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Logarithmic corrections in the two-dimensional XY model

Wolfhard Janke*
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Using two sets of high-precision Monte Carlo data for the two-dimensionalXY model in the Villain
formulation on squareL3L lattices, the scaling behavior of the susceptibilityx and correlation lengthj at the
Kosterlitz-Thouless phase transition is analyzed with emphasis on multiplicative logarithmic corrections
(lnL)22r in the finite-size scaling region and (lnj)22r in the high-temperature phase near criticality, respec-
tively. By analyzing the susceptibility at criticality on lattices of size up to 5122 we obtain r5

20.0270(10), inagreement with recent work of Kenna and Irving on the finite-size scaling of Lee-Yang
zeros in the cosine formulation of theXY model. By studying susceptibilities and correlation lengths up to
j'140 in the high-temperature phase, however, we arrive at quite a different estimate ofr50.0560(17),
which is in good agreement with recent analyses of thermodynamic Monte Carlo data and high-temperature
series expansions of the cosine formulation.@S0163-1829~97!00305-6#
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I. INTRODUCTION

Ever since the seminal work of Kosterlitz and Thoule
~KT! in 1973,1,2 the two-dimensional~2D! XY model has
been the subject of extensive experimental, analytical,
numerical investigations.3 Physically the interest in this
model arises from studies of layers of superconducting
terials and films of liquid helium,4 Josephson-junction
arrays,5 and some magnetic systems.6 Theoretically the pe-
culiar behavior of the KT phase transition, which is believ
to be driven by the unbinding of defect pairs, has attrac
much interest. Despite all these efforts, however, the de
of the phase transition are not yet fully understood.

In a recent Monte Carlo~MC! simulation study of Lee-
Yang partition function zeros, Kenna and Irving7,8 raised
again the question of logarithmic corrections2,9 to the leading
finite-size scaling~FSS! scaling behavior. If the linear lattice
size is denoted byL and the multiplicative logarithmic cor
rections are parametrized as (lnL)22r, their numerical result
is r520.02(1), while the standard KT theory would predic
quite a different exponent ofr521/16520.0625.2,9 More-
over, by reanalyzing ‘‘thermodynamic’’ MC data of Refs. 1
and 11 obtained on lattices withL.7j, wherej is the cor-
relation length, Patrascioiu and Seiler12 obtained an estimate
of r50.077(46), and by analyzing long high-temperature
ries expansions, Campostriniet al.13 also arrived at positive
values in the ranger50.042(5)–0.05(2), depending on the
quantity considered. While the estimates of the latter t
groups are consistent with each other, they are incompa
with the FSS result of Kenna and Irving, which, on the oth
hand, is somewhat ‘‘closer’’ to the theoretical prediction.

All numerical estimates quoted above were obtained
the cosine formulation of theXY model. The purpose of this
note is to add further evidence in one or the other direct
by analyzing the logarithmic corrections in the Villa
formulation14 of theXYmodel, which is actually~sometimes
implicitly ! the starting point of most if not all theoretica
investigations.
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II. SCALING PREDICTIONS

In the Villain XY model14 the Boltzmann factor of the
cosine formulation,Bcos5) x,iexp@bcoscos„¹ iu( x)…#, is re-
placed by the periodic Gaussian

B5)
x,i

(
n52`

`

expF2
b

2
~¹ iu22pn!2G , ~1!

where b is the inverse temperature in natural units, a
¹ iu5u( x1 i)2u(x) are lattice gradients. A discussion o
the relation between the two formulations as well as num
cal comparisons can be found in Refs. 14 and 15.

The two-point correlation function@sW5„cos(u),sin(u)…#,

G~x![^sW~x!•sW~0!&5^cos„u~x!2u~0!…& ~2!

is predicted to behave at the critical temperatureTc51/bc
as9

G~x!}
~ lnuxu!22r

uxuh F11OS ln~ lnuxu!
lnuxu D G , ~3!

with r521/16 andh51/4. For the power of the logarithmic
term we have adopted the notation of Refs. 7 and 8. In
high-temperature phase near criticality, i.e., 0,t[T/Tc
21!1, this implies for the magnetic susceptibility,

x5VK S (
x
sW~x!/VD 2L 5(

x
G~x!, ~4!

a scaling behavior

x}j22h~ lnj!22r@11O~ ln~ lnj!/ lnj!#, ~5!

where

j}exp~bt2n! ~6!

is the correlation length, withn51/2 andb being a nonuni-
versal positive constant. Expressingj in terms oft, Eq. ~5!
can also be written as
3580 © 1997 The American Physical Society
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x}j22ht2nr@11O~ tnlnt !#. ~7!

Very close toTc Eq. ~5! cannot hold for a finite system with
linear sizeL!j. Here j has to be replaced byL, and we
expect to observe a FSS behavior

x}L22h~ lnL !22r@11O„ln~ lnL !/ lnL…#. ~8!

In numerical simulations it proved to be very difficult t
verify the KT scaling laws unambiguously. However, if on
rejects a power-law ansatz with unnaturally large expone
and large confluent correction terms, then, among the
alternatives, a pure power-law or the exponential KT div
gences, the KT predictions are clearly favored. This is
conclusion of most numerical studies of the cos
formulation10,11and, with even stronger evidence, also of t
Villain formulation16 considered here. In this note we sha
therefore not study this fundamental question again.
rather assume Eqs.~5!–~8! to be qualitatively valid and try to
determine the exponentsh, n, andr . Unfortunately even this
goal is far too ambitious, since a precise determination of
three critical exponents together with the~nonuniversal!
value ofbc would require much more accurate data than o
can hope to generate with present day techniques. We th

FIG. 1. Finite-size scaling of the susceptibility at criticality.
logarithmic corrections are neglected, the slope in~a! gives
1/42h. If h51/4 is assumed, the slope in~b! yields 22r , the
exponent of the logarithmic correction.
ts
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-
e
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fore hold the exponentsn51/2 andh51/4 fixed at their
theoretically predicted values and ask if any deviation of
data from the leading scaling behavior can be explained
the logarithmic corrections in Eqs.~5! and ~8!.

III. RESULTS

In Ref. 16 we have reported high-precision MC simu
tions of the Villain model~1!, using the single-cluster updat
algorithm and improved estimators for the two-point cor
lation function. This enabled us to obtain on a 12002 square
lattice data for the correlation length up toj'140. Since
L.8j this value should be a very good approximation of t
thermodynamic limit. By performing fits ofj to the KT pre-
diction ~6! and ofx to Eq.~5! ~without the logarithmic term!
with four free parameters~the prefactor,b, n, andbc) we
obtainedbc50.752(5) andn50.48(10). The estimate o
bc is in very good agreement with the more precise value
bc50.7524(7) obtained in Ref. 17 from a study of the du
discrete Gaussian model~see also Ref. 18!. Using the ansatz
~7!, i.e., including the theoretically predicted correctio
t21/16 did not improve the quality of the fits.

FIG. 2. Test of the scaling relationx}j22h(lnj)22r in the
range j'10•••140, rewritten as ln(x/j7/4)5const1(1/42h)lnj
22rln(lnj). The linear behavior in~b! shows that the data are com
patible withh51/4. As is already obvious from~a!, the exponent
r must then be positive, in disagreement with the theoretical p
diction r521/16.
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Further data of the susceptibility at criticality on lattic
with up to 5122 sites showed a clear scaling behavior f
L>100, x}L22h, with h50.2495'1/4 at b50.74, and
h50.2389(6)Þ1/4 at b50.75. This is obviously not con
sistent with the prediction thath51/4 at bc . Since the esti-
mate of bc from two completely independent simulation
agreed so well we concluded in Ref. 16 thath(bc)Þ1/4, in
disagreement with the KT prediction. To reconcile simu
tions and theory we speculated that the scaling curve fox
might still change for much larger system sizes, but this is
course not very convincing. Mainly based on our negat
experience with thet21/16 correction in thex(T) fits, we did
not try, however, to attribute the observed discrepancy
logarithmic corrections.

The data atb50.75 and a fit in the rangeL>64 accord-
ing to ln(x/L7/4)5const1(1/42h)lnL is reproduced in Fig.
1~a!. In Fig. 1~b! we show the same data, but now fi
h51/4 at the theoretical value and assume that Eq.~8! with
the logarithmic correction is valid. Since then ln(x/L7/4)
5const22r ln(lnL), we expect a straight line whe
ln(x/L7/4) is plotted against ln(lnL). As is demonstrated in
Fig. 1~b! this is clearly the case. Also shown is a linear
which is of high statistical quality~goodness-of-fit paramete
Q50.61) and yields a slope of 0.0540(19), or

r520.027060.0010, ~9!

in good agreement with the estimate ofr520.02(1) from
the FSS of Lee-Yang zeros in Refs. 7 and 8. To summa
this subsection, by allowing for logarithmic corrections w
can reconcile the numerical estimate ofbc'0.752 with the
KT prediction h(bc)51/4. The value of the exponentr ,
however, is clearlynot in agreement with the theoretical pre
diction r521/16520.0625.

Let us next consider the scaling behavior of the therm
dynamic data near criticality in the high-temperature pha
In Ref. 16 we neglected logarithmic corrections in Eq.~5!
and tested the relation lnx/j7/45const1(1/42h)lnj graphi-
cally. This plot is reproduced in Fig. 2~a!. We see that the
curve has a negative slope, corresponding toh.1/4. We
also observe, however, that the data are curved and tha
large j the slope decreases. By definingheff from the local
slopes, we obtained at the scale ofj'110 . . . 140 an esti-

FIG. 3. Test of scaling similar to Fig. 2, but with lnj replaced by
t5T/Tc21 @cf. Eq. ~6!#.
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mate ofheff'0.267. Notice that this effectiveh is above
1/4, while from FSS without logarithmic corrections w
would have extracted an effectiveh that is smaller than
1/4. In Fig. 2~b! we show the same data, but similar to Fig.
we now again fixh51/4 at the theoretical value and assum
that Eq. ~5! with the logarithmic correction is valid. Sinc
then ln(x/j7/4)5const22r ln(lnj), we expect a straight line
when ln(x/j7/4) is plotted against ln(lnj). This is indeed the
case, and from the fit over all available data points~with
Q50.97) we obtain

r50.056060.0017, ~10!

in qualitative agreement with the results in Refs. 12 and
which are also derived from the approach to criticality in t
high-temperature phase. The value~10! is clearly different
from Eq. ~9!, and is very far from the theoretical estima
r521/16520.0625. In retrospective this ‘‘explains’’ why
we did not observe any improvement when trying fits
x(T) with the t r correction fixed to the theoretical predictio
t21/16.

We repeated the analysis leading to the Villain mod
estimate~10! also with the three data points for the cosi
model in Ref. 16~with j'21, 40, and 70! and obtained a
compatible value ofr50.047(8). Furthermore, using the
more extensive data sets of Refs. 10 and 11 we find con
tent values ofr50.050(10) andr50.049(10), respectively

We also tried to use the scaling form~7! which requires as
input information the value ofbc . Using the most accurate
estimate ofbc50.7524 we find the result shown in Fig. 3
Again the linear scaling looks almost perfect, but from t
slope we now read off an even larger value
r50.0922(28). Qualitatively this can be understood as f
lows. Going from Eq.~5! to Eq. ~7! we replace lnj by
t2n5t21/2. Asymptotically this follows from the scaling be
havior ofj in Eq. ~6!. This implicitly assumes, however, tha
the constant in the proper relation, lnj5const1bt2n, can be
neglected. Ift is not really asymptotically small, this is no
justified. In fact, the plot of ln(lnj) vs 2 lnt in Fig. 4 does
show effectively an almost linear behavior, but with a slo
completely different from the asymptotic valuen51/2.

FIG. 4. Correlation length vs reduced temperature. In the ra
j'10•••140 the slope is effectively about 0.8, while asymptotica
it should approachn50.5 according to Eq.~6!.
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Finally it was of course tempting to enquire if the ob
served discrepancies between the numerical data and
theoretical expectations can be blamed on the additive lo
rithmic corrections in Eqs.~5! and~8!. To test this possibility
we have replotted in Fig. 5 the data at criticality in the for
x/L22h(lnL)22r vs ln(lnL)/lnL and the thermodynamic dat
in the formx/j22h(lnj)22r vs ln(lnj)/lnj, assuming the theo-

FIG. 5. Test for additive logarithmic corrections in~a! the data
at criticality and~b! the thermodynamic data. Here the exponen
h and r are assumed to take the theoretically predicted val
h51/4 andr521/16.
,

s

the
a-

retically predicted values ofh andr . The double valuedness
in Fig. 5~b! is caused by the fact thatf (j)5 ln(lnj)/ln(j)
assumes a maximum fmax51/e'0.3679 at
jmax5ee'15.15. We see that both the data forL.64 or
j.40 can be well fitted with a simple linear function. Wit
a parabolic ansatz the acceptable fit range can even be
tended to smaller values ofL or j. From Fig. 5 it is obvious,
however, that we are still too far away from the truly asym
totic regionx→0 to take this as a convincing evidence th
additive logarithmic corrections can reconcile simulatio
and theory.

IV. DISCUSSION

In summary we have shown that, when multiplicativ
logarithmic corrections are taken into account, numeri
simulation data of the 2DXY Villain model are quite con-
sistent with the leading KT predictions even at a quantitat
level with critical exponents fixed to the theoretical values
n51/2 andh51/4. Estimates of the logarithmic correctio
exponentr , however, turn out to be quite inconsistent. Sca
ing analyses in the FSS region yield a negati
(r'20.03•••20.02) and analyses in the high-temparatu
phase a positive (r'0.04•••0.08) value, both being quite
different from the theoretical prediction ofr521/165
20.0625. This is obviously related to the fact that analys
neglecting logarithmic corrections tended to estima
h.1/4 using thermodynamic data andh,1/4 in the FSS
region. We have no good explanation for this observat
other than the common, but unfortunately probably corr
statement19,20 that the studied system sizes are still much t
small to resolve these discrepancies.

Note added in proof. Similar observations have recentl
been reported by J. Salas and A. D. Sokal~unpublished! for
the logarithmic corrections at the phase transition of the tw
dimensional four-state Potts model.
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