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For the Edwards-Anderson Ising spin-glass model in three and four dimensidnan@ 4) we have
performed high statistics Monte Carlo calculations of those free-energy bafierehich are visible in the
probability densityP ;(q) of the Parisi overlap parametgr The calculations rely on the recently introduced
multioverlap algorithm. In both dimensions, within the limits of lattice sizes investigated, these barriers are
found to be non-self-averaging and the same is true for the autocorrelation times of our algorithm. Further, we
present evidence that barriers hiddergidominate the canonical autocorrelation times.

[. INTRODUCTION is called aging and has also been found in other disordered or
amorphous systems such as structural glasses, polymers,
Spin glassegfor reviews, see Refs. 134onstitute an high-temperature superconductors, and charge-density wave
important class of materials whose low-temperature state is ystems. These large characteristic time scales suggest the
frozen disordered one. In order to produce such a state, thepgesence of many equilibrium or metastable configurations
must be randomness and frustration among the different invith a distribution of free-energy barriers separating them.
teractions between the spirisagnetic momenjs Frustra- For free-energy barriers in spin glasses a major complica-

tion means that no single spin configuration is favored by alfion arises from the fact that there is no parametrization of
interactions. In real materials such competing interactiongh€ relevant configurations by a conventional thermodynamic

are, for instance, created by magnetic impurity momentsvariable. In his work on the mean-field theory of spin
The study of spin glasses developed essentially since tndlasses Parisi ge‘rcer_all_zed the concept of an order parameter.
middle of the 1970s and is based on three approaches: e¥ 'atef_'anguagbf this is expressed as follows: A spin-glass
periment, theory, and computer simulation. reahzatlon is defined by a set of frozen, dlso_rde_red exchange
Experimentally it is not hard to find spin glasée@ne  coupling constants’={J;} and for each realization the Pa-
kind of widely studied system consists of dilute solutions offisi overlap parameter is defined by
transition-metal magnetic impurities in noble hosts. The im- N
purity moments produce a magnetic polarization of the host S sls? 1)
metal conduction electrons which is positive at some dis- =
tances and negative at others. Because of the random place- )
ments of the impurities they have random, competing inter?here the sum goes over the total numbkeof spins of the
actions with one another. Spin-glass states have also be&}Steém and the spin superscripts label twea) replica of
found in magnetic insulators and amorphous alloys. PropertN€ same realization. For givefithe probability density of
ties analogous to those of spin glasses, with the electric diS denoted by ;(q) and its cumulative distribution function
pole moment playing the role of the magnetic one, have beel§ X7(d)=J,da"P;(q"). Average over the disorder de-
seen in ferroelectric-antiferroelectric mixtures. The universafines the functions
behavior of the observed phenomena is a major reason for 1
the interest in these systems. — -
A freezing temperatur@. may be defined by a cusp in PO =IPs(@)]ay #J Ej" Po(a) and

the ac susceptibility and has, for instance, been studied for

Cu-0.9% Mn° Below this transition temperature characteris- 1

tic nonequilibrium phenomena are observed. A typical ex- (@) =[x7(D]av=5; ; x7(a),

periment is the measurement of the remanent magnetization,

see Ref. 6 for a study of (GeNiggd7sP1eBsAls. A spin-  where # is the number of realizations considered. In the
glass sample is rapidly cooled in a magnetic field to a teminfinite volume limit below the freezing temperature an in-
perature below the transition temperature and the observatiarreasingcontinuougart ofx(q) characterizes mean-field be-

is that the decay of the magnetization depends on the waitingavior of spin glasses, whereas in ferromagnets as well as in
time after which the field is switched off. This phenomenonthe droplet picturof spin glassex(q) is a step function.

q:

Z| -
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Analytical calculations in mean-field theory show that TABLE I. Statistics: Number of realizations’# average num-
violations of the fluctuation-dissipation theorem in nonequi-ber of megasweeps per realizatiog, and average single 375 MHz
librium dynamics determine the static functiefg) and vice ~ processor CPU time per realization in hoihs or secondss) as
versa’ see Ref. 10 for a review. Numerical calculations in Penchmarked on the CEA T3E.
3d and 4d Ising spin glassé&*? support that this relation-

ship holds also in finite dimensions. Of course, the entire 3d 4d

PJ(q) set contains more information than its mealnq). L #J Naw CPU #7 New CPU
[equivalentlyx(q)]. In this paper we study the distribution 4 g19o 02M 6.32s 4096 04M 76.6s
of the minima inq of the P ;(q) probability densities. For ¢ g1g0 1.0M 113 s 4096 37M 1.02h
given J the nontrivial(i.e., away fromq==*1) minima are g gq9o 76M 054h 1024 493 M 4266 h

related to free-energy barriers of the disordered sysfem 12 640
The other way around, it is presumably model dependent
(and worthwhile to investigajeto what extent free-energy

barriers of the systeny are reflected in the minima of the \yhere the sum is over nearest-neighbor pairs ¢hypen

P 7(q) probability density. . _ cubic lattice. The spins; as well as the coupling constants
Conventional, canonical Monte Carl®/C) simulations 3. take on the values: 1, with equal probabilities, i.e., the

do not allow for an efficient investigation of the ;(q) sumN~3 ;. is of order 1AN.

minima, because the likelihood to generate corresponding |, ourcglI():ullations we combine the two copiesplica of

configurations in the Gibbs canonical ensemble is small. Thighe same realization and simulate with a weight function
problem is overcome by the multioverlap MC algorithim

which samples with an uniform distribution op It belongs w(q)=exd — B(E'+E?)+S(q)]. (3)

to the class of multicanonical and related algorithhis

which allows us to focus on rare configurations of the GibbsHere 8=J,/kgT is the inverse temperature in natural units,
ensemble. For instance, at first-order phase transitiond,in 3 E! and E? are the energies of the respective replicas, and
configurations with interfaces are suppressed according t8(q) has the meaning of the microcanonical entropy of the
exp(—oAmin), Whereo is the interface tension aml,,;, isthe  Parisi order parametefl). The multioverlap algorithm
minimal area of the interface. For temperature driven transiweights spin configurations with an overlap paramegen
tions configurations with interfaces are found ferin the  such a way that a broad histogramgneventually covering
energy rangeE;<E<E, whereE,=E;+AE and AE is  the entire accessible rangel=<q=<1, is obtained. This al-
the latent heat of the transition. To generate such configurdews then for accurate calculations of the empirical probabil-
tions with a good statistics it is sufficient to sample with aity density P ;(q) of the Parisi order parameter for realiza-
weight factorw(E)~1/n(E), where n(E) is the spectral tion J. Although an explicit order parameter does not exist,
density. Similarly, interfaces for magnetic field driven first- our simulation method is in this way similar to the
order phase transitions can be generated by sampling with anultimagneticalt® which for ferromagnetic systems is a very
appropriate weight functiow(M) of the magnetizatioM of  efficient way to sample configurations with interfaces.

the sample. Our EAI simulations are performed di=L¢ (d=3,4)

OnceP ;(q) is determined, we define the associated freedlattices at=1(3d) and 8=0.6(4d). Both values corre-
energy barriefF§ through the autocorrelation time of al1 spond to temperatureb=1/8 below the freezing tempera-
Markov process which has the canoni®a}(q) distribution  ture of the respective modgB.=0.90+0.03 () (Ref. 23,
as equilibrium state. The barrier autocorrelation timfeis ~ B.=0.4850.005 (4) (Ref. 24]. Table | summarizes the
then defined through the second largest eigenvalue of thetatistics we have assembled as well as the performance of
transition matrix of this Markov process and the free-energyour code. MC updates are given in unitssyfeepsOur J
barrier is Ingf).

In previous literaturé®?! investigations of spin-glass Largest Barriers
barriers relied on various numerical and analytical methods, 10"
which are distinct from ours. The results of Refs. 16—20 may
be summarized as support of a scaling IB§"~N*? for
canonical free-energy barriers in the mean-field limit below
the freezing temperature.

In the next section we describe our methods and give an
overview of our MC statistics. Section Il presents and inter-
prets our numerical results for free-energy barriers.iGon-
clusions and an outlook are given in the final Sec. IV.

154.0M 36.97 h

canonical 4d - -
multi-overlap 4d -—— .

0 0.2 04 0.6 0.8 1
q

Il. OVERVIEW OF METHODS AND DATA 10°

The energy of the Edwards-Anderson IsifgAl) (Ref.
22) spin-glass model is given by

FIG. 1. CanonicaP ;(q) and(flat) multioverlapP';*{q) prob-
E=— 2 JikSiSk, 2) ability densities for our realization with the largest free-energy bar-
{ik) rierin 3d (L=8) and 4 (L=8).
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TABLE Il. Mean, median, and maximum values for the Markov autocorrelations tirhes).

L 4 6 8 12

3d: mean 61(29x 10* 10(06)x 10° 56(45)x 10° 13(10)x 10°
3d: median 237(05% 10 690(02)x 10 152(04)x 107 444(05)X 107
3d: maximum 22(20x 108 32(06)x 10° 35(33)x 10'° 53(30)x 10°
4d: mean 94(34x 106° 23(08)x 10° 26(23)x 1¢°

4d: median 807(18x 10* 379(11)x 107 117(07)x 1C6°

4d: maximum 13(11x 10 21(07)x 1¢° 22(21)x 1¢°

realizations were drawn using the pseudo-random-number (ii) Equilibration run. This run oh X 65536 sweeps was

generators RANMAR(Ref. 25 and RANLUX (Ref. 26

done to equilibrate the system for given fixed weight factors

(luxury level 4. In the simulations themselves we always (n=1,4,16,32 for 8 L=4,6,8,12 anch=2,8,16 for 4 L
employed the RANMAR generator due to CPU time consid-=4,6,8, respectively

erations.

(iii) Production run. Each production run of data taking

For each realizatiory7 the simulation consisted of three was concluded after at least 20 tunneling events as defined in

steps:

(i) Construction of the weight functio(8). Here we em-

Eq. (4) were recorded. To allow for standard reweighting in
temperature we stored besides histograms of the Parisi over-

ployed an improved variant of the accumulative stochastidap parameter also a time series of measurements for the
iteration scheme discussed in Ref. 27, algorithmic detail®rder parameter, energies, and magnetizations of the two rep-
will be published elsewher@.The iteration was stopped af- lica. The number of sweeps between two successive points in

ter at least four tunneling events

(q=0)—(q==*1) and back

occurred. Our precise request was ith B0 tunneling events
for L=4, 6, and 8, and 20 events far=12, but for a few
cases with only four events requested. ld ¥ was 10 for
L=4, 20 forL=6, and 20 to 30 fot. =8. In few cases, the
system was tunneling so rarely betwegn =1 that we de-

a time series is adjusted in such a way that each time series is
made of 65536 measurements. This is done by an adaptive

(4)  data compression routirfé.Together with the condition on

the minimal number of tunneling events this ensures that the
number of sweeps between two successive points in a time
series is approximately proportional 1844 Some reweight-
ing results were reported in Refs. 13 and 21, publication of
others is intendef

With each realizatior;7 we associate the free-energy bar-

cided to abort the run and restart with a different randonyjer FY of the 1d Metropolis-Markov chaif? which has the

number seed, which in most cases (egientually after mul-

canonicalP ;(q) probability density as its equilibrium distri-

tiple tries to improved tunneling performance. After the pution. The transition probabilitie; ; are given by
weight function is constructed and kept fixed, the average ’

number of sweeps it takes to create a tunneling evént

defines the autocorrelation time of the multioverlap algo- rl—w,, Wi o 0 T
rithm which in the following is denoted by
Wo1  1-wio—Wws, W23
7muq (5) T= 0 W3 1-wWy3—Wy3 ,
mu it 0 0 Wa 3
Of course,/™%depends on the realizatigh at hand, and on '
the parameters used in phdge random number seed, num- L : : R
ber of tunneling events requested, etc. (6)
16 . . . . . —— r
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FIG. 2. Power-law and exponential fits for the mean multiover-

lap tunneling timg 7™9],,, in 3d and 4d.

B/F Bred

FIG. 3. Distribution functiorFq (13) for the 3d overlap barriers
(9) in units of their median value.
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FIG. 4. Distribution functiorfF 4 (13) for the 4d overlap barriers
(9) in units of their median value.

where w; ; (i#]) is the probability of the Metropolis-
Markov chain to jump from stateg=q; to g=gq; (q;
=i/N,ie[—N,—N+2,...+NJ]),

Ps(ai)
Ps(q))

T fulfills the detailed balance conditiofwith P ;) and as a

1 . (7)

1
Wi1j=§mln

consequence it has only real eigenvalues. The largest eige ical It i
value(equal to ongis nondegenerate, and the second largeste canonical autocorrelation i

eigenvalue\, determines the autocorrelation time of the
chain,

1

BN ®

and we define the associated free-energy barrier for realiz
tion J as

Fd=In(7g).

9

For the simple double-peak situation of first-order phas
transitions the autocorrelation timeg is proportional to the
ratio P7*/P7" where

P?aX: Pj(qmax) = ma){PJ(q)] and
q
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FIG. 5. Distribution functiorF 4 (13) for the 3d energieq2) in
units of their median value.
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FIG. 6. Distribution functiorFq (13) for the 4d energies2) in
units of their median value.

min
0<9<|Amay

PN [P(a)],

ie., Fi=In[PT7®PT"+const. This leads in @ to 73

~eAmin and F3~ oA yin+const, whereA,, is the minimal
area between the coexisting phase regionsaaiglthe inter-
facial tension. EquatioK9) is the appropriate generalization
to a situation involving multiple minima and maxima. The
ﬂytocorrelation time'd has to be regarded as a lower limit to
mé2" for the Markov pro-
cess where the spin variables are the dynamical degrees of
freedom. The definitior8) takes only barriers im into ac-
count but not other barriers which may well exist in the
multidimensional configuration space.

The matrixT in Eqg. (6) is tridiagonal and sign symmetric.
This special form allows for easy calculation of all its
eigenvalues? The realizations with the largest thus obtained

;?Fee-energy barriers in®8 and 4 are depicted in Fig. 1.

Both do not show a complicated landscape, but a plain two-

peak structure. Besides the canoniegl(q) probability den-

sities the essentially flat probability densitie5'{(q) of the

multioverlap simulation are also indicated in the figure. Both
7(q) probability densities take their minimum =0 and

we haveP7*/P7">10% in 3d (L=8) andP}*{P}">10° in

4d (L=8); compare also Table Il. The improvement factors

in computer time are directly proportional and close to these

numbers which reflect the enhancements in visit® g{0)
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01t
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FIG. 7. Distribution functiorF g (13) for the 3d barriers(14) of

the multioverlap algorithm in units of their median value.
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FIG. 8. Distribution functiorq (13) for the 4d barriers(14) of  corresponding to the exponential finite-size scaling behd@rof
the multioverlap algorithm in units of their median value. 73. From down to up, the lines are atE& 1, 3, 5,7, 9, 11, 12, 13,

. . . o .14, and 15.

as compared to canonical simulations. Multiplying the im-
provement factors with the average CPU times needed by the,nsidered, canonical overlap barriers are not an exclusive
multioverlap algorithm for a single realization on lattices of .;se for the slowing down of spin-glass dynamics below the

this size(see Table ) it becomes clear that exploration of geq7ing temperature. Thereford has to be a lower bound
such barriers by means of a canonical MC simulation is SIM%t the full canonical autocorrelation timea™

ply impossible.

We conclude this section with remarks about the perfor- 79 zcan (10)

. . . . . B .

mance of the algorithm and implications on the physics of
the system. The multioverlap algorithm flattens the free-One should understargias one relevant direction in a com-
energy barrier§g . If they were the only cause for the slow- plex, multidimensional configuration space. By depicting
ing down of the canonical dynamics, the multioverlap auto-free-energy barriers as function of one projects on this
correlation time should be dominated by a random-walkdirection and averages results over all other directions.
behavior betweeg=—1 andg= +1 and scale proportional

to N (in unit§ of §Weep)s Fitting the estimates of_the.mean IIl. BARRIER RESULTS
autocorrelation timé¢ 79, where the average is with re-
spect to the realizations7, to the power-law form We analyze our free-energy barrier densities relying on a

In([7™9),)=a+zIn(N) gives z=2.32+0.07 in A andz variant of the cumulative distribution functidh For a set of
=1.94+0.02 in 4d. The fits are depicted in Fig. 2. Their sorted data

quality is bad, nevertheless they show that the slowing down

is quite off from the theoretical optimum=1. Exponential X3 <Xp< <Xy (13)
fits In(7"),)=co+c,N are also depicted in the figure.
Whereas in 8 the exponential fit is far worse than the
power-law fit, it is the other way around ind4 Hence, the
smallerz value in 4d should not be taken seriously.

the (empirica) cumulative distribution functior-(x), see,
for instance, Ref. 31 is defined by

The physically important conclusion is: the observed L1 L1

pny y 1mp - ——z—sF(x)s—Jrz— for x;s=xsx;,,, (12
large autocorrelation times demonstrate that, in the model n 2n n
17 — , , , : : : : : where we use a straight-line interpolation in between. Next
16 | QR we define a peaked distribution functfras introduced in
15 | Average Q=0.0002 T | Ref. 33:
14 | -
13 t c F(x) for F(x)=<0.5; 13
L X =

o ﬁ o(X) 1-F(x) for F(x)=0.5. (13
10 | This function peaks at the mediag,4 0f the data and takes
9r there the valué-5=0.5. For self-averaging datathe func-
3 I tion F collapses in the infinite volume to
6

s 5 6 7 8_9 10 11 12 0.5 for x=x;
LN Fo(X)= {

FIG. 9. Fits(15) of the 3d free-energy barrier§% versusN/3 — . N
corresponding to the exponential finite-size scaling behatigrof ~ Herex is the mean value. For non-self-averaging quantities
73 . From down to up, the lines are at E6-1, 3, 5, 7, 9, 11, 12, 13, the width of F5 stays finite. The concept carries over to
14, and 15. observables which diverge in the infinite volume limit, when

0 otherwise.
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TABLE lIl. Fit parameters for the free-energy barriers fit$); 16 T T
Q<0.003 for all cases. 15 | Average Q=0.50 T
3d 4d “r i 1
F a, a, a, a, 13 E
o0 —~F
116 4532 042403  6.3002  0.27403 T 12
4/16 5.133) 0.44204) 6.7703) 0.27603) 1
8/16 6.384) 0.38205) 7.1305) 0.30106) 10 [+
12/16 7.396) 0.47611) 7.7711) 0.34410)
15/16 9.719) 0.53814) 8.8512 0.43515)

8 1 1 1
5.5 6 6.5 7.5 8 8.5

7
In(N)
on each lattice size results are expressed in units of the re- £ 12, Fits(18) of the 4d free-energy barriers§ versus Inl)
spective median value, i.e., instead of an observabtee  corresponding to the power-law finite-size scaling behatd@y of
ratio X=X/Xmeqis used. 78 . From down to up, the lines are at E6=1, 3, 5, 7, 9, 11, 12, 13,

14, and 15.

A. Lack of self-averaging

havior is related to ground-state irregularities on small lat-
tices (only the corresponding half of the distribution is
affected. For both 31 and 4d the peaked distribution func-
tion of the energy is strongly concentrated aroWVtE, g
=1, whereas the overlap barrier distributions are much

For the free-energy barrief9) we have depicted our thus
obtained Fo(Fa/Fg 19 functions in Figs. 3 (8) and 4
(4d). For each lattice the measurdd, values were first
sorted as function of7 such that

FE.<Fio<---<Fi,. broader. . . I
' ’ ’ It is generally believed that, in contrast to the equilibrium
wheren is the number of realizations# given in Table I.  autocorrelation times considered here, nonequilibrium auto-
SubsequentlyFg .qwas calculated as correlations are self-averaginy.No sample-to-sample de-

viations have been reported for real experim@itsd self-
averaging is also used for measurements of nonequilibrium
properties in MC simulations:*?

The multioverlap algorithm eliminates the free-energy
andF o computed forx=Fg/Fg neq. barriers which are visible in the ;(q) probability densities.

Both figures support thdtg is a non-self-averaging quan- | et us therefore focus on the autocorrelation times of this
tity. This is stronger in 4 than in 3, because the inner lines algorithm and its barriers defined by

belong in 3 to the larger lattices, whereas ird4t is the

other way around. However, in both cases there are marginal Fgl9=In(7mu9), (14)
finite-size effects, whereas finite-size dependence of self-

averaging is expected to be rather strong. This becomes olVe perform the analysis along our previous lines and show
vious when comparing with an observable which is supposeth Figs. 7 (3l) and 8 (4d) the thus obtained

to be self-averaging. Namely, Figs. 5d8and 6 (4) depict  Fo(Fg"YFgmed functions. Lack of self-averaging is even
the same analysis for the internal ener@. In 3d self- more obvious than foFg. In Fig. 7 (3d) there argwithin
averaging of this quantity is obvious, whereas ththiere is  the statistical accuragyo finite-size effects visible and Fig.
an irregularity when going froh =6 toL=8. As our simu- 8 (4d) exhibits a strong anti-self-averaging trend: Results for
lation temperature ind is quite low, we think that this be- the larger lattices move to the outside instead of to the inside.

1
Fg,med:E(Fg,n,ﬁ FR1in2 (n iseveninourcases

:: B. Finite-size scaling behavior
14 In this final part of Sec. Il we discuss how daexperi-
13 | mental or MQ for non-self-averaging observables may be
12 | analyzed such that cc_;mparisons of resul_ts fro_m different
@ 11| groups become possible. One has to investigate many
b 10l samples and should report the finite-size scaling behavior for
fixed values of the cumulative distribution functién(12).
i In particular this include$ =1/2 which defines the median
8t value. We exemplify this for the overlap autocorrelation time
7f 78 (8), but the method applies for non-self-averaging observ-
°4 a5 55 6 65 7 75 ables in general. . _ ,
In(N) From Figs. 3 and 4 it is obvious that the autocorrelation

FIG. 11. Fits(18) of the 3d free-energy barriersd versus In) times 3 will have long tails towards large values. This im-
corresponding to the power-law finite-size scaling behagi@y of ~ plies that the mean value over all samples is a rather erratic
7% . From down to up, the lines are at E6=1, 3,5, 7, 9, 11, 12, 13, quantity which is dominated by a few rare realizations. Table
14, and 15. Il collects the mean, mediarFE& 1/2), and maximun F
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TABLE IV. Free-energy barriers fit€l8): Fit parameters and goodness of fit.

3d 4d
F In(c) a Q In(c) a Q
1/16 2.8003) 0.83006) 0.04 3.5805) 0.80408) 0.05
4/16 3.3004) 0.85708) 0.77 3.6806) 0.86008) 0.13
8/16 4.1006) 0.88310) 0.52 3.6811) 0.95818) 0.71
12/16 5.3711) 0.93020) 0.51 3.7122) 1.10532) 0.81
15/16 7.3514) 1.07528) 0.02 4.3726) 1.30242) 0.94

=1-1/(2n)] values for7§ . The numbers in parentheses in- sized systems. Having these limitations in mind, the overall
dicate error bars in the last digits of the quantity given be-quality of the power-law fits is remarkably good. Our data
fore. The results show that contributions of the maximumfavor them strongly over the exponential behavior.

values dominate to a large extent the mean valjes di- As function of F the exponenwx= «(F) varies smoothly
vide the maximum values by the number of realizations anéind covers in 4 a range from 0.8 aF=1/15 to 1.3 atF
compare the results with the mean valuéehe maximum =15/16. In 3 the range is somewhat smaller, see Table IV.

values rely on realizations/ of likelihood 1h, what ex-  Fits for F>15/16 become erratic and it makes little sense to
plains their very large errors. In contrast to the mean and thegport them. A similar analysis for the autocorrelation times
maximum, results for fixe® remain well defined as long as of the multioverlap algorithm gives exponerigF) which

F stays away from its extreme valuemland 1-1/n. In are larger,

particular, note that samples with relaxation times too long to nu

be measured can still contribute to determine the cofffect a™YF)~ag(F)+1.

values for smaller relaxation times. This reiterates and sharpens our previous observation that

In the following we focus on our results for the free- rejevant barriers exist, which are invisible in the overlap
energy barrier§g atF=i/16 withi=1, . ..,15. For eaclF variableq.

value we performed fits to the form

IV. SUMMARY AND CONCLUSIONS
Fi=a;+a,N"® (15

which corresponds to the exponential finite-size scaling be- We have investigated free-energy barriers in the Parisi
havior order paramete_fl). The resultg are sample dependent and
non-self-averaging on théadmittedly rather smallsimu-
N3 (16) lated systems. The power-law behavid7) of the Markov
autocorrelation timesg as defined in Eq(8) is favored over
suggested by investigations of autocorrelation times and bathe exponential behavidi6). To the extent that this behav-
riers in the mean-field limit®~?° These fits are depicted in jor extrapolates to the infinite volume limit and that our
Figs. 9 and 10. Examples of the fit paramet@ysanda, are  methods relate to those of Refs. 16—20, it means that babth 3
collected in Table IlI; for all fits given there, the goodness-and 4 are quite far away from thd— o mean-field theory
of-fit parameteiQ (Ref. 31 is smaller than 0.003. The aver- |imit. As relevant barriers are still found in the autocorrela-
ageQ over all 15 fits is given in the figures. For consistenttions of the multioverlap algorithm, such a relation is far
fits the expectation for th® average is 1/2 and the quality of from clear.
our 3d and 4 exponential fits is unacceptable. We therefore
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