lengthsq as gravitational degrees of freedom which are c
strained by triangle inequalities. Since analytical treatme
have proven to be difficult, this approach has been ex
sively studied through numerical computer simulations d
ing the past ten years@4,5#. Although the computer codes ca
be efficiently vectorized, large scale simulations are sti
very time demanding enterprise. One therefore seeks for
able approximations which will simplify the SRC and y
retain most of its universal features.

TheZ2 Regge model (Z2RM) @6# could be such a desire
simplification. Here the quadratic link lengthsq of the sim-
plicial complexes are restricted to take on only the two v
uesql511es l , 0,e,emax, s l561, in close analogy to
the ancestor of all lattice models, the Lenz-Ising model.
test whether this simpler model is in a reasonable sense
similar to SRC, i.e., shares the same universal properties
study both models in two dimensions and compare a num
of observables for one particular lattice size. Moreover
estimate in both models the critical exponenthf of the Liou-
ville field susceptibility by performing a finite-size scalin
analysis on moderately sized lattices.

Although some models for 2D-quantum gravity have
been exactly solved via the matrix model approach@7# and
0556-2821/99/59~12!/124018~9!/$15.00 59 1240
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with the help of conformal field theory@8#, the relation of
those approaches to SRC is not yet understood. There
even severe discrepancies between the alternative dis
approach, the DTRS method@3#, and SRC. Especially the
functional integration measure in SRC is under heavy deb
@9#. In an effort to clarify the role of the measure the co
ventional definition of diffeomorphisms has been employ
assuming that a piecewise linear space, i.e., a Regge sur
is exactly invariant under the action of the full diffeomor
phism group@10#. After a conformal gauge fixing was per
formed in the continuum formalism, it was shown that t
evaluation of the nonlocal Faddeev-Popov determinant
using such a Regge regularization leads to the usual L
ville field theory results in the continuum limit. All that is
based on a description of piecewise linear manifolds w
deficit angles, not edge lengths, and is mostly taken as
argument that the correct measure of standard Regge c
lus has to be nonlocal. However, to our knowledge it is n
obvious that this argument carries over to a discretized
grangian, which is formulated in terms of fluctuating ed
lengths, obeying triangle equalities, and which isnot invari-
ant under the diffeomorphism group due to the presence
curvature defects: different assignments of edge lengths
respond to different physical geometries, and as a con
quence there are no gauge degrees of freedom in stan
Regge calculus, apart from special geometries~like flat
space! @11#. Therefore we do not include a gauge fixing ter
and rely in this work still on a local measure. Our main go
in this present investigation is not to resolve the meas
question but to explore the phase behavior of theZ2RM and
its relation to SRC. We will show that the discretizedZ2RM
does not suffer from unphysical gauge degrees of freedom
both SRC andZ2RM for certain local measures lie in th
same universality class one can hope to learn about phy
observables using this simplified approach.
©1999 The American Physical Society18-1
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The rest of the paper is organized as follows. In Sec. II
briefly review the standard Regge model as well as theZ2
Regge model. In Sec. III we introduce the observables
discuss important scaling relations. The details of the Mo
Carlo simulations and the results are presented in Sec.
Section V deals with a mean-field approach for theZ2RM to
discuss the observed phase transition in that specific mo
Finally Sec. VI ends with our conclusion.

II. MODELS

Starting point for both standard Regge calculus and theZ2
Regge model is Regge’s discrete description of general r
tivity in which space-time is represented by a piecewise fl
simplicial manifold: the Regge skeleton@1,4#. The beauty of
this procedure is that it works for any space-time dimens
d and for metrics of arbitrary signature. The Einstein-Hilb
action translates into

I ~q!5l(
sd

V~sd!22b (
sd22

d~sd22!V~sd22!, ~2.1!

with the quadratic edge lengthsq describing the dynamics o
the lattice,l being the cosmological constant, andb the bare
Planck mass squared. The first sum runs over alld-simplices
sd of the simplicial complex andV(sd) is the d-volume of
the indicated simplex. The second term represents the cu
ture of the lattice, that is concentrated on t
(d22)-simplices leading to deficit anglesd(sd22), and is
proportional to the integral over the curvature scalar in
classical Einstein-Hilbert action of the continuum theo
The connectivity of the edges, in simplicial terminolog
called the incidence matrix, is fixed from the beginni
through the simplicial decomposition of the manifold und
consideration. Any smooth manifold can be approximated
a Regge skeleton with arbitrarily small deficits simply
using a sufficient number of links and arranging them app
priately.

A. Standard Regge calculus

In two dimensions Regge’s discretization procedure
easily illustrated by choosing a triangulation of the cons
ered surface. Each triangle then represents a part of a p
wise linear manifold. The net of triangles itself is a tw
geometry, with singular~nondifferentiable! points located at
the vertices of the net. In the presence of curvature a ve
that is parallel transported around a vertex experiences a
tation by the deficit angled i52p2S t. iu i(t), whereu i(t)
are the dihedral angles of the trianglest attached to vertexi.
The integral of the scalar curvature over the simplicial co
plex K in two dimensions is a topological invariant due to t
Gauss-Bonnet theorem. Its simplicial analogue reads as

(
i .K

d i52px~M!, ~2.2!

wherex52(12g) is the Euler characteristic of the manifo
M expressed by the number of handlesg in M.
12401
e

d
te
V.

el.

a-
t,

n
t

a-

e
.

r
y

-

s
-
ce-

or
ro-

-

In the exceptional case of flat skeletons one can mov
vertex on the surface, keeping all the neighbors fixed, w
out violating the triangle inequalities, such that different co
figurations triangulate the same~flat! geometry. This trans-
formation has two parameters and is an exact invarianc
the action, but does not exist in general. When space
curved the invariance is only an approximate one. In
limit of increasing number of links local gauge invarianc
that is the continuum diffeomorphism group should be
covered.

A quantization of the above action~2.1! proceeds by
evaluating the path integral

Z5E D@q#e2I ~q!. ~2.3!

In principle the functional integration should extend over
metrics on all possible topologies, but, as is usually done,
restrict ourselves to one specific topology, the torus,M
5T2. Consequently the Euler characteristicx(T2) vanishes
in Eq. ~2.2! and the action~2.1! consists only of a cosmo
logical constantl times the sum over all triangle areasAt .
The path-integral approach suffers from a nonuniquenes
the integration measure, even the need for a nonlocal m
sure is advocated. However, some of the proposed nonl
measures do not agree with their continuum counterpart
the weak field limit, which is a necessary condition for
acceptable discrete measure@9#. This property however is
fulfilled for the standard simplicial measure@12#

E D@q#5P lE dql

ql
m Fh~ql !, ~2.4!

with mPR permitting to investigate a 1-parameter family
measures. The functionFh(ql) constrains the integration to
those Euclidean configurations of link lengths which do n
violate the triangle inequalities. The positive parameterh
modifies the triangle inequalities tol 3<( l 11 l 2)(12h) and
l 3>u l 12 l 2u(11h), so that very thin triangles are sup
pressed. This is not necessary on theoretical grounds,
will be useful for the Monte Carlo evaluation of the pa
integral.

Hence the model considered here is characterized by
partition function

Z5F)
l

N1 E
0

`

dqlql
2mGFn~$ql%!e2l( iAi, ~2.5!

whereN1 is the number of links andAi5S t. iAt/3 denotes
the barycentric area withAt being the area of a trianglet. A
specific choice of the value of the parameterm will be dis-
cussed in the next section.

As discussed above, the numerical computations of
~2.5! ~for technical details see Sec. IV! do not run into the
diffeomorphism problem by summing over distinct simp
cial lattices without fixing a gauge. Still the question aris
whether one double-counts some classes of geometrie
8-2
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Z2-REGGE VERSUS STANDARD REGGE CALCULUS IN . . . PHYSICAL REVIEW D 59 124018
this way, e.g., one may argue from the above that flat ge
etries are over-represented, though simulations give no h
on that.

B. Z2 Regge model

In theZ2 Regge model@6# the squared edge lengthsql are
allowed to take on only the two values

ql511es l , 0<e,emax, s l561, ~2.6!

where the parametere is chosen such that the Euclidean t
angle inequalities are satisfied for allql ’s, i.e.Fh51 for all
configurations$ql%. There exist 2N1 different configurations
and for finitee and link lengths none of them can be tran
formed smoothly into each other. A further nice attribute
the Z2RM is its accordance with lattice perturbation theo
As described in@13#, Eq. ~2.6! can be viewed as weak-fiel
expansion around flat space, implicitly having performed
conformal gauge fixing. On each triangle the metric ten
assumes the formgmn(D)5(11e)dmn . However a finitee
inhibits local conformal transformations. Since triangl
share links, rescaling lengths on one particular trian
would necessitate the same rescaling for the neighboring
angle and so on. What remains only is a global transform
tion. In the continuum limit the local conformal degree
freedom should be restored.

Using Eq.~2.6! the measure~2.4! can be replaced by

(
s l561

expF2m(
l

ln~11es l !G
5 (

s l561
expF2N1m0~e!2(

l
m1~e!s l G ,

~2.7!

where m052 1
2 me21O(e4) and m15m@e1 1

3 e31O(e5)#
5mM with

M5(
i 51

`
e2i 21

2i 21
5

1

2
ln

11e

12e
. ~2.8!

The area of a single trianglet with squared edge length
q1 ,q2 ,ql can be expressed as

At5
1

2U q1
1
2 ~q11q22ql !

1
2 ~q11q22ql ! q2

U1/2

5
1

2 H 3

4
1

1

2
~s11s21s l !e

1
1

2 S s1s21s1s l1s2s l2
3

2D e2J 1/2

. ~2.9!

ExpandingAt the series consists only of terms up tos3 since
s i

251. ThereforeAt can be written as
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At5c0~e!1c1~e!~s11s21s l !

1c2~e!~s1s21s1s l1s2s l !1c3~e!s1s2s l .

~2.10!

Computing the four possible values for the triangle areas
comparing with Eq.~2.10! results in exact solutions for th
coefficientsci :

c05
1

32
@2)13A~12e!~315e!13A~11e!~325e!#,

c15
1

32
@2)e1A~12e!~315e!2A~11e!~325e!#,

c25
1

32
@2)2A~12e!~315e!2A~11e!~325e!#,

c35
1

32
@2)e23A~12e!~315e!13A~11e!~325e!#.

~2.11!

Obviously one must havee, 3
5 5emax for the triangle areas

to be real and positive. In the simulations described be
we usede50.5 but the special choice ofe does not affect our
numerical results except for the value of the critical coupli
(lc) as one can infer from the next equation. It is obtain
by inserting Eqs.~2.7! and ~2.10! into the partition function
~2.5!

Z5 (
s l561

J expH 2(
l

~2lc11m1!s l2l(
t

3@c2~s1s21s1s l1s2s l !1c3s1s2s l #J ,

~2.12!

with J5exp(2lN2 c02N1m0) andN2 denoting the total num-
ber of triangles. If we views l as a spin variable and identif
the corresponding linkl of the triangulation with a lattice
site, thenZ reads as the partition function of a spin syste
with two- and three-spin nearest-neighbor interactions o
Kagomélattice. A particularly simple form of Eq.~2.12! is
obtained if one choosesm1522lc1 , and therefore

m52
2lc1

M
, ~2.13!

which is henceforth used for the measure in theZ2RM as
well as in SRC.

III. OBSERVABLES AND SCALING RELATIONS

To compare both models we examined the quadratic
lengths and the area fluctuations on the simplicial latti
Additionally we consider the squared curvature defined b

R25(
i

d i
2

Ai
. ~3.1!
8-3
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E. BITTNER et al. PHYSICAL REVIEW D 59 124018
Furthermore the Liouville mode is of special interest beca
it represents the only degree of freedom of pure 2D grav
The discrete analoguef i of the continuum Liouville field
w(x)5 ln Ag(x) is defined by

f i5 ln Ai , Ai5
1

3 (
t. i

At , ~3.2!

whereAi is the area element of sitei. The Liouville suscep-
tibility is then defined by

xf5^A&@^f2&2^f&2#, ~3.3!

wheref5(1/A)( if i andA is the total area@5#. From Ref.
@5# it is known that for fixed total areaA and the scale in-
variant measuredq/q the susceptibility scales according to

ln xf~L ! ;
L→`

c1~22hf!ln L, ~3.4!

with L5AA and the Liouville field critical exponenthf
50.

One can easily derive a scaling relation for the SRC fr
the partition function~2.5! @12#. Rescaling all quadratic link
lengths of Eq.~2.5! by a factorz, i.e., q85z21q, yields

Z5F)
l
E

0

`

z12mdql8ql8
2mGFh~$ql8%!e2l( izAi8. ~3.5!

Since this is only a change of the integration variablesZ
cannot depend onz. Hence we have

d ln Z

dz U
z51

505N1~12m!2lK (
i

Ai L ~3.6!

and find that the expectation value of the areaA is fixed to

^A&5N1

12m

l
5N1S 2c1

M
1

1

l D , ~3.7!

which is a useful identity to check the correctness of
simulation results.

For positivel the scaling relation makes always sen
and we expect the partition function~2.5! to behave well.
However, there is also a range for negative values ol
,lc,scal[2M /2c1 , where the area expectation value r
mains positive. For our choice ofe50.5 one obtainsM
50.5493... andc150.0788..., such that this value equates
lc,scal523.4817. For values oflc,scal,l,0 the area ex-
pectation value is negative and hence the partition func
~2.5! is ill-defined.

IV. SIMULATION DETAILS AND RESULTS

We studied the partition functions~2.5! and~2.12! on to-
roidal lattices withN05163165256 sites, resulting inN1
5768 andN25512. The measure was chosen as a funct
of l according tom522lc1 /M5l/lc,scal with e50.5,
i.e., m'20.3l. In the SRC formulation we used a standa
Metropolis algorithm to update every link during a lattic
12401
e
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n

sweep. For eachl in the range of 1–30, starting from a
initial configuration with equilateral triangles, we first the
malized the system and then collected 200k measurem
taken every 50th Monte Carlo~MC! sweep. Error bars were
computed by the standard Jackknife method on the basi
10 blocks. The integrated autocorrelation timetA for the area
was in the range of unity, whereas the integrated autoco
lation timetR2 of R2 was about 100–500, andtf of f was
about 100–1000, depending on the parameterl.

For the update of the spins in theZ2RM formulation we
also used a Metropolis algorithm. Here we performed 10
MC update sweeps measuring every 10th sweep after an ini-
tial equilibration period. The integrated autocorrelation tim
were typically of the order one.

In our first test runs of SRC with positivel we noticed
that our measured area expectation value was not in ag
ment with the scaling relation~3.7!, and that the mismatch
was growing when we increasedl. A way to cure this prob-
lem was to implement a new global MC move, which w
termed thebreathing move. It simply consists of rescaling al
quadratic link lengthsq by a factorz, which is the same as
scaling the total area by the factorz, wherez can be smaller
or larger than one. Again, the usual Metropolis criterion w
used to accept or reject this proposal, and the extent ofz was
adjusted to yield an acceptance rate of roughly one half.
allowed for ten global breathing moves followed by a co
plete sweep through the lattice with normal link updat
Applying these two moves the area expectation value
creases with increasingl in perfect agreement with the sca
ing relation~3.7!, see the upper left plot in Fig. 1. For sake
better comparison observables are plotted in Figs. 1 an
relative to the critical cosmological constant,l* 5l2lc
~5l for SRC!.

With the above global scaling one can also show that
area expectation value, which follows from the scaling re
tion for l,lc,scal , is an unstable equilibrium value. Thi
can be seen by considering the ratio of the Boltzmann fac
B before and after a proposed global move, where we
qnew5zqold and Anew5zAold, with z511k and m512a.
Using these abbreviations we get

Bnew

Bold 5
exp~2lzAold1a( ln zqold!

exp~2lAold1a( ln qold!

5expS 2lkAold1a( ln~11k! D
'expS 2k$lAold2aN1%2

aN1

2
k21¯ D . ~4.1!

The moves are always accepted in the Monte Carlo sim
tions if Bnew/Bold.1. The first term in the argument of th
exponential is linear ink and constitutes essentially the sca
ing relation~3.7!. The second term quadratic ink is always
positivefor negativel,lc,scal , i.e., for negativea. There-
fore this term will initially drive the system away from it
equilibrium value. In the next steps, the linear term amplifi
the instability and, depending on the arbitrary initial sign
k, the area will tend to zero or infinity.
8-4
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FIG. 1. Expectation values of the areaA, the average squared link lengthq, and the squared curvatureR2 as a function of the distance
to the critical cosmological constantl* for the standard Regge calculus~left plots! and theZ2 Regge model~right plots!. N0 is the total
number of vertices.
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However, even with the refined update scheme we
served that the SRC system thermalizes extremely slowly
very smalll and therefore display only statistically reliab
data points forl>1 in the plots on the left-hand side~LHS!
of Figs. 1 and 2. One also expects that expectation value
the average squared link lengthq will decrease and that ex
pectation values of the squared curvature will increase w
growing l which is indeed confirmed by the simulation r
sults displayed in Fig. 1. The Liouville field̂f& and the
associated susceptibility~3.3! are shown on the LHS of Fig
2. The peak in the Liouville susceptibility can be expected
move towardsl50 for L→` due to the diverging area a
this point.

The corresponding quantities of theZ2RM are shown for
comparison on the RHS of Figs. 1 and 2. Since it is a cr
approximation a quantitative agreement with SRC canno
expected. We see, however, that the two formulations y
for most quantities the same qualitative behavior for posit
couplings l* . Whereas the SRC becomes ill-defined f
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negativel* , the Z2RM as an effective spin system is wel
defined for all values of the cosmological constant. In
quantities of theZ2RM we observe the signature of a cros
over or phase transition, which is particularly pronounced
the Liouville susceptibility. From the peak location we re
off a critical couplinglc'211. The phase transition in th
Z2RM might be viewed as some relic of the transition from
well- to an ill-defined regime of SRC. To get some idea
the nature of the phase transition we looked at the histogr
of the total area and the squared curvature in Fig. 3. T
show a single-peak structure atlc which would hint at a
continuous transition.

By performing several runs, we further have monitor
the scaling of the Liouville susceptibility maxima in th
Z2RM for lattice sizes up toL5256. The double-logarithmic
plot in Fig. 4 shows that the scaling behavior~3.4! is gov-
erned by a critical exponenthf'2. We have performed a
finite-size scaling analysis of the Liouville susceptibility o
8-5
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FIG. 2. Expectation values of the Liouville fieldf and the Liouville field susceptibilityxf as a function ofl* for the standard Regge
calculus~left plots! and theZ2 Regge model~right plots!.
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lattice sizesL54, 8, 12, 16, 24, and 32 also for SRC. B
cause of the transition to an ill-defined phase making co
putations in its vicinity difficult we employed in all simula
tions a fixed valuel51 closest to the critical coupling~see
Figs. 1 and 2!. The Liouville-field exponent gives the beha
ior of the Liouville field in a specific phase, here the we
defined phase, and hence should be independent ofl. After
an equilibration period we performed 20k–100k measu
ments of the Liouville field and computed the associa
susceptibility ~3.3!. Our results presented in Fig. 4 indee
show that we obtain the same value ofhf'2, consistent
with the results found in theZ2RM. Furthermore, first results
demonstrate scaling of physically relevant quantities with
number of allowed values fors l indicating universality be-
tween theZ2RM, SRC and models ‘‘in between’’@14#.

Thus we observe strong disagreement with the Liouv
valuehf50, which has been found for SRC with the sca
invariant measuredq/q and fixed area constraint@5#. There
12401
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d

e

e

the same lattice transcription as in the present study
employed and it seems reasonable to attribute the valuehf
50 to the scale invariance of the measure, whereas our m
suredq/qm with m given in Eq.~2.13! explicitly breaks scale
invariance. One therefore might not be surprised to obser
different value ofhf .

V. MEAN-FIELD CALCULATION FOR THE Z2 REGGE
MODEL

The variational derivation of mean-field theory@15# starts
with a partition function

Z5(
$s%

exp@2bH~$s%!#. ~5.1!

The comparison with Eq.~2.12! leads to
FIG. 3. Histograms of the total area and the squared curvature per vertex at the transition point of theZ2 Regge model.
8-6
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FIG. 4. Scaling of the Liouville field susceptibilityxf as a function of the lattice sizeL for the SRC~left! at l51 and theZ2RM ~right!
for max(xf).
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Z5(
$s%

J expS 2bH 2(
l

@Q̄11~s11s21s31s4!

1Q̄3~s1s21s3s4!#s l J D , ~5.2!

with b52 1
2 lc2 , Q̄154c1 /c212m1 /lc2 and Q̄3

52c3/3c2 . The spins s j , j 51,...,4, correspond to th
squared edge lengthsqj511es j of the two triangles which
haveql and hences l in common:

Now the Hamiltonian is divided into two parts,H5H0
1H1 , where the choice ofH0 is only governed by the re
quirement that it should be possible to evaluate the co
sponding partition functionZ0 analytically. With the mean-
field ansatz

H052
M0

b (
i

s i ~5.3!

we get

Z05(
$s%

expS M0(
i

s i D 5~eM01e2M0!N1

52N1 coshN1~M0! ~5.4!

for the partition function. According to Peierl’s inequality w
obtain for

Z5e2bF5Z0^e
2b~H2H0!&0>Z0e2b^H2H0&05e2bFm f

~5.5!

a lower bound with the mean-field free energy

2bFm f5 ln Z02b^H2H0&0 . ~5.6!
12401
e-

The term ^...&0 represents the average with respect to
system described byH0 , i.e.,

$H2H0%052
1

Z0
(̂
s i &

(
l

F Q̄11~s11s21s31s4!

1Q̄3~s1s21s3s4!2
M0

b Gs le
M0( is i.

~5.7!

Because the thermal average or ‘‘mean’’ value of the s
results in

^s&05
eM02e2M0

eM01e2M0
5tanh~M0!, ~5.8!

the different terms in Eq.~5.7! give

K (
l

s l L
0

5N1 tanh~M0!,

K (
l

@~s11s21s31s4!s l #L
0

54N1„tanh~M0!…2,

K (
l

@~s1s21s3s4!s l #L
0

52N1„tanh~M0!…3.

~5.9!

Thus we get ab- and M0-dependent expression for th
mean-field free energy per link,

b f m f[
bFm f

N1
52 ln 22 ln„cosh~M0!…24b„tanh~M0!…2

22Q̄3b„tanh~M0!…31~M02bQ̄1!tanh~M0!,

~5.10!

that has to be minimized (Z>exp@2bFmf#). Differentiating
Eq. ~5.10! with respect toM0 leads to the mean-field equa
tion

tanh~M0!1
3Q̄3

4
„tanh~M0!…25

M0

8b
2

Q̄1

8
~5.11!
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for the free energy. We restrict ourselves again to a calc
tion without external fieldQ̄1 . A trivial solution of Eq.
~5.11! is M050 yielding b f m f52 ln 2, which is the stable
solution for smallb ~high ‘‘temperature’’!. With increasing
b a second minimum develops whose free energy is eve
ally lower than that of theM050 solution. This correspond
to the first-order phase transition expected due to the c
term in Eq.~5.10!. To locate the transition point we procee
as follows. For a givenM0 value ~,0! we can read offb
directly from Eq.~5.11!, without solving any nonlinear equa
tion. By insertingM0 andb in Eq. ~5.10! we obtain imme-
diately the free energy which can then be plotted versusb as
in Fig. 5. This curve is double valued because a givenM0
value can correspond to the minimum~lower branch! or the
maximum~upper branch! of b f m f at a fixedb. It should be
remarked that forb.0.125 there is another metastable so
tion with M0.0 which is not displayed here. With decrea
ing b the free energy of the nontrivial solution increases u
at bc,m f it hits the value of theM050 solution. Forb
,bc,m f the nontrivial solution first becomes metastable a
then disappears completely~at the point where the
minimum- and maximum-branch merge!. In this way it is
straightforward to extract the transition point as

bc,m f'0.1174

corresponding to

lc,m f'28.0 with e50.5. ~5.12!

At this value the free energy shows a structure with t
minima of identical height~cf. Fig. 6!, which reconfirms that
the mean-field calculation for theZ2 Regge model predicts
~weak! first-order phase transition. The value~5.12! is
slightly below the numerical estimate oflc'211; however,
it is a well-known property of mean-field theory to undere
timate the critical coupling. In fact, the ratio between t
mean-field and the numerical value,lc,m f /lc'0.73, is of
the same order of magnitude as the corresponding qua
for the exactly solvable two dimensional Ising model on
square lattice where (lc,m f /lc,exact) I'0.567.

VI. CONCLUSIONS

The aim of this work was to examine whether theZ2RM
allowing for two discrete edge lengths is an appropriate s

FIG. 5. Value ofb f m f1 ln 2 at the two minima under variation
of b.
12401
a-

u-

ic

-

il

d

-

ity

-

plification of the SRC with continuously varying edg
lengths in two dimensions. We studied both models
means of Monte Carlo simulations and found that the simp
Z2RM qualitatively reproduces the behavior of physical o
servables like the Liouville field or the squared curvature
the bare couplingl.0. A finite-size scaling analysis of th
Liouville susceptibility yields for both models the same cri
cal exponenthf'2. This hints at a continuous phase tran
tion which is also necessary to perform a continuum lim
Concerning universality it is a nontrivial result, because
the SRC model with scale invariant measure a value ofhf

50 was found.
To obtain further insight, mean-field theory was appli

to the Z2RM indicating a weak first-order phase transitio
This would prevent one to gain important information abo
the continuum theory. However, the numerical simulatio
indicate that fluctuations, which are neglected in mean-fi
theory, soften the true nature of the phase transition to s
ond order. The details of this transition such as critical e
ponents etc. are still left to be determined.

An interesting question is the influence of allowing f
more than two link lengths and the convergence of the pr
erties of such an extendedZ2RM to those of SRC in two
dimensions@14#. With additional degrees of freedom th
situation might resemble the more involved four-dimensio
case where one has to deal with 10 edges per simplex an
nontrivial Einstein-Hilbert actionS t. id tAt with 50 triangles
t per vertexi in Eq. ~2.1!. Thus the actionI (q) takes on a
large variety of values already forZ2RM and therefore SRC
can be approximated more accurately@16#.
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