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We consider two versions of quantum Regge calculus: the standard Regge calculus where the quadratic link
lengths of the simplicial manifold vary continuously and #yeRegge model where they are restricted to two
possible values. The goal is to determine whether the computationally more easily accéssitndel still
retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observ-
ables such as the average curvature or Liouville field susceptibility, we use in both models the same functional
integration measure, which is chosen to rendeizh&egge model particularly simple. Expectation values are
computed numerically and agree qualitatively for positive bare couplings. The phase transition within the
Regge model is analyzed by mean-field the¢80556-282(99)02212-2

PACS numbd(s): 04.60.Nc

[. INTRODUCTION with the help of conformal field theor}8], the relation of
those approaches to SRC is not yet understood. There are
Standard Regge calculdSRQO [1] provides an interest- even severe discrepancies between the alternative discrete
ing method to explore quantum gravity in a nonperturbativeapproach, the DTRS methd@], and SRC. Especially the
fashion[2]. The infinite degrees of freedom of Riemannianfunctional integration measure in SRC is under heavy debate
manifolds are reduced by discretization; that is, SRC dealf9]. In an effort to clarify the role of the measure the con-
with piecewise linear spaces described by a finite number ofentional definition of diffeomorphisms has been employed,
parameters. A manifold is approximated by a simplicial lat-assuming that a piecewise linear space, i.e., a Regge surface,
tice with fixed coordination numbers, as opposed to the dy-is exactlyinvariant under the action of the full diffeomor-
namical triangulated random surfaéBTRS method[3]  phism group[10]. After a conformal gauge fixing was per-
where the coordination numbers are treated as the dynamictdrmed in the continuum formalism, it was shown that the
degrees of freedom. This leaves in SRC the quadratic linlevaluation of the nonlocal Faddeev-Popov determinant by
lengthsq as gravitational degrees of freedom which are con-using such a Regge regularization leads to the usual Liou-
strained by triangle inequalities. Since analytical treatmentsille field theory results in the continuum limit. All that is
have proven to be difficult, this approach has been exterbased on a description of piecewise linear manifolds with
sively studied through numerical computer simulations dur-deficit angles, not edge lengths, and is mostly taken as an
ing the past ten yeafg,5]. Although the computer codes can argument that the correct measure of standard Regge calcu-
be efficiently vectorized, large scale simulations are still dus has to be nonlocal. However, to our knowledge it is not
very time demanding enterprise. One therefore seeks for suitbvious that this argument carries over to a discretized La-
able approximations which will simplify the SRC and yet grangian, which is formulated in terms of fluctuating edge
retain most of its universal features. lengths, obeying triangle equalities, and whicm@ invari-
TheZ, Regge modelZ,RM) [6] could be such a desired ant under the diffeomorphism group due to the presence of
simplification. Here the quadratic link lengtlysof the sim-  curvature defects: different assignments of edge lengths cor-
plicial complexes are restricted to take on only the two val-respond to different physical geometries, and as a conse-
uesq=1+e€0, 0<e<ema 01==1, in close analogy to quence there are no gauge degrees of freedom in standard
the ancestor of all lattice models, the Lenz-Ising model. TdRegge calculus, apart from special geometriise flat
test whether this simpler model is in a reasonable sense st#pace [11]. Therefore we do not include a gauge fixing term
similar to SRC, i.e., shares the same universal properties, wand rely in this work still on a local measure. Our main goal
study both models in two dimensions and compare a numbeén this present investigation is not to resolve the measure
of observables for one particular lattice size. Moreover weguestion but to explore the phase behavior ofZbBM and
estimate in both models the critical exponepfof the Liou- its relation to SRC. We will show that the discretizégRM
ville field susceptibility by performing a finite-size scaling does not suffer from unphysical gauge degrees of freedom. If
analysis on moderately sized lattices. both SRC andZ,RM for certain local measures lie in the
Although some models for @-quantum gravity have same universality class one can hope to learn about physical
been exactly solved via the matrix model approfighand  observables using this simplified approach.
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The rest of the paper is organized as follows. In Sec. Il we In the exceptional case of flat skeletons one can move a
briefly review the standard Regge model as well asZhe vertex on the surface, keeping all the neighbors fixed, with-
Regge model. In Sec. lll we introduce the observables andut violating the triangle inequalities, such that different con-
discuss important scaling relations. The details of the Montdigurations triangulate the santflat) geometry. This trans-
Carlo simulations and the results are presented in Sec. IMormation has two parameters and is an exact invariance of
Section V deals with a mean-field approach forth&M to  the action, but does not exist in general. When space is
discuss the observed phase transition in that specific modeturved the invariance is only an approximate one. In the

Finally Sec. VI ends with our conclusion. limit of increasing number of links local gauge invariance,
that is the continuum diffeomorphism group should be re-
Il. MODELS covered.

A quantization of the above actiofR.1) proceeds by
Starting point for both standard Regge calculus andZthe evaluating the path integral
Regge model is Regge’s discrete description of general rela-
tivity in which space-time is represented by a piecewise flat,
simplicial manifold: the Regge skeletdh,4]. The beauty of Z:f D[qle '@. 2.3
this procedure is that it works for any space-time dimension
d and for metrics of arbitrary signature. The Einstein-Hilbert

action translates into In principle the functional integration should extend over all

metrics on all possible topologies, but, as is usually done, we
restrict ourselves to one specific topology, the torid,
|(q):)\2 V(sd)_zng 5(s972)Vv(s'7?), (2.1 =T2. Consequently the Euler characteristi€T?) vanishes
sd sd-2 in Eq. (2.2) and the action2.1) consists only of a cosmo-
logical constani times the sum over all triangle areAs.
with the quadratic edge lengtlysdescribing the dynamics of The path-integral approach suffers from a nonuniqueness of
the lattice  being the cosmological constant, afidhe bare  the integration measure, even the need for a nonlocal mea-
Planck mass squared. The first sum runs oved-almplices  sure is advocated. However, some of the proposed nonlocal
s? of the simplicial complex and/(s®) is the d-volume of  measures do not agree with their continuum counterparts in
the indicated simplex. The second term represents the curvghe weak field limit, which is a necessary condition for an
ture of the lattice, that is concentrated on theacceptable discrete measy@. This property however is
(d—2)-simplices leading to deficit angle¥(s’ 2), and is  fulfilled for the standard simplicial measuf&2]
proportional to the integral over the curvature scalar in the
classical Einstein-Hilbert action of the continuum theory. dg,
The connectivity of the edges, in simplicial terminology J D[q]=1‘[|f—m}"ﬂ(q,), (2.9
called the incidence matrix, is fixed from the beginning a
through the simplicial decomposition of the manifold under
consideration. Any smooth manifold can be approximated byvith me R permitting to investigate a 1-parameter family of
a Regge skeleton with arbitrarily small deficits simply by measures. The functiaft, (q;) constrains the integration to
using a sufficient number of links and arranging them approthose Euclidean configurations of link lengths which do not
priately. violate the triangle inequalities. The positive parameter
modifies the triangle inequalities tg<(I,+1,)(1— ») and
I5=|1;—1,|(1+ %), so that very thin triangles are sup-
) ) ) o _pressed. This is not necessary on theoretical grounds, but
In two dimensions Regge’s discretization procedure isyill be useful for the Monte Carlo evaluation of the path
easily illustrated by choosing a triangulation of the consid-integral.
ered surface. Each triangle then represents a part of a piece- Hence the model considered here is characterized by the
wise linear manifold. The net of triangles itself is a two- partition function
geometry, with singulatnondifferentiable points located at
the vertices of the net. In the presence of curvature a vector
that is parallel transported around a vertex experiences a ro- 7=
tation by the deficit angle;=27—25,6;(t), where 6,(t)
are the dihedral angles of the triangtesttached to vertek
The integral of the scalar curvature over the simplicial com-whereN; is the number of links ané,=3,5;A,/3 denotes
plexK in two dimensions is a topological invariant due to thethe barycentric area with, being the area of a triangte A
Gauss-Bonnet theorem. Its simplicial analogue reads as  specific choice of the value of the parametewill be dis-
cussed in the next section.
> s=2mx(M), (2.2 As discussed above, the numerical computations of Eq.
iDK (2.5 (for technical details see Sec.)I\o not run into the
diffeomorphism problem by summing over distinct simpli-
wherey=2(1—g) is the Euler characteristic of the manifold cial lattices without fixing a gauge. Still the question arises
M expressed by the number of handiesm M. whether one double-counts some classes of geometries in

A. Standard Regge calculus

Fal{ape 4, (2.5

Ny .
IIT Jodquqf’“
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this way, e.g., one may argue from the above that flat geom-
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Ai=Co(€)+cCyi(€)(o1 T o+ 0))

etries are over-represented, though simulations give no hints

on that.

B. Z, Regge model

In theZ, Regge mod€]6] the squared edge lengthsare
allowed to take on only the two values

q=1+eoq, +1, (26)

O=e<é€max, 0=

+cy(€)(o102+ o101+ 020))+C3(€) 1050
(2.10

Computing the four possible values for the triangle areas and
comparing with Eq(2.10 results in exact solutions for the
coefficientsc; :

Co= 3i2[21/§+3¢(1—e)(3+5e)+3«1+e)(3—5e)],

where the parameteris chosen such that the Euclidean tri-
angle inequalities are satisfied for gffs, i.e. 7, =1 for all
configurations{q;}. There exist 21 different configurations
and for finitee and link lengths none of them can be trans-
formed smoothly into each other. A further nice attribute of
the Z,RM is its accordance with lattice perturbation theory. c,= 3—2[2\f3— V(1—€)(3+5€)— J(1+€)(3—5¢)],
As described if13], Eq. (2.6) can be viewed as weak-field
expansion around flat space, implicitly having performed a
conformal gauge fixing. On each triangle the metric tensor ¢,= —
assumes the forrg,,,(A)=(1+¢€)J5,,. However a finitee 32
inhibits local conformal transformations. Since triangles

share links, _rescaling lengths on one particqlar tri_anglebbviously one must have< 2= e, for the triangle areas
would necessitate the same rescaling for the neighboring U, he rea| and positive. In the simulations described below

angle and so on. What remains only is a global transformag,q ,seqe= 0.5 but the special choice efdoes not affect our
tion. In the continuum limit the local conformal degree of

1
ci= 3—2[2\/§e+ J(1—¢€)(3+5€)— (1+¢€)(3—5¢)],

[2V3e—3(1—€)(3+5€)+3(1+€)(3—5¢)].
(2.12)

freedom should be restored.
Using Eq.(2.6) the measuré2.4) can be replaced by

2 ex;{—mzl In(1+e€a))

o==*1

-3

o=*1

exp[ —Nlmo<e>—2| my(€) o
2.7

where mp=—1me?+0(e*) and my=m[e+ e+ 0(e°)]
=mM with

“oedl 1 1+4€
M=2 =3

(2.9

The area of a single triangkewith squared edge lengths

d:.02,0, can be expressed as

1/2
d1 3 (g1+a2—q)

3 (91+02—q) a2
3+

4 2
1

+ —
2

1

At:2

1

2

(o1t osto))e

3 1/2
0109+ 010+ 00— E) 62] . (2.9

ExpandingA, the series consists only of terms upatd since
o?=1. ThereforeA, can be written as

numerical results except for the value of the critical coupling
(\¢) as one can infer from the next equation. It is obtained
by inserting Eqs(2.7) and (2.10 into the partition function
(2.5

o=*1

Z= 2 Jexp{—}lz (2)\cl+ml)a|—)\2
t

X[Co(o102+ 0101+ 0207) +Cy010,0¢] |,

(2.12

with J=exp(—AN, c,—N;mp) andN, denoting the total num-
ber of triangles. If we viewr| as a spin variable and identify
the corresponding link of the triangulation with a lattice
site, thenZ reads as the partition function of a spin system
with two- and three-spin nearest-neighbor interactions on a
Kagomelattice. A particularly simple form of Eq2.12) is
obtained if one choosea®n;=—2\c4, and therefore

2\Cq
M 1

m=—

(2.13

which is henceforth used for the measure in B RM as
well as in SRC.

[II. OBSERVABLES AND SCALING RELATIONS

To compare both models we examined the quadratic link
lengths and the area fluctuations on the simplicial lattice.
Additionally we consider the squared curvature defined by

S2
R2= f' (3.1
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Furthermore the Liouville mode is of special interest becauseweep. For each in the range of 1-30, starting from an
it represents the only degree of freedom of pure 2D gravityinitial configuration with equilateral triangles, we first ther-
The discrete analogue; of the continuum Liouville field malized the system and then collected 200k measurements
e(X)=In \/@ is defined by taken every 50 Monte Carlo(MC) sweep. Error bars were
L computed by the standard Jackknife method on the basis of
_ _ 10 blocks. The integrated autocorrelation timefor the area
bi=InA;, Ai_§gfi Acs (32 was in the range of unity, whereas the integrated autocorre-
lation time g2 of R? was about 100—500, andg, of ¢ was
whereA, is the area element of siteThe Liouville suscep- about 100-1000, depending on the paramketer

tibility is then defined by For the update of the spins in tZeRM formulation we
5 ) also used a Metropolis algorithm. Here we performed 100k
Xo=(A($7) ()], (3.3  MC update sweeps measuring every"Xveep after an ini-

tial equilibration period. The integrated autocorrelation times
were typically of the order one.
In our first test runs of SRC with positive we noticed
that our measured area expectation value was not in agree-
ment with the scaling relatiof3.7), and that the mismatch
was growing when we increasad A way to cure this prob-
(3.9 : :
lem was to implement a new global MC move, which we

with L=A and the Liouville field critical exponenty,; termed th_)reathing movelt simply cons_ists_of rescaling all
—0. quadratic link lengthg) by a factor{, which is the same as

One can easily derive a scaling relation for the SRC fromec@ling the total area by the factgrwhere/ can be smaller

the partition function(2.5) [12]. Rescaling all quadratic link ©" larger than one. Again, _the usual Metropolis criterion was
lengths of Eq(2.5) by a factor¢, i.e.,q’ =¢ 1q, yields used to accept or reject this proposal, and the extetitnas
T ’ adjusted to yield an acceptance rate of roughly one half. We

o B , allowed for ten global breathing moves followed by a com-
H fo £ Mdgqf m}fn({cﬁ})emi“i- (3.9  plete sweep through the lattice with normal link updates.
Applying these two moves the area expectation value de-
creases with increasingin perfect agreement with the scal-
ing relation(3.7), see the upper left plot in Fig. 1. For sake of
better comparison observables are plotted in Figs. 1 and 2
relative to the critical cosmological constamt} =\ —\,
=0=N1(1—m)—k<2 Ai> (3.6) (= for SRO.

' With the above global scaling one can also show that the
area expectation value, which follows from the scaling rela-
tion for A<<\;sca1, IS an unstable equilibrium value. This
2c; 1 can be seen by considering the ratio of the Boltzmann factors
V+ X)’ 3.7 B before and after a proposed global move, where we set

qre"'=£q° and A™"= A% with (=1+« andm=1—a.
which is a useful identity to check the correctness of theUSing these abbreviations we get
simulation results.

where = (1/A)Z;¢; and A is the total ared5]. From Ref.
[5] it is known that for fixed total ared and the scale in-
variant measure g/q the susceptibility scales according to

L—oo

INx4(L) ~ c+(2—ny)InL,

7=

Since this is only a change of the integration variables,
cannot depend o#. Hence we have

dinzZ
d{

=1
and find that the expectation value of the afes fixed to

1-m
N

(A)=N;

For positive\ the scaling relation makes always sense, B™" exp(—\{A%+aZ Inq°)
and we expect the partition functioi2.5) to behave well. B ™ exp(—AA%+ o= In g
However, there is also a range for negative values\ of
<A¢sca™=—M/2c,, where the area expectation value re- =exp< “AkA%+ oS In(1+ )
mains positive. For our choice od=0.5 one obtaindv

=0.5493... and;=0.0788..., such that this value equates to aN
Ncsca= —3.4817. For values ok .o <A <O the area ex- ~exr{ — k{NA%— N} — —1:<2+---). 4.0
pectation value is negative and hence the partition function 2
(2.5 is ill-defined.
The moves are always accepted in the Monte Carlo simula-
IV. SIMULATION DETAILS AND RESULTS tions if B"‘eW/'BO"d>l. The first term in the argument of the
exponential is linear inc and constitutes essentially the scal-
We studied the partition function.5) and(2.12 on to-  ing relation(3.7). The second term quadratic inis always
roidal lattices withNy=16X 16=256 sites, resulting iMN, positivefor negative\ <\ ¢cq, i.€., for negativen. There-
=768 andN,=512. The measure was chosen as a functiorfore this term will initially drive the system away from its
of N according tom=—2\cy;/M=MN/A;sca With €=0.5,  equilibrium value. In the next steps, the linear term amplifies
i.e., m=~—0.3\. In the SRC formulation we used a standardthe instability and, depending on the arbitrary initial sign of
Metropolis algorithm to update every link during a lattice «, the area will tend to zero or infinity.
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FIG. 1. Expectation values of the ar@athe average squared link lengihand the squared curvatuR? as a function of the distance
to the critical cosmological constant for the standard Regge calcul(sft plots) and theZ, Regge modelright plots. N, is the total
number of vertices.

However, even with the refined update scheme we obnegativer*, the Z,RM as an effective spin system is well-
served that the SRC system thermalizes extremely slowly fofefined for all values of the cosmological constant. In all
very sm_all)\ and the_refore display only statisticallly reliable quantities of theZ,RM we observe the signature of a cross-
da“”! points fom =1 in the plots on the left-hand S.'dEHS) over or phase transition, which is particularly pronounced in
?rfngvSér; aeni 2. Onde Ialskol expiwa'fl t(;'at expectattljo?hv?lue_s ?Itle Liouville susceptibility. From the peak location we read

erage squared link lengiwill decrease and that ex- off a critical coupling\ .~ —11. The phase transition in the
pectation values of the squared curvature will increase wit . . . o
growing \ which is indeed confirmed by the simulation re- 2RM mlghF be v!ewed as some relic of the transmon_ from a
well- to an ill-defined regime of SRC. To get some idea on

sults displayed in Fig. 1. The Liouville fiel and the
associatgd Zusceptibﬁi()&S) are shown on th‘equleS of Fig. the nature of the phase transition we looked at the histograms

2. The peak in the Liouville susceptibility can be expected toPf the total area and the squared curvature in Fig. 3. They
move towards\=0 for L— due to the diverging area at SNOW a single-peak structure at which would hint at a
this point. continuous transition.

The corresponding quantities of tZeRM are shown for By performing several runs, we further have monitored
comparison on the RHS of Figs. 1 and 2. Since it is a crudéhe scaling of the Liouville susceptibility maxima in the
approximation a quantitative agreement with SRC cannot b&,RM for lattice sizes up th = 256. The double-logarithmic
expected. We see, however, that the two formulations yielglot in Fig. 4 shows that the scaling behavi@4) is gov-
for most quantities the same qualitative behavior for positiveerned by a critical exponeng,~2. We have performed a
couplings \*. Whereas the SRC becomes ill-defined forfinite-size scaling analysis of the Liouville susceptibility on
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FIG. 2. Expectation values of the Liouville field and the Liouville field susceptibility , as a function oi* for the standard Regge
calculus(left plots and theZ, Regge modelright plots.

lattice sizesL=4, 8, 12, 16, 24, and 32 also for SRC. Be- the same lattice transcription as in the present study was

cause of the transition to an ill-defined phase making comemployed and it seems reasonable to attribute the vajye

putations in its vicinity difficult we employed in all simula- =0 to the scale invariance of the measure, whereas our mea-

tions a fixed value. =1 closest to the critical couplingsee  suredqg/q™ with mgiven in Eq.(2.13 explicitly breaks scale

Figs. 1 and 2 The Liouville-field exponent gives the behav- invariance. One therefore might not be surprised to observe a

ior of the Liouville field in a specific phase, here the well- different value ofz,, .

defined phase, and hence should be independext After

an equilibration period we performed 20k—100k measure-

ments of the Liouville field and computed the associated V- MEAN-FIELD CALCULATION FOR THE = Z, REGGE

susceptibility (3.3). Our results presented in Fig. 4 indeed MODEL

show that we obtain the same value 9§~2, consistent The variational derivation of mean-field thedt5] starts

with the results fo.und in thEz'RM. Furthermore, flrst resplts with a partition function

demonstrate scaling of physically relevant quantities with the

number of allowed values far, indicating universality be-

tween theZ,RM, SRC and models “in between['14]. z=>, exd — BH{o})]. (5.
Thus we observe strong disagreement with the Liouville {o}

value 7,=0, which has been found for SRC with the scale

invariant measurelg/q and fixed area constraiff]. There  The comparison with E¢2.12) leads to

0.16 T " 0.16
0.14 ] 0.14
012 ¢ 1 012
0.1} 1 0.1
-_— NA
< 008} = 0.08
o o
0.06 - 1 0.06 |
0.04 k 0.04
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o . 0 .
0.4 0.5 0.6 0.7 0 1 5 2 3
ANy RNy

FIG. 3. Histograms of the total area and the squared curvature per vertex at the transition poir oRtéfgge model.
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FIG. 4. Scaling of the Liouville field susceptibility,, as a function of the lattice sizefor the SRC(left) at A\ =1 and theZ,RM (right)
for max(y,).

_ The term(...)o represents the average with respect to the
Z={2} Jex;( -B —Z [Qit (o1t ot o3t 04) system described by, i.e.,
1 _
— H—Hglog=— = +(oytoytoszto
+Qs<aloz+oso4>]m}), (5.2 tH=Holo=" 7, <2> 7 |Qurtortorrostoy
J— —_— ~ MO MOEi(ri
with  B=—1rc,, Qp=4c,/c,+2my/hc, and Qs +Qs(0102+ 7300) = —57 | €701
=2c3/3c,. The spinsoj, j=1,..,4, correspond to the
squared edge lengtlig= 1+ €o; of the two triangles which 5.7

haveq, and hencer, in common: . Y .
Because the thermal average or “mean” value of the spin

results in
eMo—e Mo
a a2 <0'>0:eM0+e—_MO =tanh(M,), (5.9
il
B Q4 the different terms in Eq5.7) give
<E a|> =N; tant(Mo),
|
0
Now the Hamiltonian is divided into two partdl=H,
+Hy, where the choice o, is only governed by the re- <2 [(o1+ 0o+ 03+ 04)0,]> =4N, (tanH My))?,
quirement that it should be possible to evaluate the corre- [ 0

sponding partition functioiz, analytically. With the mean-

field ansatz <E| [(olaz+osa4>m]> = 2N, (tan M ))°.
Ho=— 23 o (5.3 ’ (5.9

Thus we get aB- and My-dependent expression for the

we get mean-field free energy per link,

_ _ - F

Zo= % eXD( Mo2, U'i) = (eMo+e Mot Bf mi= % = —In2—In(cost{Mo))— 4B (tan Mo))?
1

—oN _ _

= 2% cosii(Mo) 54 ~2QaB(tanh(Mg)*+ (Mo~ BQptanh M),
for the partition function. According to Peierl’s inequality we (5.10
obtain for

_ o i _ that has to be minimizedZz=exf — BF]). Differentiating
—e BF— B(H—Hg) B(H-Hp)o— @=BFm . m .

Z=e Zo(e “)o=Zoe vo=e (f5 5 Eq. (5.10 with respect toM, leads to the mean-field equa-
' tion

Mo Qi

a lower bound with the mean-field free energy 3Q;
tanH M) + T(tanh(Mo))Zz—— —  (5.1)

—BFmi=InZy— B(H—Hg)g. (5.6
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FIG. 5. Value of Bf ,,;+1In 2 at the two minima under variation
of B.

for the free energy. We restrict ourselves again to a calcula-

tion without external f|eIdQ1. A trivial solution of Eg.
(5.11 is My=0 yielding Bf ,s= —In 2, which is the stable
solution for smallg (high “temperature’). With increasing

FIG. 6. Free energgf s+ In 2 as a function oM, at the mean-
field transition point.

plification of the SRC with continuously varying edge
lengths in two dimensions. We studied both models by
means of Monte Carlo simulations and found that the simpler

Z,RM qualitatively reproduces the behavior of physical ob-
Servables like the Liouville field or the squared curvature for
tg]e bare coupling.>0. A finite-size scaling analysis of the
Liouville susceptibility yields for both models the same criti-
cal exponenty,~2. This hints at a continuous phase transi-
tion which is also necessary to perform a continuum limit.
Concerning universality it is a nontrivial result, because in
the SRC model with scale invariant measure a valuey pf
=0 was found.

B a second minimum develops whose free energy is eventu
ally lower than that of théVl ;=0 solution. This corresponds
to the first-order phase transition expected due to the cubi
term in Eq.(5.10. To locate the transition point we proceed
as follows. For a giverM, value (<0) we can read off8
directly from Eq.(5.11), without solving any nonlinear equa-
tion. By insertingM, and 8 in Eqg. (5.10 we obtain imme-
diately the free energy which can then be plotted veas
in Fig. 5. This curve is double valued because a giln
value can correspond to the minimuiower branch or the To obtain further insight, mean-field theory was applied
maximum (upper branchof Bf¢ at a fixedg. It should be to the Z,RM indicating a weak first-order phase transition.
remarked that fo3>0.125 there is another metastable solu-This would prevent one to gain important information about
tion with My>0 which is not displayed here. With decreas- the continuum theory. However, the numerical simulations
ing B the free energy of the nontrivial solution increases untilindicate that fluctuations, which are neglected in mean-field
at B¢ m¢ it hits the value of theMy=0 solution. For3  theory, soften the true nature of the phase transition to sec-
< B¢ mt the nontrivial solution first becomes metastable andond order. The details of this transition such as critical ex-
then disappears completelyat the point where the ponents etc. are still left to be determined.
minimum- and maximum-branch mespgdn this way it is An interesting question is the influence of allowing for
straightforward to extract the transition point as more than two link lengths and the convergence of the prop-
Bemi~0.1174 erties of such an extendeghbRM to those of SRC in two
' dimensions[14]. With additional degrees of freedom the
situation might resemble the more involved four-dimensional
(5.12  case where one has to deal with 10 edges per simplex and the
nontrivial Einstein-Hilbert actiort; 5;A; with 50 triangles
At this value the free energy shows a structure with twot per vertexi in Eq. (2.1). Thus the actiori(q) takes on a
minima of identical heightcf. Fig. 6), which reconfirms that large variety of values already f@,RM and therefore SRC
the mean-field calculation for th&, Regge model predicts a can be approximated more accuratglg|.
(weak first-order phase transition. The valu®.12 is
slightly below the numerical estimate pf~ —11; however,
it is a well-known property of mean-field theory to underes-
timate the critical coupling. In fact, the ratio between the
mean-field and the numerical valugg n¢/\.~0.73, is of A.H. acknowledges support from an Erasmus grant during
the same order of magnitude as the corresponding quantit}is stay at the FU Berlin, where this project was started. J.R.
for the exactly solvable two dimensional Ising model on awas supported by Fonds zur féerung der wissenschaftli-
square lattice Whereg m/\¢ exacd;~0.567. chen Forschung under contract P11141-PHY. W.J. thanks
the Deutsche Forschungsgemeinschaft for financial support,
and also acknowledges partial support by the German-Israel-
Foundation(GIF) under contract No. 1-0438-145.07/95. Parts
The aim of this work was to examine whether @gRM of the numerical simulations were performed on the North
allowing for two discrete edge lengths is an appropriate simGerman Vector ClustefNVV) under grant bvpfO1.

corresponding to

Nemr~—8.0 with e=0.5.
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