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Spin-glass overlap barriers in three and four dimensions
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For the Edwards-Anderson Ising spin-glass model in three and four dimensions (3d and 4d) we have
performed high statistics Monte Carlo calculations of those free-energy barriersFB

q which are visible in the
probability densityPJ (q) of the Parisi overlap parameterq. The calculations rely on the recently introduced
multioverlap algorithm. In both dimensions, within the limits of lattice sizes investigated, these barriers are
found to be non-self-averaging and the same is true for the autocorrelation times of our algorithm. Further, we
present evidence that barriers hidden inq dominate the canonical autocorrelation times.
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I. INTRODUCTION

Spin glasses~for reviews, see Refs. 1–4! constitute an
important class of materials whose low-temperature state
frozen disordered one. In order to produce such a state, t
must be randomness and frustration among the differen
teractions between the spins~magnetic moments!. Frustra-
tion means that no single spin configuration is favored by
interactions. In real materials such competing interacti
are, for instance, created by magnetic impurity mome
The study of spin glasses developed essentially since
middle of the 1970s and is based on three approaches
periment, theory, and computer simulation.

Experimentally it is not hard to find spin glasses.2 One
kind of widely studied system consists of dilute solutions
transition-metal magnetic impurities in noble hosts. The i
purity moments produce a magnetic polarization of the h
metal conduction electrons which is positive at some d
tances and negative at others. Because of the random p
ments of the impurities they have random, competing in
actions with one another. Spin-glass states have also
found in magnetic insulators and amorphous alloys. Prop
ties analogous to those of spin glasses, with the electric
pole moment playing the role of the magnetic one, have b
seen in ferroelectric-antiferroelectric mixtures. The univer
behavior of the observed phenomena is a major reason
the interest in these systems.

A freezing temperatureTc may be defined by a cusp i
the ac susceptibility and has, for instance, been studied
Cu-0.9% Mn.5 Below this transition temperature character
tic nonequilibrium phenomena are observed. A typical
periment is the measurement of the remanent magnetiza
see Ref. 6 for a study of (Fe0.15Ni0.85)75P16B6Al3. A spin-
glass sample is rapidly cooled in a magnetic field to a te
perature below the transition temperature and the observa
is that the decay of the magnetization depends on the wa
time after which the field is switched off. This phenomen
PRB 610163-1829/2000/61~18!/12143~8!/$15.00
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is called aging and has also been found in other disordere
amorphous systems such as structural glasses, polym
high-temperature superconductors, and charge-density w
systems. These large characteristic time scales sugges
presence of many equilibrium or metastable configurati
with a distribution of free-energy barriers separating them

For free-energy barriers in spin glasses a major compl
tion arises from the fact that there is no parametrization
the relevant configurations by a conventional thermodyna
variable. In his work7 on the mean-field theory of spin
glasses Parisi generalized the concept of an order param
In later language1–4 this is expressed as follows: A spin-gla
realization is defined by a set of frozen, disordered excha
coupling constantsJ 5$Jik% and for each realization the Pa
risi overlap parameter is defined by

q5
1

N (
i 51

N

si
1si

2 , ~1!

where the sum goes over the total numberN of spins of the
system and the spin superscripts label two~real! replica of
the same realization. For givenJ the probability density ofq
is denoted byPJ (q) and its cumulative distribution function
is xJ (q)5*2q

q dq8PJ (q8). Average over the disorder de
fines the functions

P~q!5@PJ ~q!#av5
1

#J (J PJ ~q! and

x~q!5@xJ ~q!#av5
1

#J (J xJ ~q!,

where #J is the number of realizations considered. In t
infinite volume limit below the freezing temperature an i
creasingcontinuouspart ofx(q) characterizes mean-field be
havior of spin glasses, whereas in ferromagnets as well a
the droplet picture8 of spin glassesx(q) is a step function.
12 143 ©2000 The American Physical Society
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Analytical calculations in mean-field theory show th
violations of the fluctuation-dissipation theorem in noneq
librium dynamics determine the static functionx(q) and vice
versa,9 see Ref. 10 for a review. Numerical calculations
3d and 4d Ising spin glasses11,12 support that this relation
ship holds also in finite dimensions. Of course, the en
PJ (q) set contains more information than its meanP(q)
@equivalentlyx(q)]. In this paper we study the distributio
of the minima inq of the PJ (q) probability densities. For
given J the nontrivial~i.e., away fromq561) minima are
related to free-energy barriers of the disordered systemJ .
The other way around, it is presumably model depend
~and worthwhile to investigate! to what extent free-energ
barriers of the systemJ are reflected in the minima of th
PJ (q) probability density.

Conventional, canonical Monte Carlo~MC! simulations
do not allow for an efficient investigation of thePJ (q)
minima, because the likelihood to generate correspond
configurations in the Gibbs canonical ensemble is small. T
problem is overcome by the multioverlap MC algorithm13

which samples with an uniform distribution inq. It belongs
to the class of multicanonical and related algorithms14,15,
which allows us to focus on rare configurations of the Gib
ensemble. For instance, at first-order phase transitions ind,
configurations with interfaces are suppressed accordin
exp(2sAmin), wheres is the interface tension andAmin is the
minimal area of the interface. For temperature driven tran
tions configurations with interfaces are found forE in the
energy rangeE1,E,E2 where E25E11nE and nE is
the latent heat of the transition. To generate such config
tions with a good statistics it is sufficient to sample with
weight factor w(E);1/n(E), where n(E) is the spectral
density. Similarly, interfaces for magnetic field driven firs
order phase transitions can be generated by sampling wit
appropriate weight functionw(M ) of the magnetizationM of
the sample.

OncePJ (q) is determined, we define the associated fr
energy barrierFB

q through the autocorrelation time of a 1d
Markov process which has the canonicalPJ (q) distribution
as equilibrium state. The barrier autocorrelation timetB

q is
then defined through the second largest eigenvalue of
transition matrix of this Markov process and the free-ene
barrier is ln(tB

q).
In previous literature,16–21 investigations of spin-glas

barriers relied on various numerical and analytical metho
which are distinct from ours. The results of Refs. 16–20 m
be summarized as support of a scaling lawFB

can;N1/3 for
canonical free-energy barriers in the mean-field limit bel
the freezing temperature.

In the next section we describe our methods and give
overview of our MC statistics. Section III presents and int
prets our numerical results for free-energy barriers inq. Con-
clusions and an outlook are given in the final Sec. IV.

II. OVERVIEW OF METHODS AND DATA

The energy of the Edwards-Anderson Ising~EAI! ~Ref.
22! spin-glass model is given by

E52(̂
ik&

Jiksisk , ~2!
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where the sum is over nearest-neighbor pairs of a~hyper!
cubic lattice. The spinssi as well as the coupling constan
Jik take on the values61, with equal probabilities, i.e., the
sumN21(^ ik&Jik is of order 1/AN.

In our calculations we combine the two copies~replica! of
the same realization and simulate with a weight function

w~q!5exp@2b~E11E2!1S~q!#. ~3!

Hereb5J0 /kBT is the inverse temperature in natural uni
E1 and E2 are the energies of the respective replicas, a
S(q) has the meaning of the microcanonical entropy of
Parisi order parameter~1!. The multioverlap algorithm
weights spin configurations with an overlap parameterq in
such a way that a broad histogram inq, eventually covering
the entire accessible range21<q<1, is obtained. This al-
lows then for accurate calculations of the empirical proba
ity density PJ (q) of the Parisi order parameter for realiz
tion J . Although an explicit order parameter does not ex
our simulation method13 is in this way similar to the
multimagnetical,15 which for ferromagnetic systems is a ve
efficient way to sample configurations with interfaces.

Our EAI simulations are performed onN5Ld (d53,4)
lattices atb51(3d) and b50.6(4d). Both values corre-
spond to temperaturesT51/b below the freezing tempera
ture of the respective model@bc50.9060.03 (3d) ~Ref. 23!,
bc50.48560.005 (4d) ~Ref. 24!#. Table I summarizes the
statistics we have assembled as well as the performanc
our code. MC updates are given in units ofsweeps. Our Jik

FIG. 1. CanonicalPJ (q) and~flat! multioverlapPJ
muq(q) prob-

ability densities for our realization with the largest free-energy b
rier in 3d (L58) and 4d (L58).

TABLE I. Statistics: Number of realizations #J , average num-
ber of megasweeps per realizationnsw and average single 375 MH
processor CPU time per realization in hours~h! or seconds~s! as
benchmarked on the CEA T3E.

3d 4d

L #J nsw CPU #J nsw CPU
4 8 192 0.2 M 6.32 s 4 096 0.4 M 76.6 s
6 8 192 1.0 M 113 s 4 096 3.7 M 1.02 h
8 8 192 7.6 M 0.54 h 1 024 49.3 M 42.66 h
12 640 154.0 M 36.97 h
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TABLE II. Mean, median, and maximum values for the Markov autocorrelations timestB
q ~8!.

L 4 6 8 12

3d: mean 61(29)3104 10(06)3106 56(45)3106 13(10)3107

3d: median 237(05)3101 690(02)3101 152(04)3102 444(05)3102

3d: maximum 22(20)3108 32(06)3109 35(33)31010 53(30)3109

4d: mean 94(34)3103 23(08)3105 26(23)3106

4d: median 807(18)3101 379(11)3102 117(07)3103

4d: maximum 13(11)3107 21(07)3108 22(21)3109
b

ys
id

e

st
ai
f-

om

e
g

o

-

ors

ng
d in
in
ver-
the

rep-
ts in
es is
tive

the
time

of

r-

-

er
realizations were drawn using the pseudo-random-num
generators RANMAR~Ref. 25! and RANLUX ~Ref. 26!
~luxury level 4!. In the simulations themselves we alwa
employed the RANMAR generator due to CPU time cons
erations.

For each realizationJ the simulation consisted of thre
steps:

~i! Construction of the weight function~3!. Here we em-
ployed an improved variant of the accumulative stocha
iteration scheme discussed in Ref. 27, algorithmic det
will be published elsewhere.28 The iteration was stopped a
ter at least four tunneling events

~q50!→~q561! and back ~4!

occurred. Our precise request was in 3d 10 tunneling events
for L54, 6, and 8, and 20 events forL512, but for a few
cases with only four events requested. In 4d it was 10 for
L54, 20 forL56, and 20 to 30 forL58. In few cases, the
system was tunneling so rarely betweenq561 that we de-
cided to abort the run and restart with a different rand
number seed, which in most cases led~eventually after mul-
tiple tries! to improved tunneling performance. After th
weight function is constructed and kept fixed, the avera
number of sweeps it takes to create a tunneling event~4!
defines the autocorrelation time of the multioverlap alg
rithm which in the following is denoted by

tmuq. ~5!

Of course,tmuq depends on the realizationJ at hand, and on
the parameters used in phase~i!: random number seed, num
ber of tunneling events requested, etc.

FIG. 2. Power-law and exponential fits for the mean multiov
lap tunneling time@tmuq#av in 3d and 4d.
er
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~ii ! Equilibration run. This run ofn365 536 sweeps was
done to equilibrate the system for given fixed weight fact
(n51,4,16,32 for 3d L54,6,8,12 andn52,8,16 for 4d L
54,6,8, respectively!.

~iii ! Production run. Each production run of data taki
was concluded after at least 20 tunneling events as define
Eq. ~4! were recorded. To allow for standard reweighting
temperature we stored besides histograms of the Parisi o
lap parameter also a time series of measurements for
order parameter, energies, and magnetizations of the two
lica. The number of sweeps between two successive poin
a time series is adjusted in such a way that each time seri
made of 65 536 measurements. This is done by an adap
data compression routine.28 Together with the condition on
the minimal number of tunneling events this ensures that
number of sweeps between two successive points in a
series is approximately proportional totmuq. Some reweight-
ing results were reported in Refs. 13 and 21, publication
others is intended.28

With each realizationJ we associate the free-energy ba
rier FB

q of the 1d Metropolis-Markov chain29 which has the
canonicalPJ (q) probability density as its equilibrium distri
bution. The transition probabilitiesTi , j are given by

T5F 12w2,1 w1,2 0 . . .

w2,1 12w1,22w3,2 w2,3 . . .

0 w3,2 12w2,32w4,3 . . .

0 0 w4,3 . . .

A A A �

G ,

~6!

- FIG. 3. Distribution functionFQ ~13! for the 3d overlap barriers
~9! in units of their median value.
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where wi , j ( iÞ j ) is the probability of the Metropolis-
Markov chain to jump from stateq5qj to q5qi (qi
5 i /N,i P@2N,2N12, . . .1N#),

wi , j5
1

2
minS 1,

PJ ~qi !

PJ ~qj !
D . ~7!

T fulfills the detailed balance condition~with PJ ) and as a
consequence it has only real eigenvalues. The largest ei
value~equal to one! is nondegenerate, and the second larg
eigenvaluel1 determines the autocorrelation time of th
chain,

tB
q5

1

N~12l1!
, ~8!

and we define the associated free-energy barrier for rea
tion J as

FB
q5 ln~tB

q !. ~9!

For the simple double-peak situation of first-order pha
transitions the autocorrelation timetB

q is proportional to the
ratio PJ

max/PJ
min where

PJ
max5PJ ~qmax!5max

q
@PJ ~q!# and

FIG. 4. Distribution functionFQ ~13! for the 4d overlap barriers
~9! in units of their median value.

FIG. 5. Distribution functionFQ ~13! for the 3d energies~2! in
units of their median value.
n-
st

a-

e

PJ
min5 min

0,q,uqmaxu
@PJ ~q!#,

i.e., FB
q5 ln@PJ

max/PJ
min#1const. This leads in 3d to tB

q

;esAmin andFB
q;sAmin1const, whereAmin is the minimal

area between the coexisting phase regions ands is the inter-
facial tension. Equation~9! is the appropriate generalizatio
to a situation involving multiple minima and maxima. Th
autocorrelation timetB

q has to be regarded as a lower limit
the canonical autocorrelation timetcan for the Markov pro-
cess where the spin variables are the dynamical degree
freedom. The definition~8! takes only barriers inq into ac-
count but not other barriers which may well exist in th
multidimensional configuration space.

The matrixT in Eq. ~6! is tridiagonal and sign symmetric
This special form allows for easy calculation of all i
eigenvalues.30 The realizations with the largest thus obtain
free-energy barriers in 3d and 4d are depicted in Fig. 1.
Both do not show a complicated landscape, but a plain tw
peak structure. Besides the canonicalPJ (q) probability den-
sities the essentially flat probability densitiesPJ

muq(q) of the
multioverlap simulation are also indicated in the figure. Bo
PJ (q) probability densities take their minimum atq50 and
we havePJ

max/PJ
min.108 in 3d (L58) andPJ

max/PJ
min.106 in

4d (L58); compare also Table II. The improvement facto
in computer time are directly proportional and close to the
numbers which reflect the enhancements in visits ofPJ (0)

FIG. 6. Distribution functionFQ ~13! for the 4d energies~2! in
units of their median value.

FIG. 7. Distribution functionFQ ~13! for the 3d barriers~14! of
the multioverlap algorithm in units of their median value.
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as compared to canonical simulations. Multiplying the i
provement factors with the average CPU times needed by
multioverlap algorithm for a single realization on lattices
this size~see Table I!, it becomes clear that exploration o
such barriers by means of a canonical MC simulation is s
ply impossible.

We conclude this section with remarks about the perf
mance of the algorithm and implications on the physics
the system. The multioverlap algorithm flattens the fre
energy barriersFB

q . If they were the only cause for the slow
ing down of the canonical dynamics, the multioverlap au
correlation time should be dominated by a random-w
behavior betweenq521 andq511 and scale proportiona
to N ~in units of sweeps!. Fitting the estimates of the mea
autocorrelation time@tmuq#av, where the average is with re
spect to the realizationsJ , to the power-law form
ln(@tmuq#av)5a1z ln(N) gives z52.3260.07 in 3d and z
51.9460.02 in 4d. The fits are depicted in Fig. 2. The
quality is bad, nevertheless they show that the slowing do
is quite off from the theoretical optimumz51. Exponential
fits ln(@tmuq#av)5c01c1N are also depicted in the figure
Whereas in 3d the exponential fit is far worse than th
power-law fit, it is the other way around in 4d. Hence, the
smallerz value in 4d should not be taken seriously.

The physically important conclusion is: the observ
large autocorrelation times demonstrate that, in the mo

FIG. 8. Distribution functionFQ ~13! for the 4d barriers~14! of
the multioverlap algorithm in units of their median value.

FIG. 9. Fits~15! of the 3d free-energy barriersFB
q versusN1/3

corresponding to the exponential finite-size scaling behavior~16! of
tB

q . From down to up, the lines are at 16F51, 3, 5, 7, 9, 11, 12, 13
14, and 15.
-
he
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considered, canonical overlap barriers are not an exclu
cause for the slowing down of spin-glass dynamics below
freezing temperature. ThereforetB

q has to be a lower bound
of the full canonical autocorrelation timetcan:

tB
q,tcan. ~10!

One should understandq as one relevant direction in a com
plex, multidimensional configuration space. By depicti
free-energy barriers as function ofq one projects on this
direction and averages results over all other directions.

III. BARRIER RESULTS

We analyze our free-energy barrier densities relying o
variant of the cumulative distribution functionF. For a set of
sorted data

x1,x2,¯,xn ~11!

the ~empirical! cumulative distribution functionF(x), see,
for instance, Ref. 31 is defined by

i

n
2

1

2n
<F~x!<

i

n
1

1

2n
for xi<x<xi 11 , ~12!

where we use a straight-line interpolation in between. N
we define a peaked distribution function32 as introduced in
Ref. 33:

FQ~x!5H F~x! for F~x!<0.5;

12F~x! for F~x!>0.5.
~13!

This function peaks at the medianxmed of the data and takes
there the valueFQ50.5. For self-averaging datax the func-
tion FQ collapses in the infinite volume to

FQ~x!5H 0.5 for x5 x̄;

0 otherwise.

Here x̄ is the mean value. For non-self-averaging quantit
the width of FQ stays finite. The concept carries over
observables which diverge in the infinite volume limit, whe

FIG. 10. Fits~15! of the 4d free-energy barriersFB
q versusN1/3

corresponding to the exponential finite-size scaling behavior~16! of
tB

q . From down to up, the lines are at 16F51, 3, 5, 7, 9, 11, 12, 13,
14, and 15.
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on each lattice size results are expressed in units of the
spective median value, i.e., instead of an observableX the
ratio x5X/Xmed is used.

A. Lack of self-averaging

For the free-energy barriers~9! we have depicted our thu
obtainedFQ(FB

q /FB,med
q ) functions in Figs. 3 (3d) and 4

(4d). For each lattice the measuredFB
q values were first

sorted as function ofJ such that

FB,1
q ,FB,2

q ,•••,FB,n
q ,

wheren is the number of realizations #J given in Table I.
Subsequently,FB,med

q was calculated as

FB,med
q 5

1

2
~FB,n/2

q 1FB,11n/2
q ! ~n is even in our cases!,

andFQ computed forx5FB
q /FB,med

q .
Both figures support thatFB

q is a non-self-averaging quan
tity. This is stronger in 4d than in 3d, because the inner line
belong in 3d to the larger lattices, whereas in 4d it is the
other way around. However, in both cases there are marg
finite-size effects, whereas finite-size dependence of s
averaging is expected to be rather strong. This becomes
vious when comparing with an observable which is suppo
to be self-averaging. Namely, Figs. 5 (3d) and 6 (4d) depict
the same analysis for the internal energy~2!. In 3d self-
averaging of this quantity is obvious, whereas in 4d there is
an irregularity when going fromL56 to L58. As our simu-
lation temperature in 4d is quite low, we think that this be

FIG. 11. Fits~18! of the 3d free-energy barriersFB
q versus ln(N)

corresponding to the power-law finite-size scaling behavior~17! of
tB

q . From down to up, the lines are at 16F51, 3, 5, 7, 9, 11, 12, 13
14, and 15.

TABLE III. Fit parameters for the free-energy barriers fits~15!;
Q,0.003 for all cases.

3d 4d
F a1 a2 a1 a2

1/16 4.59~2! 0.424~03! 6.30~02! 0.274~03!

4/16 5.13~3! 0.442~04! 6.77~03! 0.276~03!

8/16 6.38~4! 0.382~05! 7.13~05! 0.301~06!

12/16 7.39~6! 0.476~11! 7.77~11! 0.344~10!

15/16 9.71~9! 0.538~14! 8.85~12! 0.435~15!
e-

al
lf-
b-
d

havior is related to ground-state irregularities on small l
tices ~only the corresponding half of the distribution
affected!. For both 3d and 4d the peaked distribution func
tion of the energy is strongly concentrated aroundE/Emed
51, whereas the overlap barrier distributions are mu
broader.

It is generally believed that, in contrast to the equilibriu
autocorrelation times considered here, nonequilibrium au
correlations are self-averaging.10 No sample-to-sample de
viations have been reported for real experiments6 and self-
averaging is also used for measurements of nonequilibr
properties in MC simulations.11,12

The multioverlap algorithm eliminates the free-ener
barriers which are visible in thePJ (q) probability densities.
Let us therefore focus on the autocorrelation times of t
algorithm and its barriers defined by

FB
muq5 ln~tmuq!. ~14!

We perform the analysis along our previous lines and sh
in Figs. 7 (3d) and 8 (4d) the thus obtained
FQ(FB

muq/FB,med
muq ) functions. Lack of self-averaging is eve

more obvious than forFB
q . In Fig. 7 (3d) there are~within

the statistical accuracy! no finite-size effects visible and Fig
8 (4d) exhibits a strong anti-self-averaging trend: Results
the larger lattices move to the outside instead of to the ins

B. Finite-size scaling behavior

In this final part of Sec. III we discuss how data~experi-
mental or MC! for non-self-averaging observables may
analyzed such that comparisons of results from differ
groups become possible. One has to investigate m
samples and should report the finite-size scaling behavior
fixed values of the cumulative distribution functionF ~12!.
In particular this includesF51/2 which defines the media
value. We exemplify this for the overlap autocorrelation tim
tB

q ~8!, but the method applies for non-self-averaging obse
ables in general.

From Figs. 3 and 4 it is obvious that the autocorrelati
timestB

q will have long tails towards large values. This im
plies that the mean value over all samples is a rather err
quantity which is dominated by a few rare realizations. Ta
II collects the mean, median (F51/2), and maximum@F

FIG. 12. Fits~18! of the 4d free-energy barriersFB
q versus ln(N)

corresponding to the power-law finite-size scaling behavior~17! of
tB

q . From down to up, the lines are at 16F51, 3, 5, 7, 9, 11, 12, 13,
14, and 15.
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TABLE IV. Free-energy barriers fits~18!: Fit parameters and goodness of fit.

3d 4d
F ln(c) a Q ln(c) a Q

1/16 2.80~03! 0.830~06! 0.04 3.58~05! 0.804~08! 0.05
4/16 3.30~04! 0.857~08! 0.77 3.68~06! 0.860~08! 0.13
8/16 4.10~06! 0.883~10! 0.52 3.68~11! 0.958~18! 0.71

12/16 5.37~11! 0.930~20! 0.51 3.71~22! 1.105~32! 0.81
15/16 7.35~14! 1.075~28! 0.02 4.37~26! 1.302~42! 0.94
n-
e
m

n

th
s

t
t

e-

be

ba
n

s
r-
n
f
re

of

ns
re

all

all
ta

V.
to

es

that
p

risi
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-
r
3

a-
r

e

E
i-
in

is
rgy
5-
p-
5121/(2n)# values fortB
q . The numbers in parentheses i

dicate error bars in the last digits of the quantity given b
fore. The results show that contributions of the maximu
values dominate to a large extent the mean values~just di-
vide the maximum values by the number of realizations a
compare the results with the mean values!. The maximum
values rely on realizationsJ of likelihood 1/n, what ex-
plains their very large errors. In contrast to the mean and
maximum, results for fixedF remain well defined as long a
F stays away from its extreme values 1/n and 121/n. In
particular, note that samples with relaxation times too long
be measured can still contribute to determine the correcF
values for smaller relaxation times.

In the following we focus on our results for the fre
energy barriersFB

q at F5 i /16 with i 51, . . .,15. For eachF
value we performed fits to the form

FB
q5a11a2N1/3 ~15!

which corresponds to the exponential finite-size scaling
havior

tB
q5ea1ea2N1/3

~16!

suggested by investigations of autocorrelation times and
riers in the mean-field limit.16–20 These fits are depicted i
Figs. 9 and 10. Examples of the fit parametersa1 anda2 are
collected in Table III; for all fits given there, the goodnes
of-fit parameterQ ~Ref. 31! is smaller than 0.003. The ave
ageQ over all 15 fits is given in the figures. For consiste
fits the expectation for theQ average is 1/2 and the quality o
our 3d and 4d exponential fits is unacceptable. We therefo
try a power-law fit

tB
q5cNa, ~17!

which corresponds to a fit of the form

FB
q5 ln~c!1a ln~N!. ~18!

These fits are depicted in Figs. 11 and 12. In 3d as well as in
4d the averageQ value is now almost perfect. Examples
the power-law fit parameters andQ values are given in Table
IV. They indicate that the distribution ofQ values is less
perfect than their mean. Such uncertainties are an intri
limitation of MC simulations and become particularly seve
when one is, as in our investigation, limited to rather sm
-

d

e

o

-

r-

-

t

ic

-

sized systems. Having these limitations in mind, the over
quality of the power-law fits is remarkably good. Our da
favor them strongly over the exponential behavior.

As function ofF the exponenta5a(F) varies smoothly
and covers in 4d a range from 0.8 atF51/15 to 1.3 atF
515/16. In 3d the range is somewhat smaller, see Table I
Fits for F.15/16 become erratic and it makes little sense
report them. A similar analysis for the autocorrelation tim
of the multioverlap algorithm gives exponentsa(F) which
are larger,

amuq~F !'aB
q~F !11.

This reiterates and sharpens our previous observation
relevant barriers exist, which are invisible in the overla
variableq.

IV. SUMMARY AND CONCLUSIONS

We have investigated free-energy barriers in the Pa
order parameter~1!. The results are sample dependent a
non-self-averaging on the~admittedly rather small! simu-
lated systems. The power-law behavior~17! of the Markov
autocorrelation timestB

q as defined in Eq.~8! is favored over
the exponential behavior~16!. To the extent that this behav
ior extrapolates to the infinite volume limit and that ou
methods relate to those of Refs. 16–20, it means that bothd
and 4d are quite far away from thed→` mean-field theory
limit. As relevant barriers are still found in the autocorrel
tions of the multioverlap algorithm, such a relation is fa
from clear.
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