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First-order directional ordering transition in the three-dimensional compass model
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We study the low-temperature properties of the classical three-dimensional compass or t2g orbital model on
simple-cubic lattices by means of comprehensive large-scale Monte Carlo simulations. Our numerical results
give evidence for a directionally ordered phase that is reached via a first-order transition at the temperature
T0 = 0.098 328(3)J/kB. To obtain our results, we employ local and cluster update algorithms, parallel tempering
and multiple histogram reweighting as well as model-specific screw-periodic boundary conditions, which help
counteract severe finite-size effects.
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I. INTRODUCTION

The compass model [1] is a generic model for orbital-
orbital interactions in certain Mott insulators such as various
transition-metal compounds. In systems with partially filled
orbital 3d shells, it provides a heuristic description for the
coupling of t2g orbitals. If their interaction is dominated by
the Kugel-Khomskii superexchange mechanism, the quantum
compass model is realized, while the phonon-mediated Jahn-
Teller effect gives rise to the classical compass model [2,3].
Beyond the rich physics of orbital order in recent years,
the quantum compass model has received increased attention
because it provides an alternative route to realize qubits that are
shielded from decoherence via so-called topological protection
[4,5]. In this context, the model is realized in the form of arrays
of superconducting Josephson junctions, which have already
been implemented successfully in experiments [6].

While the compass model is closely related to the well-
studied O(n) and Heisenberg lattice spin models with nearest-
neighbor interactions, it differs from these in a fundamental
aspect: It features an inherent coupling of real-space symmetry,
realized by the point group of the lattice, to the symmetry of the
interactions encoded in the Hamiltonian. The resulting com-
petition of exchange couplings along the different lattice axes
prevents a conventional magnetization-like ordered phase, but
still allows for long-ranged, essentially one-dimensional direc-
tional ordering [7]. The peculiar symmetries of the compass
model lead to a high degree of degeneracy in its ground states
[8], similarly to other orbital models [1]. Typically, such a
degeneracy suppresses order for T = 0, while at low but finite
temperatures, an ordered phase may still be realized through
an order-by-disorder [9,10] mechanism, where certain system
configurations are favored entropically. For both classical
and the quantum variations of the compass model in two
dimensions (2D), earlier Monte Carlo studies have indeed
established the realization of a directionally ordered phase
at low temperatures, which is reached by a continuous thermal
phase transition in the 2D Ising universality class [11–13].

Beyond that, the case of the three-dimensional (3D)
compass model remains particularly interesting as it may be
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significant for the microscopic description of materials in the
reach of experimental research. For the 3D quantum compass
model, high-temperature series expansions have not shown
any sign of a finite-temperature phase transition, while the
continuous transition could be confirmed for the 2D quantum
compass model [14].

The purpose of this paper is to shed more light on the
low-temperature properties of the compass model in three
dimensions. We present an extensive Monte Carlo study that
provides evidence for a first-order phase transition from a
high-temperature disordered phase into a directionally ordered
phase. While simulations of the quantum model are plagued by
a negative-sign problem and hence are infeasible on reasonably
sized lattices, we can study the classical variation of the
3D compass model without prohibitive computational cost.
Nevertheless, a considerable methodological effort is required
to obtain quantitative results for two reasons: the model
features very strong finite-size effects that must be treated
carefully and long autocorrelation times near the transition
point would make it hard to collect sufficient statistics with
only a naive Monte Carlo sampling scheme.

The main part of this work is organized as follows. In
Sec. II, we formally introduce the model and discuss some of
its properties. Section III describes the setup of the simulations
and the specific numerical methods employed. Our results are
presented and analyzed in Sec. IV. We close in Sec. V with
conclusions and an outlook.

II. THE MODEL

In d spatial dimensions, the compass model is defined on a
simple-hypercubic lattice of size N = Ld by the Hamiltonian

H = −
d∑

k=1

N∑
i=1

Jks
k
i s

k

i+k̂
. (1)

Here, sk
i is the kth component of a spin si at lattice site i. Jk is

a coupling constant depending on the lattice direction k. The
nearest neighbor of site i in the kth direction is indicated
by i + k̂. In the classical compass model, the constituent
spins are represented by vectors on the unit hypersphere in d-
dimensional space: si ∈ Sd−1. Two spins on sites neighboring
in direction k only interact in their kth components. Note that
Eq. (1) could be separated into d independent one-dimensional
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FIG. 1. (Color online) Shown are two typical example spin con-
figurations of the L = 16 system from (a) the disordered high-
temperature phase and (b) the directionally ordered low-temperature
phase. On each face of the cube, the averaged projection to the
orthogonal direction of all spins at sites in one column above that
face is given color-coded. While in the high-temperature snapshot
at β = 4/J no order can be recognized, there is a strong tendency
towards linear alignment of the spins in the ±ẑ directions in the
low-temperature snapshot at β = 20/J .

Hamiltonians, if the directions were not coupled by the
constraint |si | = 1.

In this paper, we limit the discussion to equal coupling
constants in every direction: Jk ≡ J . The Hamiltonian of the
three-dimensional model on a cubic lattice of size N = L3

then reads

H(3D) = −J

N∑
i=1

(
sx
i sx

i+x̂ + s
y

i s
y

i+ŷ + sz
i s

z
i+ẑ

)
, (2)

where the spins si ∈ S2 can be parametrized by azimuthal and
polar angles θi ∈ [0,π ] and ϕi ∈ [0,2π ):

si = s(θi,ϕi) =

⎛
⎜⎝

sx
i

s
y

i

sz
i

⎞
⎟⎠ =

⎛
⎜⎝

sin θi cos ϕi

sin θi sin ϕi

cos θi

⎞
⎟⎠. (3)

In this work, we choose a coupling constant of J > 0
corresponding to ferromagnetic interactions.

The classical compass model is obtained by taking the limit
of large spin S of the quantum mechanical compass model,
where the spins would be represented by S = 1/2 operators
si = �

2 (σx,σy,σz) with the Pauli matrices σk .

The compass model in Eq. (1) has a high number of ground
states. To begin with, any constant spin configuration is a
ground state. Beyond that, the model exhibits a number of
discrete symmetries, which lead to a macroscopic degeneracy
of every energetic state, including but not limited to the
ground state [1,8]. Most importantly for d = 3 with open
or periodic boundary conditions, Eq. (2) is invariant under
a reflection of all spins on any line of sites parallel to one of
the lattice axes across the orthogonal plane, which leads to
a 23L2

-fold degeneracy. As a consequence of these gaugelike
symmetries conventional magnetic order is prohibited at any
temperature [7]: 〈m〉 = 〈| 1

N

∑
i si |〉 ≡ 0. However, quantities

such as 〈sk
i s

k

i+k̂
〉 are invariant under these symmetries and

a special type of directional or “nematic” ordering is not
precluded. One can construct order parameters that measure
directional ordering characterized by long-rang correlations in
the direction of fluctuations in spin and lattice spaces, even
though magnetic ordering is absent. This type of order is
realized by linear spin alignment parallel to the lattice axes
so that nearest-neighbor bonds carrying the lowest energy are
oriented mostly along one specific direction as illustrated in
Fig. 1. It is not obvious to which degree the ground-state
degeneracy translates into the number of distinct directionally
ordered phases at low finite temperature.

III. NUMERICAL METHODS

A. Observables

We now turn to our numerical simulations of Eq. (2) carried
out at various inverse temperatures β = 1/kBT and first
discuss the quantities we measure. By Ek = −J

∑N
i=1 sk

i s
k

i+k̂
with k = x,y,z we denote the total bond energy along the kth
lattice axis. Our basic observable is then the total energy

E = Ex + Ey + Ez (4)

with the corresponding heat capacity

C = ∂E

∂T
= kBβ2(〈E2〉 − 〈E〉2). (5)

In previous studies, an order parameter for directional ordering
in the two-dimensional model has been defined by the energy
excess in one of the lattice directions compared to the other
direction [11–13]. Here we consider a three-dimensional
extension:

D = 1

N

√
(Ey − Ex)2 + (Ez − Ey)2 + (Ex − Ez)2. (6)

To help with the analysis of the directional ordering phase
transition and its finite-size scaling, we also consider quantities
derived from D: the susceptibility χ and the Binder parameter
Q2, which are defined as

χ = N (〈D2〉 − 〈D〉2), Q2 = 1 − 1

3

〈D4〉
〈D2〉2

. (7)

B. Screw-periodic boundary conditions

In most cases, simulations of statistical models are carried
out on finite lattices with the topology of a torus, i.e.,
with periodic boundary conditions. The assumption is that
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compared to open or fixed boundary conditions this choice
minimizes finite-size surface effects, which become irrelevant
in the thermodynamic limit.

In previous studies of the two-dimensional classical com-
pass model, however, periodic boundary conditions have
not turned out to be an ideal choice. In the directionally
ordered low-temperature phase, the spins form essentially one-
dimensional chains with decoupled rows and columns of spins
on the square lattice. With periodic boundary conditions the
spins tend to form closed aligned loops along the boundaries
of a finite lattice. Such excitations are particularly stable
against thermal fluctuations. In their studies, Mishra et al. [11]
have noticed such an effect spoiling the finite-size scaling
with periodic boundary conditions and suggested that the
reason may lie in the existence of a one-dimensional magnetic
correlation length ξ1D, which exceeds the linear system size
L at low temperatures. Wenzel et al. [13] have confirmed this
claim.

As a solution the authors of Ref. [11] have adopted special
fluctuating or annealed boundary conditions. Here the signs of
the coupling constants on the bonds at the lattice boundaries are
allowed to fluctuate thermally. In this way, one-dimensional
chains are effectively broken up. While one can assume
that the influence of these dLd−1 fluctuating bonds becomes
unimportant in the thermodynamic limit as N = Ld → ∞,
this choice still constitutes a considerable modification of the
model and no good finite-size scaling theory is available for
this type of boundary conditions.

As an alternative the authors of Ref. [13] have proposed
screw-periodic boundary conditions, which are a particular
deformation of the torus topology of regular periodic boundary
conditions. We generalize their definition to three dimensions
to obtain boundary conditions that interconnect lines of spins
along any of the principal lattice directions. Explicitly, the
nearest neighbors of a site i = (x,y,z) in directions x̂, ŷ, ẑ are
specified as follows:

(x,y,z) + x̂ =
{

(x + 1,y,z), if x < L − 1,

(0,y,[z + S] mod L), if x = L − 1,

(x,y,z) + ŷ =
{

(x,y + 1,z), if y < L − 1,

([x + S] mod L,0,z), if y = L − 1,
(8)

(x,y,z) + ẑ =
{

(x,y,z + 1), if z < L − 1,

(x,[y + S] mod L,0), if z = L − 1.

Here, the screw length S is a parameter that can be varied.
If S is taken as one of the distinct divisors of L, each
plane of the lattice can be subdivided into S groups of sites
or “loops” in each in-plane direction k̂, which are linked
as pairs of neighbors along that direction. With S = 0 or
S = L regular periodic boundary conditions are recovered.
With S = 1 there are only single loops for each direction in a
plane. The power of screw-periodic boundary conditions lies
in the fact that with a sufficiently low choice of S, the loop
length exceeds the magnetic correlation length ξ1D already
for small L. Hence linearly aligned excitations are broken up
more easily than with regular periodic boundary conditions.
Besides that the screw-periodic boundary conditions reduce
the number of discrete symmetries in the compass model and

the energetic degeneracy of its configurations such that the
leading degeneracy factor mentioned at the end of Sec. II is
lowered from 23L2

to 23L.
We have found that also for the three-dimensional model

regular periodic boundary conditions lead to poor finite-size
scaling results. Moreover, the simple definition (6) of the
order parameter D is disadvantageous with these boundary
conditions because it assigns different values to configurations
which differ by planar rotations, but really show an equal
degree of order. To remedy both problems, we use screw-
periodic boundary conditions according to the definition (8)
with a choice of S = 1.

The choice of these boundary conditions is not expected
to have an influence on the thermodynamic limit. They have
also been successfully applied for other purposes, e.g., for
the controlled formation of tilted interfaces between ordered
domains in the Ising model [15].

C. Monte Carlo methods

In the following section, we outline the Monte Carlo
algorithms applied in our simulations. Fundamentally, we use
the standard Metropolis algorithm [16] for local single-spin
updates. In one lattice sweep, new orientations are proposed
in sequential order for the spins at all sites. The direction
of the new spin vector is chosen randomly from a uniform
distribution over the surface area of a spherical cap centered
around the original vector. To ensure proper uniform sampling
of the angular variables, the spherical measure of integration
sin θ dθ dϕ is respected. During thermalization we adjust
the opening angle of this spherical cap in such a way that
an average acceptance ratio of 50% is realized at each
temperature.

To reduce autocorrelation times, we additionally use the
one-dimensional version of the Wolff cluster update [17]
introduced earlier for the 2D compass model [13] in a direct
extension to the 3D model. This update exploits one of the
discrete symmetries of the Hamiltonian, which is left invariant
if a line of neighboring spins along one of the lattice directions
is reflected about the plane orthogonal to that direction. To
construct a cluster first a random starting site i and a lattice
direction k̂ ∈ {x̂,ŷ,ẑ} are chosen and the spin sk

i → −sk
i is

flipped, then neighboring sites in directions ±k̂ are added to
the cluster with probability

Pi,i±k̂(si ,si±k̂) = 1 − exp
(
min

{
0,2βJ sk

i s
k

i±k̂

})
. (9)

This step is iterated with the newly adjoined site i ± k̂ taking
the place of i until no further sites are added. All spins in
the strictly one-dimensional cluster constructed in this way
are thus flipped at the same time. Due to the restricted set
of possible reflection planes, this update is not ergodic on its
own, but must be used in combination with local spin updates.
In our simulations, 3L cluster updates in randomly chosen
directions are followed by N = L3 local updates and we count
this combination as one Monte Carlo sweep.

To further reduce autocorrelation times and improve statis-
tics we combine these canonical algorithms with a parallel-
tempering scheme [18,19]. Different replicas of the system
are simulated simultaneously at various inverse temperatures
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βk . We propose exchanges of system configurations between
replicas at adjunct temperature points every 100 sweeps. The
range of simulation temperatures is chosen according to the
scheme of constant entropy increase [20], which clusters the
temperature points close to a phase transition and thus eases
diffusion in temperature space, which has been valuable for
the simulations on large lattices.

From the measurements taken in the various replicas we
obtain time series of the observables D and E at various
discrete inverse temperatures βk . Making use of multiple
histogram reweighting techniques [21] these observables as
well as the derived quantities χ, Q2, and C can be estimated
also at arbitrary intermediate temperatures from the optimally
combined simulation data. We limit discretization errors by
computing per-sample weighting factors from the density
of states and reweighting observable time series directly
[22]. By applying Brent’s algorithm for minimization [23],
we can precisely determine extremal temperature locations
and values of χ,Q2, and C or other quantities, which are
useful to characterize the finite-size scaling behavior at a
phase transition. Estimates of the statistical uncertainties of
these quantities are obtained by performing this procedure on
jackknife resampled data sets [24,25].

IV. RESULTS

We now present the results we obtained in our Monte
Carlo simulations that employ the methods presented in
the previous section. The 3D compass model was sim-
ulated with screw-periodic boundary conditions with S =
1 on simple-cubic lattices of sizes N = L3 with L ∈
{8,12,16,20,24,28,32,36,40,44,48}. In each case from 32
to 64 replicas were used in the parallel-tempering scheme.
For the smallest lattice inverse temperatures βJ range in
{4, . . . ,20}, while for the largest lattice βJ was chosen from
{9.5, . . . ,11.5}. Simulations were performed for at least some
107 and up to 3.8 × 107 Monte Carlo sweeps on the largest
lattice after an equilibration phase, typically one-tenth of that
length.

For all lattice sizes, we observe clear indications of a
thermal phase transition around βJ ≈ 10 in the behavior
of the order parameter D, which approaches zero in the
high-temperature regime (low β) and a finite value D > 0,
which characterizes directional ordering, at low temperatures.
The two phases are visualized in Fig. 1. Note that up to thermal
fluctuations we find all spins in the ordered finite-temperature
phase to be aligned with some of the lattice axes even though
the ground states of the compass model are not restricted
to have such an orientation. Apparently, fluctuations around
these coaxial configurations are favored through an order-by-
disorder mechanism.

In this model, with ferromagnetic couplings all spins in
one aligned row of an ordered configuration point in the
same direction. While the scalar order parameter D describes
the degree of this directional ordering and serves to clearly
distinguish the phases and identify the transition point, it
does not characterize the patterns these rows form in the
ordered phase. In this respect, it would be interesting to
investigate alternative order-parameter definitions discussed in
the literature [1,8,11]. Figure 1(b), e.g., shows the formation

FIG. 2. (Color online) Monte Carlo data for (a) the order param-
eter D, (b) its susceptibility χ and (c) the Binder parameter Q2. For
clarity, the inverse temperature range is limited to a region around the
transition point and only selected lattice sizes are included in the plots.
Markers with error bars are estimates from single-temperature time
series. Continuous lines are from the multiple histogram analysis
with faint surrounding lines indicating the 1σ margin of statistical
uncertainty.

of a stripe pattern, which, however, is purely an effect of our
choice of screw-periodic boundary conditions: all those spins
lying in one and the same interconnected loop are forced to
point in the same direction. A different choice of the screw
parameter S would lead to a different stripe pattern. With
periodic boundary conditions directional ordering persists, but
the aligned rows will no longer form these visual patterns. It
is important to stress that these differences are mere finite-size
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FIG. 3. (Color online) Monte Carlo data for (a) the energy per
site E/N and (b) the specific heat capacity C/N . For clarity, the
inverse temperature range is limited to a region around the transition
point and only selected lattice sizes are included in the plots. Markers
with error bars are estimates from single-temperature time series.
Continuous lines are from the multiple histogram analysis with faint
surrounding lines indicating the 1σ margin of statistical uncertainty.

effects and become meaningless in the thermodynamic limit.
Therefore, to clearly characterize the phase transition, a careful
scaling analysis as presented below in Sec. IV A is very
important.

The smoothed jump of the order parameter curve D(β)
in the temperature region close to the transition point on
different lattice sizes can be seen in Fig. 2(a). The transition
is accompanied by peaks of the susceptibility χ in Fig. 2(b)
and minima of the Binder parameter Q2 in Fig. 2(c). On the
larger lattices, also bending in the curves of the normalized
energy E(β)/N can be seen in the same temperature region
in Fig. 3(a) together with peaks of the specific heat capacity
C(β)/N in Fig. 3(b).

Close to the transition we furthermore find signs for phase
coexistence, which is realized in histograms of the order
parameter D with two peaks: one corresponding to a more
disordered and one to a more ordered phase. By combining
our reweighting and optimization algorithms, we can precisely
estimate the inverse temperatures βD

eqH(L), where the two
peaks of the probability density P (D) have equal height.
The estimates for P (D) at all lattice sizes are shown in
Fig. 4. The double-peak structure is already present in the
smallest system studied here with L = 8, but from L = 16 to
L = 28 the relative suppression at the center of the probability
distributions successively goes down and up to L = 24 the two
peaks move closer together. Then, starting from L = 32, the
behavior changes again: The dip between the two peaks grows
with L and also their separation no longer shrinks. Moreover,
from L = 36 on, there are also double-peak structures in the
histograms of the energy E. [See Fig. 5 for the distributions
P (E) measured at the corresponding inverse temperatures
βE

eqH(L).]
Table I lists the estimated values of β

χ
max(L),χmax(L),

βC
max(L),Cmax(L)/N,βQ2

min(L),Q2,min(L),βD
eqH(L), and βE

eqH(L)
for all studied lattice sizes L. The signs for phase-coexistence
at the transition temperature and the minima of the Binder
parameter hint at a first-order phase transition in the thermo-
dynamic limit. In the following, we study finite-size scaling
relations for the measured quantities to further support or rebut
this claim. Even with the application of special screw-periodic
boundary conditions, finite-size effects appear to be rather
severe with an irregular behavior for L � 32.

FIG. 4. (Color online) Histograms of the order parameter D for different lattice sizes L at the inverse temperatures βD
eqH(L), where a

double-peak structure with equal peak height is obtained. (a) Two peaks hinting at phase coexistence can be made out clearly for small lattices.
(b) For medium sized lattices with L < 32, the central dip shrinks with growing L. (c) For L � 32, the suppression between the peaks grows
with growing L.
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FIG. 5. (Color online) Histograms of the energy per site E/N for
various lattice sizes L at the inverse temperatures βE

eqH(L), where a
double-peak structure with equal peak height is obtained for L > 32.
For L = 32 and smaller lattices, no double-peak distribution can be
found at any temperature. The L = 32 histogram in the plot is shown
only for comparison and is taken at a temperature close to that of the
others.

A. Transition temperature

With βC
max(L),βχ

max(L),βQ2
min(L),βD

eqH(L), and βE
eqH(L) there

are various possible definitions of a lattice-size dependent
inverse pseudotransition temperature β∗(L). For a discussion
of the canonical finite-size scaling at a first-order transition, see
Ref. [26] and references therein. The inverse pseudo-transition
temperatures are expected to have a displacement from the
true infinite-volume transition point β0, which to leading order
scales proportionally to the reciprocal system size 1/L3:

β∗(L) = β0 + c∗

L3
+ · · · . (10)

We test this scaling relation for all definitions of β∗(L) given
above by performing least-squares fits of Eq. (10) to the β∗(L)
for various ranges of lattice sizes. The results are given in
Table II. Fits of good quality can be made based on all possible
definitions with the limitation that we only have very few data
points for the histogram-based temperature definitions, where

FIG. 6. (Color online) Finite-size scaling of inverse pseudo-
transition temperatures from Table I for L � 16 together with the
best fits from Table II, which allow to extrapolate the infinite-volume
transition point β0.

the regular behavior sets in at large lattice sizes. The different
estimates of the inverse transition temperature β0 and their
statistical uncertainties are in good agreement with each other.
This supports the proposed first-order nature of the transition.
The best result is found from the βC

max(L) data, which yields

β0 = 10.1700(3)/J (11)

for L � 24 with χ2
dof = 1.12. This corresponds to a transition

temperature

T0 = 0.098 328(3)J/kB. (12)

The scaling is also visualized in Fig. 6. While it is possible
to consider additional terms with higher powers of 1/L3 or
exponential corrections [26] in the scaling law (10), this also
leads to a higher number of free parameters and in this case
does not improve the quality of the fits.

We note that with periodic boundary conditions it may
occur that the exponential degeneracy of ground states sur-
vives partially also at low, but finite temperatures, leading
effectively to a macroscopic degeneracy of distinct ordered
states separated from each other by free-energy barriers. This
can be understood as a number of ordered phases q that is not

TABLE I. Lattice-size dependent inverse pseudotransition temperatures. Listed are the inverse temperature locations βχ
max(L),βC

max(L), and
βQ2

min(L) of the extrema of the susceptibility, specific heat, and Binder parameter together with the extreme values χmax(L),Cmax(L)/N , and
Q2,min(L) as well as the inverse temperatures βD

eqH(L) and βE
eqH(L) where the histograms of the order parameter D or the energy E have two

peaks of equal height together with the ratios of the estimated probabilities Pmax(L)/Pmin(L) at the highest peak and at the lowest point in the
dip.

L βχ
maxJ χmax/J

2 βC
maxJ Cmax/kBN βQ2

minJ Q2,min/J
2 βD

eqHJ P D
max/P

D
min βE

eqHJ P E
max/P

E
min

8 9.902(4) 20.10(4) 9.834(5) 1.904(3) 8.97(1) 0.230(2) 9.906(4) 1.40(4)
12 10.26(1) 51(1) 10.21(1) 2.83(3) 9.72(4) 0.297(4) 10.29(1) 1.7(1)
16 10.42(1) 75(1) 10.246(3) 2.99(2) 9.76(2) 0.293(3) 10.39(1) 1.5(1)
20 10.205(2) 111(1) 10.208(1) 3.53(2) 9.98(1) 0.272(3) 10.26(1) 1.20(3)
24 10.192(1) 190(2) 10.199(1) 4.44(3) 10.059(3) 0.244(3) 10.199(3) 1.14(2)
28 10.180(1) 310(3) 10.188(1) 5.6(1) 10.104(2) 0.17(1) 10.176(1) 1.0(2)
32 10.177(1) 457(4) 10.183(1) 6.99(5) 10.123(1) 0.11(1) 10.172(1) 1.17(4)
36 10.176(1) 662(5) 10.180(1) 8.8(1) 10.139(1) 0.05(1) 10.173(1) 1.48(5) 10.177(1) 1.0(1)
40 10.173(1) 916(8) 10.176(1) 10.8(1) 10.147(1) −0.05(1) 10.1719(5) 1.8(1) 10.175(1) 1.23(2)
44 10.1724(2) 1237(10) 10.1744(3) 13.3(1) 10.1521(4) −0.17(1) 10.1716(2) 2.1(1) 10.1740(2) 1.47(3)
48 10.1728(4) 1688(26) 10.1742(4) 16.7(2) 10.157(1) −0.35(2) 10.1727(4) 3.1(2) 10.1744(4) 1.9(1)
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TABLE II. Results of least-squares fits of the inverse pseudotransition temperatures β∗(L) taken from Table I to estimate the infinite-volume
transition point β0 by relations of the form β∗(L) = β0 + c∗/L3. Here, n is the number of included data points ranging from the smallest
considered lattice size Lmin up to the largest Lmax = 48. χ 2

dof = χ 2/(n − 2) is a measure to help with the estimation of the validity of the fit.
The best fits are marked bold for each type of pseudotransition temperature.

Lmin n β
χ

max,0J χ 2
dof βC

max,0J χ 2
dof β

Q2
min,0J χ 2

dof βD
eqH,0J χ 2

dof βE
eqH,0J χ 2

dof

8 11 10.176(3) 268.62 10.180(4) 445.25 10.157(4) 148.63 10.174(3) 259.64
12 10 10.170(2) 51.07 10.173(2) 62.05 10.170(2) 14.69 10.168(2) 86.60
16 9 10.169(2) 42.43 10.171(1) 6.85 10.171(1) 1.97 10.165(3) 78.28
20 8 10.1693(5) 3.52 10.171(1) 7.15 10.171(1) 1.57 10.169(2) 22.40
24 7 10.169(1) 4.18 10.1700(3) 1.12 10.170(1) 1.57 10.170(1) 12.28
28 6 10.1702(5) 1.60 10.1699(5) 1.38 10.170(1) 1.59 10.171(1) 2.85
32 5 10.170(1) 2.10 10.170(1) 1.64 10.170(1) 1.79 10.172(1) 2.64
36 4 10.170(1) 3.11 10.169(1) 2.34 10.170(1) 2.02 10.172(1) 3.95 10.172(1) 2.84
40 3 10.172(2) 2.66 10.171(2) 2.16 10.171(2) 1.80 10.173(2) 4.51 10.173(2) 3.22

constant, but grows exponentially as a function of the system
size. It has recently been understood [27,28] that in such a case
a modified scaling law

β∗(L) = β0 + c∗ ln q

L3
+ · · · (13)

needs to be applied, which predicts a transmuted leading
system-size dependence. An advantage of our choice of
screw-periodic boundary conditions is that such degeneracies
are mostly lifted. In contrast to the gonihedric plaquette model
studied in Refs. [27,28] we do not know about any rigorous
calculations of this T > 0 degeneracy for the 3D compass
model with periodic boundary conditions, but assuming a
degeneracy ln q ∝ L2 the displacement of β∗(L) from the
true transition point β0 would be proportional to 1/L rather
than to 1/L3. Due to very strong finite-size effects, we cannot
give a full discussion of the asymptotic scaling behavior with
periodic boundary conditions at this point. Our (less extensive)
data for this case is compatible with the modified ansatz, but
does not allow to discriminate between the two options. We
have also checked modified scaling relations corresponding
to ln q ∝ L2 and ln q ∝ L for the case of screw-periodic
boundary conditions and have found here no compelling
numerical evidence against the conventional 1/L3 law as
reported above.

B. Interface tension

On lattices of size L3 the suppression of the minimum
between the two peaks of the probability distribution of the
energy or the order parameter at a first-order phase transition
is expected to grow exponentially with L2:

Pmax(L)/Pmin(L) ∝ e2βσL2
. (14)

Configurations corresponding to Pmin(L) are in a mixture
of the ordered and the disordered phases with interfaces
that contribute an excess free energy of 2σL2, where the
free-energy density σ is the interface tension [26]. We compute
lattice size dependent estimates of the reduced interface
tension σ̂ (L) = βσ (L) from the double-peaked probability
distributions P (D) at βD

eqH(L) or P (E) at βE
eqH(L) with the

relation

σ̂ (L) = 1

2L2
ln

[
Pmax(L)

Pmin(L)

]
, (15)

where Pmax(L)/Pmin(L) is the ratio of the estimated proba-
bilities in the peak and in the dip as taken from Table I. In
Fig. 7, the results are plotted over 1/L2 for L � 28, which
excludes the irregular behavior for the small lattices. While
the reduced interface tension does not yet reach its asymptotic
constant value on the lattice sizes studied here, σ̂ (L) grows
with L and does not appear to vanish in the limit of large
systems, which otherwise would be an argument against the
first-order nature of the transition. From the available data,
an approximate infinite-volume value of σ̂ ≈ 3 × 10−4 can be
anticipated.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented an extensive Monte
Carlo investigation of the classical compass model on the
simple-cubic lattice. Our results show that directional ordering
is present in a low-temperature phase, which is reached
via a thermal first-order transition from a disordered high-
temperature phase. By a detailed finite-size scaling analysis,

FIG. 7. (Color online) Reduced interface tensions σ̂ (L) calcu-
lated from P (D) histograms at βD

eqH(L) and from P (E) histograms at
βE

eqH(L) plotted over 1/L2 for L � 28.
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we could determine a precise estimate of the transition
temperature T0 = 0.098 328(3)J/kB. This value agrees with
the one mentioned in an earlier publication [29], but the high-
temperature series expansions presented in Ref. [14] could
not identify this phase transition. First-order transitions are
generally difficult to detect by these techniques, in particular
when no low-temperature series are available.

The recently discovered (and for the gonihedric plaquette
model numerically confirmed) influence of a macroscopic
degeneracy of the low-temperature phases on the leading
finite-size scaling behavior of first-order phase transitions
[27,28] renews the interest in a precise characterization of
the ground-state and low-temperature degeneracies of the
compass model. A rigorous treatment along the lines of
Refs. [30–32] for the closely related 120◦ model and the
gonihedric model is beyond the scope of the present paper
focusing on an accurate determination of the first-order
character of the phase transition, but would certainly be a
worthwhile project for future studies, especially with a view
on the “order-by-disorder” mechanism.

Due to the negative-sign problem, quantum Monte Carlo
simulations of the 3D compass model are out of reach.
However, while additional quantum fluctuations may destroy
directional ordering at low temperatures in the quantum model,

from Ginzburg-Landau theory one generally expects the nature
of the phase transition to be the same in the quantum model
as in the classical model. Symmetry considerations for the
nematiclike type of order parameter of the t2g compass model
support the expectation of a continuous transition in 2D
and a first-order transition in 3D, just as observed in the
Monte Carlo simulations. Taken together, we firmly anticipate
a first-order phase transition to occur also in the quantum
compass model and look forward to experimental studies of
directional ordering in non-low-dimensional samples.
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