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Traditional observables used to locate first-order phase-transition points from Monte Carlo simula-
tions on finite lattices usually exhibit powerlike finite-size scaling behavior. For systems in a box of
volume V with periodic boundary conditions, several definitions of finite volume (pseudo-) transition
temperatures To(¥) have recently been proposed which involve only exponential corrections with
respect to To=Ty( ). One of these approaches suggests also a different and efficient way to compute
the latent heat. These propositions are tested for the temperature-driven first-order phase transitions in
the two-dimensional g-state Potts model for ¢ =5, 8, and 10 by means of Monte Carlo simulations, using
the single-cluster update algorithm and histogram reweighting techniques.

I. INTRODUCTION

In the idealized infinite-volume limit, first-order phase
transitions are characterized by discontinuities in the first
derivative of the free energy. For a temperature- or
field-driven transition this gives rise to jumps in the inter-
nal energy or the magnetization, and consequently to 8-
function singularities of the specific heat or the suscepti-
bility. In a finite volume V these singularities are
smoothed out and, depending on its strength, the transi-
tion is signalized by more or less pronounced finite peaks
of the specific heat or susceptibility near the infinite-
volume transition point.

If the volume is cubic or nearly cubic, the width of the
peak is proportional to 1/V¥, and the location of the peak
maximum is shifted by an amount O(V ~%) with respect
to the actual infinite-volume transition temperature T,
where o >0 depends on the model and the type of bound-
ary conditions.!”® Typically one has @=1 and may try to
estimate T, =1/f3, from the peak locations on finite lat-
tices by extrapolations in 1/V.

Related definitions of finite-volume transition points
are based on various ratios of moments of the energy or
magnetization distribution. The most popular is the so-
called Binder parameter’ (here and in the following we
shall illustrate the concepts only for temperature-driven
transitions):

(E*)
3(E2)? "’
where (-) denotes thermal averages in a finite volume ¥
and E is the energy of the system. In the idealized
infinite-volume limit, B has an isolated minimum
B(Ty)< % at the transition point Tj, while B=2 away
from the transition. In a finite volume this discontinuity
is again smoothed out and the location of the minimum is
shifted by an amount proportional to V™% if the volume
is approximately cubic.® For the most common situations
one finds again a=1.°

Another useful observable is the low-order variant of

B(V,B)=1— (1)
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(1) with E* replaced by E? and E® by E. These observ-
ables are sensitive to the (additive) energy normalization
of the model. Such a dependence is avoided in the con-
nected Binder parameter

_ {E—(E
3((E—(E))?)?’

which is closely related to the second derivative of the
specific heat. In a finite volume it has a smooth peak in
the vicinity of the transition point. The location of the
maximum is again displaced from T, by an amount pro-
portional to ¥~ ¢ with typically «=1. A simple rigorous
bound is BY(V,B) < 2. :

In Monte Carlo simulation studies, due to unavoidable
statistical errors, extrapolations of finite-volume data are
not always reliable. Apart from these (hopefully) random
and uncorrelated statistical errors the data are also sys-
tematically shifted by additional exponential corrections
which are difficult to take into account theoretically. But
a precise knowledge of the infinite-volume limit is often
important since many quantities of physical interest are
just defined at the ( @ priori unknown) transition point T,
It is therefore desirable to find definitions of a finite-
volume transition point which involve no power-law
corrections at all. Such definitions will be provided by
the new observables introduced in Sec. II. The practical
applicability of these propositions is tested numerically
for the temperature-driven first-order phase transition of
the two-dimensional g-state Potts model with ¢ =35, 8,
and 10. In Sec. III, the setup of the Monte Carlo simula-
tions using the single-cluster update algorithm and the
methods of data analyses are described, and in Sec. IV,
the results are presented. Finally, Sec. V contains the
conclusions.

BaV,p=1

(2)

H. THE NEW OBSERVABLES

Let us start with one possible definition that has al-
ready been given in Refs. 10 and 11 (see also Ref. 12).
The derivation is based on the observation that on lat-
tices with periodic boundary conditions, the partition
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function of a model describing the coexistence of one
disordered and g ordered phases can be written for large
enough g as

—Bf BV ~L/Lo,

gq
Z,.(V.B)=" mz=oe [1+0(Ve 1. (3)

Here Ly < oo is a constant, L is the linear length of the
lattice, B=1/kp T is the inverse temperature, and f,,(B)
is the metastable free-energy density of the phase m. It
can be defined in such a way that it is equal to the ideal-
ized infinite-volume free-energy density f(B) if m is
stable and strictly larger than f() if m is unstable.!®!!
This implies that the parameter

N(B)= lim Z. (V,B)e/ P (4)

is equal to the number of stable phases at the inverse tem-
perature 8. With increasing temperature N () thus takes
the values g, ¢ +1, and 1. Since N(B) has an isolated
maximum at the transition point where the g +1 phases
coexist, a natural definition of a finite-volume transition
point By(¥) is the point where a suitable finite-size ap-
proximation to N(f3), say

N(V,B)=Z . (V,B)eP PV, (5)

is maximal. The important observation is that, due to the
bound (3) (and similar bounds for derivatives'®!!), this
definition leads only to exponentially small shifts of By V)
with respect to the infinite-volume transition point S3,.

For an actual numerical determination of By( V) the cri-
terion (5) is not yet well suited. While the partition func-
tion Z,,(¥,B) can actually be measured in Monte Carlo
simulations (except for an irrelevant S-independent con-
stant), the free energy f(f) is only defined in the thermo-
dynamic limit and hence not accessible to numerical
simulations. It is therefore necessary to eliminate this
term by, e.g., forming a suitable ratio. Instead of (5) one
may look for the maximum of the number-of-phases pa-
rameter

Z . (V1,B)*
Zper( V27B)

where =V, /V,;.!2 By inserting (3) it is straightforward
to verify that N(V,,V,,B8) behaves qualitatively as N(j3).
With increasing temperature it smoothly interpolates be-
tween the values q, ¢ +1, and 1. The value of B at the
maximum is then the desired, only exponentially shifted
finite-volume transition point By(¥) which will be denot-

N( V]s VZ)B)=

1/(a—1)
AT
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ed By,y. Differentiating InN with respect to B we
see that determining fBy,, amounts to solving
aE( VI’BV/V)=E( VZ’BV/V) or e(Vl,BV/V)

=e(V,,By,v), i.e., to locating the crossing point of the
internal energies per site, e =E /¥, on the two lattices of
different size.

Obviously the numerical determination of By, re-
quires simulations on two different lattices. In Ref. 12,
we have therefore proposed another definition of a finite-
size transition point which requires data from one lattice
only. Its definition is based on the fact that the partition
function of a statistical system may be written as!*

z= -3 e‘ﬁE=§N(E)e"BE , )

configurations

where N (E) is the number of configurations with the en-
ergy E. In practice, by recording energy histograms, one
measures the closely related probability distribution

Py(E)=—N(E)e ", (8)

which, in the vicinity of a first-order transition point, has
the typical double-peak form depicted for three charac-
teristic temperatures in Fig. 1. The different shapes are
related to each other via the relation

Pg(E)x Py(E)e ~#'=PE ©)

This is the basis for the recently popularized!® !¢ so-called
reweighting technique which is quite essential for the
technical feasibility of the method of Ref. 12 to be de-
scribed next.

At the infinite-volume transition point all free energies
[ (B) are equal, so that Eq. (3) implies

- (By)V - (By)V
o Polm BV ~B0lulBy

3
1M

=qu, , (10)

apart from exponentially small corrections. Here the
free-energy density of the “zeroth,” disordered phase is
denoted by f;, and w,, are the associated statistical
weights of the coexisting phases. A natural definition of
a finite-volume transition point By is thus the point
where the ratio of the total weight of the g ordered
phases to the weight of the disordered phase approaches
g. More precisely we introduce the ratio-of-weights pa-
rameter

R(V,B)= 3 P4E)
E<E,

S PuE), (11

EZE,

FIG. 1. The typical double-peak form of the
probability distribution Pg(E) on finite lattices
in the vicinity of a first-order transition for
three characterlstlc temperatures: (a) B, the
infinite volume transmon point, (b) BC , the

position of the spec1ﬁc-heat maximum, and (©)
BB , the position of the Bmder-parameter
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minimum. The data are actual sgmulatlon re-
sults for ¢ =8 and V=57X57.
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and determine 35 by solving

For notational convenience we shall often write
R=W,/W, with W, ,(V,pB) identified with the numera-
tor and denominator in (11), respectively. The parameter
Ey in (11) is defined by reweighting the energy distribu-
tion to the temperature where both peaks of Pg(E) have
equal height and then taking E, as the energy at the
minimum between the two peaks. Clearly, also other
definitions of E, would be reasonable as well, as, for ex-
ample, the internal energy at the temperature where the
specific heat is maximal. Since it is expected that the rel-
ative height of the minimum between the two peaks de-
creases like e ~™L° " a5 I, s o0, all these definitions do,
in fact, only differ by exponentially small errors. It is
therefore a matter of practical convenience to choose Ej.
Obviously, in order to solve Eq. (12), the reweighting
technique is an optimal tool.

Note that in (12) we have assumed that the number of
ordered phases, g, is known by general arguments. If this
is not the case, one may use the crossing points By,
satisfying

RV :Bww)=R(Vy,Bww) (13)

as estimates for B,. The value of R at the crossing point
then gives the ratio of the number of coexisting ordered
and disordered phases. This, of course, requires again the
simulation on two different lattices.

Clearly, all these considerations apply to field-driven
first-order transitions as well. The point By,y, e.g.,
should then be replaced by the position %, of the max-
imum of ratio (6) as a function of field 4. And instead of
energy histograms one should use magnetization histo-
grams.

IIX. THE SIMULATION

We have tested the propositions of Sec. II by Monte
Carlo simulations of the two-dimensional g-state Potts
model!” on square lattices with ¢ =5, 8, and 10. The en-
ergy of the Potts model is given by

E=— 2 8s(x)s(x’) ’ (14)

(x,x")

where the spins s(x) at each lattice site x take the integer
values 1,...,q, 8, is Kronecker’s symbol, and the sum-
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mation runs over all nearest-neighbor pairs. We always
employ the periodic boundary condition. The two-
dimensional Potts model is a convenient toy model for
testing new ideas since for g > 5 it is exactly known!”!® to
exhibit a temperature-driven first-order phase transition
at B,=In(1+Vq ). Furthermore, right at the transition
also the internal energies of the disordered and ordered
phases, ¢,,¢,, and the difference of the corresponding
specific heats, A2=2¢,—¢,, are known exactly.!”!® A
brief summary is given in Appendix A. A glance on the
transition entropies, AS, compiled in Table I shows that
our choice of g values covers the whole range from very
weak to rather strong first-order phase transitions.

To update the spin configurations we have used the
cluster algorithm!® in its single-cluster variant?® which is
very successful in reducing critical slowing down near
continuous phase transitions. At the first-order transi-
tions considered here, however, the overall gain in CPU
time as compared to the standard Metropolis algorithm
turned out to be only quite modest. As a general rule the
efficiency decreases with increasing g, i.e., with increasing
strength of the first-order transition. And it appeared to
be more efficient to perform the simulations on the high-
temperature side of the transition. More details of these
dynamical aspects of the single-cluster update will be re-
ported in a separate publication.?!

For each g and lattice size, we have first performed one
relatively short simulation at the exactly known transi-
tion point ﬁ=[30=1n( 1-+v/q ) and recorded the (normal-
ized) energy histogram Py(E). Using relation (9) this al-
lows one, in principle, to calculate the energy distribution
and hence expectation values at any inverse temperature
B."* In Monte Carlo studies of first-order phase transi-
tions the actual range of 8 is limited by statistical errors
to [B—BIE=0(1), i.e., |B—BI=0(1/¥), but this is still
wide enough to get estimates 8; and S8, of the specific-
heat maximum and the Binder-parameter minimum, re-
spectively. We have then performed three rather long
simulations at B, 8;, and 3,, and recorded again the ener-
gy histograms. Their typical shapes can be inspected in
Fig. 1. In general, for nontrivial models with unknown
Bg, one would run the short simulation at some ﬁ near the
transition point and use Eq. (12) to get a first rough esti-
mate of B, Finally, basically applying again Eq. (9), we
have combined the three histograms at fixed g and V' to a
single, optimized histogram,'® which was then used for
all further analyses. As a typical example Fig. 2 shows
the relative weights for the optimal combination of the

TABLE I. Exact results for the two-dimensional g-state Potis model.

qg=5 g=8 qg=10
Bo=ln(1+\/5) 1.174 359 1.342454 1.426 062
To=1/B, 0.851 528 0.744 904 0.701232
(é‘d+?,,)/2=1+1/\/3 1.447 214 1.353554 1.316228
Ae=2e,—¢, [see Eq. (A3)] 0.052919 0.486 358 0.696 050
—&y 1.420754 1.110374 0.968 203
—8&, 1.473 673 1.596 733 1.664 253
As=pB,Ae 0.062 146 0.652914 0.992 610
A@”—’BQAS*/VE 0.032 638 0.309 892 0.447 628
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FIG. 2. The weights determined in the computation of the
optimized histogram from the three histograms shown in Fig. 1.

three histograms in Fig. 1. As is clear from Fig. 1, our
choice of simulation points is a well-defined educated
guess, giving a quite uniform accuracy for the optimized
histogram. It is, however, clearly not crucial at this point
to determine BC.;m and B B the true location of the ex-

trema of the specific heat and Binder parameter, or the
usually unknown?? transition point 8, with high pre-
cision.

Depending on g (and thus the strength of the transi-

TABLE II. Simulation points 3, (=specific-heat maximum)
and B, (=Binder-parameter minimum) as determined from a
short test run. A third long simulation was performed at the ex-
actly known infinite-volume transition point By=In( 1+vq).
The statistics is given in units comparable to Metropolis sweeps,
twn =({|C|) /V) X number of simulated clusters, with {|C])
denoting the average cluster size.

g=5
Simulations at trun /108
L By B Bo B B
20 1.1631 1.15736 2.17 2.24 2.23
26 1.16379 1.159 138 2.03 1.67 1.52
34 1.16927 1.167 © 191 1.93 2.00
44 1.170908 1 1.169 677 1.81 1.81 1.95
57 1.172 1.17096 2.13 2.01 2.17
74 1.172 88 1.17247 2.54 2.81 2.90
q=8
15 1.328 362 1.3228 1.96 1.99 1.74
20 1.333275 1.332 1.89 1.77 1.91
26 1.33661 1.334 1.86 1.71 1.07
34 1.33905 1.33761 2.55 2.37 1.80
44 1.3404 1.3395 2.70 2.54 1.78
57 1.34129 1.340 84 2.81 3.12 2.91
g=10
12 1.40627 1.395 4.31 2.51 1.41
15 1.41305 14085 2.09 1.63 1.65
20 1.418 1.4145 2.75 2.08 1.59
26 1.42139 14194 1.36 1.40 1.27
34 1.423207 1.42187 3.89 3.39 2.32
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tion) and ¥, the run time ¢, of the long simulations was
of order (1.1-4.3)X10% Here t,,, is defined in units
comparable to Metropolis sweeps as ({|C|)/V)XN,,
where (|C|) denotes the average cluster size and N, is
the number of simulated clusters. See Table II for more
details concerning the statistics of the simulations. With
our implementation of the single-cluster update on a
CRAY X-MP 2/4 it takes, on the average, about 4 usec
to update one spin. For comparison, our vectorized
single-hit Metropolis code requires only around 0.7 usec
on the same machine.

300

200

100

200

100

oF
0.695

FIG. 3. The specific heat for ¢ =5, 8, and 10 for various lat-
tice sizes computed by reweighting the optimized histograms.
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IV. RESULTS

A. Transition points from traditional observables

Let us start with analyses of the traditional observables
which we shall need for comparison with the new ap-
proaches described in Sec. II. In Figs. 3 and 4 we plot for
g =5, 8, and 10 the specific heat, C, and Binder parame-
ter, B, curves versus temperature as obtained from the
optimized histograms. The maxima of C and the minima
of B define the pseudotransition temperatures Tcmx and

o A —
B

0.66

0.65

0-64 PRSP S S R 1 ddnd b 2
0.845

0.70 p—r———TrrrrT—r——rrr

0.65

0.60

0.55 YR ST SO SRS SN T S S S JUN ST SOOT U S W S S S
0.74 0.75T 0.76

0.70 T
0.65
0.60

0.55 |

FIG. 4. The Binder parameter for ¢ =S5, 8, and 10 for various
lattice sizes computed by reweighting the optimized histograms.
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Ty . The finite-size scaling of the Binder parameter at
To, Tc_ » and T‘Bmin is depicted in Fig. 5. The arrows on

the y axis show the exactly known infinite-volume limits
(see Table IIT and Appendix B). In Fig. 6, we also show
the related connected Binder parameter defined in Eq. (2).
The blowups on the right-hand panels demonstrate that
the curves for different lattice sizes cross each other quite
nicely around T, and thus may also be used for locating
the transition point. The positions of the specific-heat
maximum and Binder-parameter minimum for q =5, 8,
and 10 are plotted versus 1/¥V in Fig. 11 where they are
compared with the results of the new criterions to locate
By, to be discussed in the next subsection. The solid lines

0.67 T T
B T=D q=5 i
0
066 %6 ° 4 ]
a
- é o -
0.65 | 8 -
A
- o -
(a)
0.64 L L
0.000 0.001 0.002 0.003
T ] T T
. g=38 |
065 | "8 o n 0 o
D e
B A
A
OO A A
o A k
0.60 | o S A
» o
- (b)

0.85
0.000 0.001 0.00%/S.OOB 0.004 0.005

0.7 . : . . ; : :
5 g=10
= o o o o ’D .
0.6 F - i
SEUNN .
ay
. A
- fe) o 4
@]
(c) °
0.5 L L 1 i : 1 Q
0.000 0.002 0.004 0.006
1/V

FIG. 5. Finite-size scaling of the Binder parameter at T, ([1),
Tcmax (A), and TBmin (O). The arrows on the y axis show the

exactly known infinite-volume limits.
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TABLE III. Exactly known coefficients in the asymptotic finite-size scaling expansions for the two-
dimensional g-state Potts model. e
q=5 q=38 . q=10
C(Ty)=4V+ - - - A 0.000536 0.042 103 0.081428
C(Tsm.n):AV‘*' s A 0.000 964 0.936613 0.186 143
Chpax=A4AV+ - - - A 0.000 966 0.106 574 0.246319
T, =Tota/Vta, /Vi+ - - a, 22.0527 237242 1.626 67
a, 233.982 3.749 34 2.00147
T,. =To+a,/V+a,/V*+ - - - a; 22.0527 2.37242 1.626 67
max a, 884.331 9.08017 4.206 40
B(Ty)=ap+ - -+ ag 0.666431 0.656 786 0.653018
B( Tcm“)=ao+ s ay 0.666221 0.626279 0.585234
Bpin=ae+ - - - ao 0.666 221 0.620711 0.558 909
TBmin =To+a,/V+ - a; 23.054 928 3.201 306 2.392021
0.5 : T 0.25 T yr—y
B¢
0.00 -
q=35
0.25 . .
0.8505 0.85115 0.8525
-0.0 :
B¢
o5 L FIG. 6. The connected Binder parameter
' T for g =5, 8, and 10 for various lattice sizes
computed by reweighting the optimized histo-
grams. The right-hand panels show a
magnification of the crossing region.
q=8 :
-8 : ! . - 10 : .
0.74 0.75T 0.76 0.744 0.745 0.746
T

-10 PR L —— —aL.
0.685 0.70§l_ 0.715 0.700

0.701 0.702
T
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show the infinite-volume transition points and the leading
1/V corrections, which are also exactly known for the
two-dimensional (2D) Potts model. Neglecting the ex-
ponential corrections and rewriting the basic formula (3)
as

- —/f
Z,.=2Vge G CRELLE Y V[?————fd2 0+%lnq

b

(15)

no. of phases

no. of phases

PR S S Y 1 & o & 4 5.

0.705

[ A— .
0.695 0.715

FIG. 7. The number-of-phases parameter in Eq. (6) for ¢ =5,
8, and 10 for various lattice sizes computed by reweighting the
optimized histograms. For each curve the maximum is normal-
izedtoq t1,
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it is straightforward but tedious to derive the 1/¥V expan-
sions of cumulants by differentiation of InZ,. with
respect to B. The results can be found in Ref. 23, albeit in
a quite cumbersome notation. We have therefore repeat-
ed this calculation and expressed the expansion
coefficients in more physical terms like the latent heat,
etc. (see Appendix B). We have carefully checked that
all formulas agree with the results in Ref. 23,

\ The leading terms may also be derived somewhat more
heuristically from a simple two-phase model assuming
that the system spends a fraction W, of the total time in
the ordered phases (with energy €,) and a fraction
Wy;=1—W, in the disordered phase (with energy &,).
Within this simple picture the tunneling events are ap-
proximated by sharp jumps and all fluctuations within
the phases are neglected. Consequently, (e")
=W,e,;+(1—W,)éj, and the specific heat,

0 —

no. of phases
w

10

no. of phases
(8]

PR S SUUE S S S Y 22
0.75 0.76

FIG. 8. Comparison of the finite-size scaling form (16)
(— — —) for the number-of-phases parameter with the actual
data for ¢ =8 (—)computed by reweighting the optimized his-
tograms. In (a) the exactly known transition temperature
To=1/In(1+Vq ) is used, and in (b) T, is replaced by the mea-
sured values Ty, p.
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C=VB(e?)—(e))=VB*W,(1—W,)Ae? ,

is easily seen to have a maximum, C,,, =VB3A&/2)%

for W,=W,=1, i.e., for an energy distribution with

two peaks of equal weight. Here we have
defined A2=e¢,—e,. The peak location Bc_

=PBy—Ing /VAe+ - - - follows then from the expansion

In(W,/Wy)=Ing+VB(fy—f,)
=Ing +VA2(B—By)+ - - .
Similarly, the minimum of the Binder parameter,

Brin=1—(8,/8,+2,/8,)*/12, is found at a weight ratio
W,/W,=82/82 <1, implying

05 10 15 2.0
-E/V

FIG. 9. Energy histograms for ¢ =10. In (a) they are re-
weighted to the temperature where both peaks are of equal
height. The location of the minimum between the two peaks
defines the cut E, used in the ratio-of-weights method. (b)
shows the corresponding histograms at the exactly known tran-
sition point.
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Bs_ =Bo—In(gel/e)/V AL+ -+ .

In nontrivial models the infinite-volume transition
point would have to be estimated from linear extrapola-
tions in 1/¥. As can be seen in Fig. 11, in particular for
weak first-order phase transitions (small g), this can be
quite misleading. Note that the next correction term
< (1/¥)? does not improve the agreement with the data.
Rather, for Tcmx (where also this term is exactly known

for Potts models) it is extremely small and even goes in
the wrong direction. Using reasonable estimates for 2,
(which is not exactly known) the (1/¥)? correction for
TBmin turns out to be somewhat larger, and in any case

also points in the wrong direction. In view of the neglect-
ed exponential corrections this is not surprising at all. In
fact, allowing also terms «e L/Lo besides the 1/V
corrections, and performing fits to the data, we find the
interpolating dashed curves in Fig. 11. Clearly, the
specific ansatz is heuristic and only justified by its numer-
ical success. It is very difficult to get a theoretical clue on
the complete form of the exponential corrections (L-
dependent prefactors, linear combinations of several ex-
ponentials with slightly different L, etc.).

B. Transition points from the new observables

Knowing the (optimized) probability distributions
Pg(E), also the positions By, of the maxima of
N(V,V,,B) in Eq. (6) are readily determined. Or,
equivalently, one may locate the crossing points of the
energies for the two lattice sizes considered. We have
chosen the volumes V; and V, such that their ratio
a=V,/V, is roughly constant (=1.6). The resulting
curves for N(V,,V,,B) are shown in Fig. 7. Here we
have fixed an unknown temperature-independent con-
stant (corresponding to an additive constant in the free
energies) by normalizing the maxima to ¢ +1. This does
certainly not affect the position of the maxima, B v
which are plotted in Fig. 11. We see that ), approach
the infinite-volume transition point B, quite rapidly from
below, thus confirming the theoretical expectations.

Figure 8 shows a comparison of our data for ¢ =8 with
the finite-size scaling prediction

N( V], VZ)B)

cosh[ V,BAf /2+(1/2)Ing]* |7V

cosh[ V,BAf /2+(1/2)Ing ] ’

(16)

which follows by inserting (15) in definition (6). More
precisely BAf=p(f,;—f,) is short for its Taylor expan-
sion around B up to second order in B—f,, i.e., BAS in
(16) has to be replaced by

BoAB(B/By—1)—A2(B/By—1)2/2 .
In Fig. 8(a), By=In(1+V'q ) is the infinite-volume transi-

tion point, and in Fig. 8(b) we have replaced B, by By,
thereby taking into account already part of the exponen-
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tial corrections. The corresponding plots for ¢ =10 look
quite similar, while for ¢ =35 our lattices are still too
small to exhibit asymptotic finite-size scaling behavior.
Our second criterion in Eq. (12) is only little more la-
borious to implement. First, reweighting the energy dis-
tribution using relation (9) we vary the temperature until
both peaks have equal height and determine the energy
E, at the minimum between them. The numerical values
of E; can be read off from Fig. 12, and for ¢ =10 the re-
sulting energy distributions for the various lattice sizes
can be inspected in Fig. 9(a). Since the histogram data
are usually quite noisy, we first smooth them by comput-
ing “moving averages”?* and then fit cubic polynomials
near the exirema. A good starting point for this pro-
cedure is the temperature where the specific heat is maxi-
mal (or simply the initial guess B; given in Table II).
Since at this temperature the two peaks have approxi-
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mately equal weight, the histogram has then already
roughly the desired shape (compare Fig. 1 and see Ap-
pendix B). Having fixed the cut parameter E; and using
(9) again, we finally adjust 8 until at B=p, the ratio of
weights of the ordered and disordered peak, R(V,B),
equals g. For g =10 the energy distributions at the exact-
ly known transition point S, are shown in Fig. 9(b). In
Fig. 10, the logarithm of the ratio-of-weights parameter
R (V,B) is plotted as a function of temperature. The con-
vergence properties of the resulting pseudotransition
points By can again be inspected in Fig. 11. They turn
out to approximate the infinite-volume transition point 3,
even closer than the corresponding points By ,,. Notice
the surprisingly fast convergence even for ¢ =5. On the
larger lattices we would need much higher statistics in or-
der to disentangle statistical errors from the small sys-
tematic deviations of the order |Bp —fB,l~10"% With

5 T T v 1‘2
q=3
o /'9\ 1.0
© E+]
; %
Z 1308
2o} 432
8 ?
I; jos
S~ g
=] o
3 S04
- N I PRI ST SPUP U T "
0.845 0.855 T 0.865 0.8505

loglo(w—ord/w—dis)
o

FIG. 10. The ratio-of-weights parameter for
q =35, 8, and 10 on a logarithmic scale for vari-
ous lattice sizes computed by reweighting the
optimized histograms. On the right-hand
panels the crossing regions are magnified by a
factor of 10 in both the x and y directions.
The statistical errors are too large to allow for
a detailed analysis of the exponentially small
systematic corrections.

5l
0.74

L 4
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5
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the present data it is thus hopeless to try exponential fits
to the residual deviations from ;. We have checked that
using other reasonable definitions for locating the cut E
does not change the behavior of By, significantly. Notice
finally that we can read off from Fig. 10 also the approxi-
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i
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\
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(b)
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0.000 0.001
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T

0.71
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(c)

1 1 | 1 I 1

0.004 0.006
1/V

0.6

9 L
0.000 0.002

FIG. 11. Finite-volume transition points in the two-
dimensional Potts model for ¢ =S5, 8, and 10. Shown are the
points By,y (A) and By (0), resulting from the new criteria
tested in this paper and, for comparison, also the positions of
the specific-heat maximum (@) and Binder-parameter minimum
(O). The solid straight lines are the exactly known 1/V correc-
tions corresponding to @ and O, and the dashed, almost inter-
polating, curves show exponential fits (including the 1/V
corrections) to these data. Note that the (1/¥)? corrections are
almost invisible on this scale and in any case point in the
“wrong” upward direction. The long-dashed horizontal lines
indicate the exact transition points.
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mate location of B¢ and Bs_, - All we have to do is to
draw horizontal lines at the corresponding theoretical ra-
tio of weights, namely, y=log,;,1=0 and
y =log,(83/8%), and to read off the x values at their
crossing points with the measured log,R (¥, ) curves.

C. Latent heat ﬁoﬂl_ﬁhite-size data

Let us now turn to estimators for the latent heat on
finite lattices. One method recently proposed by Lee and
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FIG. 12. Scaling of e,(L) and ¢,(L) computed from the loca-
tion of the maxima for peaks of equal height. The diamonds
show the corresponding minima, e,,, between the two peaks.
The latter values are used for the energy cuts in the ratio-of-
weights method, E;=Ve,,. The arrows on the y axis show the
exactly known infinite volume limits &,,2,.



47 ACCURATE FIRST-ORDER TRANSITION POINTS FROM . ..

1.0 — 1 v
Ae | o -
— =}
08  g9=10_ 5 © : .
oo A p
- A =
0.6 LA b | -
- =8 . T B -
o4 b ¢ -
L o ]
o

02 F 40°° _
. a=5 T

0'0 1 1 L [l L 3 1 1

0.00 0.02 0.04 0.06 0.08

1/L

FIG. 13. Scaling of the latent heat, Ae =e;=e,, calculated
from the data in Fig. 10. The arrows on the left-hand side show
the exactly known infinite-volume limits.

Kosterlitz?? is to reweight a given energy histogram until
both peaks have equal height, as in our prescription for
locating the cut parameter E,. The locations of the peak
maxima are then taken as finite-size estimates, e,(L) and
e, (L), for the infinite-volume limits at B, €, and ¢,, and
thus the latent heat Aé=8,—¢,. Heuristic arguments?
suggest that

e (L)=2;+0(1/L),
e,(L)=8,—0(1/L).

(17)

Furthermore, one expects that at the minimum between
the two peaks, e, (L)=E(V)/V, the microcanonical free
energy, F (e, V)= —InPgle, V), scales as

AF(V)=Fl(e,,,V)—F(e,,V)=constXL+ -+ . (18)

In Fig. 12, it is demonstrated that the predicted scaling
behavior for e; and e, is indeed very well satisfied by our
data for ¢ =8 and 10. At the extremely weak first-order
transition for ¢ =5, however, we have clearly not yet
reached the asymptotic scaling region. The correspond-
ing finite-size estimates for the latent heat are plotted in
Fig. 13, and Fig. 14 shows AF(V)/L as defined in Eq.
(18). The extrapolated values for infinite volume are in

T T T T T T T T
q=10 o o o O ul
0.10 .
<
q=8 A AN
L A
< 0.05 | a® 8 -
q=5
o o
0.00 boolo q 1 I 1 1 1
0.00 0.02 0.04 0.06 0.08
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FIG. 14. Scaling of the free energy AF(V)/L defined in Eq.
(18). The infinite-volume limits are estimates for twice the inter-
face tension between the disordered and ordered phases.

14767
1.0 T T T T v T T T Y T T T T
Ae r o, y
0.8 o 45 -
L "o g ° g=10
o o —g
0.6 F 0o §
L o g rc‘)! o 9=8 |
0.4 -
L B .
0.2 - Q o] a -
L q=5 4
0.0 1 1 2 1 2 1 1 1 L 1 n 1 L 1
0 20 40 60 80
L

FIG. 15. The latent heat from the new ratio-of-weights
method (CT) in comparison with the standard equal-peak-height
data (O) already shown in Fig. 13. The horizontal lines show
the exactly known infinite-volume limits.

good agreement with analytical results®* and with Monte
Carlo simulations using the recently proposed?® multi-
canonical ensemble which yield const=0.09781
io.oozcs) 75 for ¢ =10,%" and const=0.024110.0010 for
qg=1.

The ratio-of-weights method to locate the transition
point leads naturally to another definition of the latent
heat on finite lattices which also should have only ex-
ponentially small corrections with respect to the infinite-
volume limit. Since

In(w, /wy)=—BV(f,—f4), (19)

the slopes of R(V,B) in Fig. 10 near the crossing point
may be used to define

Ae(L)=ed(L)—eo(L)=% In(W, /W,)/V
1 d
=—’F—JT—, In(W,/W,)/V .
(20)

The resulting estimates Ae(L) are plotted in Fig. 15 and
compared with the previous definition. We see that for
g =8 and 10 the asymptotic limit is indeed reached much
faster with the new definition, and that the approach of
the infinite-volume limit looks roughly exponential. For
g =5, on the other hand, both methods yield comparable
estimates which are still far away from the limiting value.

V. CONCLUSION

In summary, we have successfully tested two simple
criteria for locating first-order phase-transition points in
Monte Carlo simulations on finite periodic lattices which
have only exponentially small corrections with respect to
the infinite-volume limit. In particular, the ratio-of-
weights methods works surprisingly well also for very
weak first-order phase transitions such as in the two-
dimensional ¢ =5 Potts model. Since a possible reason
for this could be a fortuitous cancellation of exponential
corrections, it would be interesting to investigate this is-

sue for other models with weak first-order transitions.
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Based on the ratio-of-weights approach we finally pro-
pose a method to determine the latent heat from finite-
size data. The numerical tests of this method show that
for moderate and strong first-order phase-transitions the
infinite-volume limit of the latent heat is approached
much faster than with previously used finite lattice
definitions.
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APPENDIX A: SUMMARY OF EXACT RESULTS

The two-dimensional Potts model with energy
— S (52055 e€xhibits for q>5 .2 first-order

phase transition at the inverse temperature

B,=In(1+v7g), A1)
with average internal energy
e +e —_
B =1+1/Vq , (A2)
and latent heat
Ae=eg;—¢,
=2(1+1/Vq ) tanh(©/2) [] tanh’(nO), (A3)
n=1
where
2cosh®@=Vyg, ©=In(Vq/4+Vq/d—1). (A4
The corresponding entropy jump is
AS=p,Ae>0 . (AS)

For the specific heats only the difference between the

disordered and ordered phase is known exactly,
Ae=e,—2,=B,A8/Vq . ; (A6)

The numerical values for ¢ =5, 8, and 10 are compiled in
Table 1.

1
Ty, [ ae Az
0
Te =To+——Ing+ 6oC—g+ |1—-25
Cms 0T yas T (s | A% [ 205
~ 2,42,
c.. =v|A8| 148 2A@)1g+ "2 +0(1/¥)
A2 +(A2 —AS)

=y +

2
A3
2 2

Ind 2, +0(1/V).
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APPENDIX B: FINITE-SIZE SCALING

In this appendix T, denotes the infinite-volume transi-
tion temperature, Tc__and Tp___refer to the location of

the specific-heat maximum and Binder-parameter
minimum, respectively, and T, is the temperature where
both peaks have equal weight. Furthermore, we shall use
the latent heat, transition entropy, and specific-heat

jump,

Ae=e,—¢,>0, B1)

AS=(8,—2,)/Ty>0, (B2)
Potts

Ae=e,—¢, = A8/TyVq >0, (B3)

where the caret denotes quantities evaluated at 7, and
the subscripts refer to the disordered or ordered phases.
The second equality in (B3) is only valid for the two-
dimensional Potts model (see Appendix A). In what fol-
lows the leading terms of the asymptotic expansions in
1/V are given for the specific heat and the Binder param-
eters. For g =5, 8, and 10 the numerical values of the ex-

actly known expansion coefficients are compiled in Table
III.

7 1. Specific heat[C=BzV((e2)—(e)2)i]

At T,,
2
T 4g — 2 +e,
C(Ty)=V 422A3 g—1 Ae | Gt
(1+¢)? | 2 g+1 2 2
4 A% Ae
=y—i- == | + S+, B4
(1+¢) 1+g B4

At the equal peak weight,

T, Az
T,=Ty+——Ing+—>— |1— (Ing)?
A7 (VA@)Z[ 2&] e

+0(1/v?), (BS)
2
As cgte,
C=V|5 |+
_ 2
—p |88 | 4 (Ae=M)ng | ST L i1y
2 2 2
(B6)
At the specific-heat maximum,
(Ing)* |+0O(1/V?), (B7)
(B8)
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Notice that
Potts
Tc  =T,+0(1/V*) < T,
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and Cp,, =C, +0(1/V) (> C, by definition).
2. Binder parameter (B =1—{e*) /3(e?)?)
At Ty,
4 A4 4 Ad
14+q di+e} TP 14 q"o+ed
B(Ty)=1—-—42 22 < __ 0 T4 g2 +p2p)—2——2(qe,+2,) ]| . (B9)
3 (geg+e]? 3V (ge+ep) Yerre
At the specific-heat maximum,
PCRIP ) 22
2 8+ 2 1 (ej—ed
B(T, )=1—-F————+0(1/V)="—= (1/v) B10
Comas 3 (@342 33 (@2+e? (P10
At the Binder-parameter minimum,
Ae % Ty
Ty =T +——In /80 +——— {In(ge2/e3) | |1——= |In(ge}/e})+2T, | = ——=
B, 0 qe;/e; VA?)z qe; /%] 2AG qe, 0 e, o
eel—2,8] el e el+e) (e
__i_f’__.a_di 10__;\_‘;___“' __40— _o_,_d +0(1/V3),
A3(e,+2y) Cr e As(e,+e;) |e, @&,
(B11)
A PN 2 2 A2 1 A2
l e, ey TO eo+ed ?a ?d 2 a2 ? @d
Byn=1——+|=Z=+—= —2(8,+8,) | = —— | In(ge}/8])+6(¢, +¢;)— (&} +8]) |+
min 12 'é s ] 12V @3@3 [ 0 d l @d qu d 0 d 0 d 902 ed
+0(1/7?) . (B12)
The leading term can be rewritten as At the connected Binder-parameter maximum,
PN A ]2
@
B, =2—-L |2—22| +ou/m, (B13)
3 12 |8, o
T,. =Ty+ Ing
showing that limy_, B <2. Notice that the O(1/V?) max VA”S’
term for Tp_ and the O(1/ V) term for B, are not ex-
actly known for Potts models since they involve both ¢, + Ty AT l—l At (Ing )2
and ¢; and not only the combination AC=2¢,—7¢, (as is (VAS)? | A% 2 A% ng
the case for the corresponding expansions of the specific
heat).
3. Connected Binder parameter +o(1/v%),
[Be=1—{(e—(e))*)/3{(e—(e))?)?] (B15)
At Ty,
1 1 8(e,+¢,)
Be=——|g+——4 [+0(1/V). (B14) ge =2__1 %7 2
3 l q max 3 VA% 3A% +o(1/v*). (B16)
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