
PHYSICAL REVIEW B 105, 214111 (2022)

Critical exponents of the Ising model in three dimensions with long-range power-law
correlated site disorder: A Monte Carlo study
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The critical behavior of the Ising model in three dimensions on a lattice with site disorder is studied by
applying Monte Carlo simulation techniques. Two cases for the site disorder are considered: uncorrelated
disorder and long-range correlated disorder with a spatial correlation function that decays according to a power
law r−a. The critical exponents β and γ as well as updated results for the critical exponent ν and confluent
correction exponent ω are provided for a variety of different correlation exponents a and disorder concentrations
pd . The estimation is done by using finite-size scaling analyses and a global fit procedure which combines the
results obtained for different concentrations of defects. From the estimated critical exponents, the validity of
hyperscaling relations is studied and finally the critical temperatures are provided for different a and pd .
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I. INTRODUCTION

Pure materials without any impurities and distortions are
seldom found in nature. Often, a certain disorder can be ob-
served. This can be, e.g., structural displacements or point
defects in the atomic lattice. Thus, understanding the influence
of disorder on the behavior of a system is of a big importance.
The goal of this paper is to study the influence of quenched
site disorder on the phase transition behavior of an Ising
model. We distinguish between two different disorder cases.
In the uncorrelated disorder case, we place random defects
(vacant sites) on the Ising model lattice. Contrarily, in the
case of correlated disorder we additionally impose a spatial
correlation between the defects. In this paper, we assume
a power-law decay of the correlation function between the
defects.

One of the key achievements for the uncorrelated disorder
case is the Harris criterion [1], which couples the influence
of the disorder on the critical behavior of a system to its
specific heat critical exponent in the pure case, i.e., αpure.
It states that the disorder is not relevant for systems with
αpure < 0. Contrarily, if αpure > 0, the disorder is relevant
and the disordered system will change its universality class,
i.e., will have a new set of critical exponents. The Harris
criterion is widely accepted and was solidified in various
works, in particular, for the case of the three-dimensional
Ising model with the help of Monte Carlo techniques [2–7]
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and renormalization group calculations [8–11]. The results
are also in agreement with experimental data for disordered
Ising-like systems [12–16]. A comprehensive review compar-
ing the results from Monte Carlo simulations, renormalization
group calculations, and experiments is Ref. [17]. For the two-
dimensional Ising model, the Harris criterion does not predict
the expected behavior since in this case the Ising model has
αpure = 0. It is widely accepted that the universality class does
not change, but additional logarithmic corrections to scaling
have to be considered.

For the correlated disorder case, the extended Harris crite-
rion was derived by Weinrib and Halperin [18]. They used a
renormalization group ε-δ-expansion with ε = 4 − d and δ =
4 − a and showed the following relation. When the disorder
is correlated according to a power law r−a, then the disorder
correlation is relevant and leads to a new universality class if
the correlation exponent satisfies a < d , i.e., the correlation
is strong enough. Otherwise, for a � d , the standard Harris
criterion is recovered and the system behaves effectively as
in the uncorrelated disorder case. Weinrib and Halperin also
made a conjecture in Ref. [18]: They claim that for the Ising
model with correlated disorder, the critical exponent of the
correlation length will obey

ν = 2

a
. (1)

This conjecture is not proven in Ref. [18]. The authors also
state that a ≈ 4 is a necessary condition for the results to
hold. Nevertheless, Honkonen and Nalimov [19] claim that
the conjecture is exact to all orders of the ε-δ-expansion.
This was further discussed in Refs. [20,21]. In Ref. [18], the
authors also provide estimates for other critical exponents,
namely,

α = 2(a − d )

a
, (2)
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TABLE I. Summary of the critical exponents from various works dealing with the uncorrelated and long-range correlated disordered Ising
model in three dimensions. For comparison, recent high-precision estimates for the pure Ising model are also provided. FSS: data analyzed
with finite-size scaling, TS: data analyzed with temperature scaling, CB: conformal bootstrap calculations, MC: Monte Carlo simulations, RG:
renormalization group calculations, FFM: long-range correlated disorder generated with Fourier filter method, and DL: long-range correlated
disorder reached by using lines of disorder.

Ref. a ν η α β γ ω pd No. pd Notes

Pure Ising model
CB [43] ∞ 0.629971(4) 0.0362978(20) 0.11009(2)b 0.326419(3)b 1.237075(10)b 0.82968(23)
MC [44] ∞ 0.629912(86) 0.03610(45)b 0.11026(26)b 0.32630(22) 1.23708(33) 0.83e FSS

Uncorrelated disorder
MC [2] ∞ 0.6837(53) 0.0374(45) −0.051(16)a 0.3546(28)a 1.342(10)a 0.37(6) 0.1–0.6 5 FSS

[3] ∞ 0.683(3) 0.035(2) −0.049(9)a 0.3535(17)a 1.342(6)a 0.2 1 TS
[4] ∞ 0.68(2) 0.029(60)b −0.04(6)b 0.35(1) 1.34(1) 0.3–0.6 3 FSS, TS
[5] ∞ 0.678(6)c 0.045(19)cb −0.0216(70)c 0.3178(40)c 1.3258(40)c 0.05–0.4 4 FSS
[6] ∞ 0.683(2) 0.036(1) −0.049(6)a 0.354(1)a 1.341(4)a 0.33(3) 0.2, 0.35 2 FSS

RG [8] ∞ 0.671(5) 0.025(10) −0.0125(80)a 0.344(6)a 1.325(3)a 0.32(6) 5-loop RG expansion
[9] ∞ 0.675d 0.049d −0.026d 0.354db 1.317db 0.39d 4-loop RG expansion
[10] ∞ 0.678(10) 0.030(3) −0.034(30)a 0.349(5)a 1.330(17) 0.25(10) 6-loop RG expansion
[11] ∞ 0.675(19) 0.024(79)a −0.025(58)a 0.346(34)a 1.334(38) 0.15(10) 6-loop RG expansion

Correlated disorder
MC [22] 2.0 1.012(16) 0.043(4) −1.036(48)b 0.528(34)b 1.980(33)b 1.01(13) 0.2, 0.35 2 FSS, FFM, DL

[25] 2.0 0.71(1) −0.030(36)b −0.078(30) 0.362(20) 1.441(15) 0.76(5)e 0.2 1 FSS, DL
[23] 2.0 0.958(4) 0.191(18)b −0.789(3)b 0.528(3) 1.733(11) 0.8e 0.2 1 FSS, DL

RG [18] a<d 2/a O(ε2)f 2(a − d )/af (2 − ε)/a 4/a + O(ε2)f 2-loop ε-δ-expansion
+O(ε2)f

[24] 3.0 0.6715 0.0327 −0.014b 0.347b 1.321b Scaling functions
2.5 0.7046 0.0118 −0.114b 0.3565a 1.4008a In 2-loop
2.0 0.715 −0.0205 −0.147b 0.34b 1.4456b Approximation

aCalculated from other exponents through scaling relations in the original work.
bCalculated from other exponents through scaling relations by us.
cAveraged over various pd by us (weighted mean).
dError is stated to be around several percent.
eNot measured (fixed value or the one which gives best fits).
fStated in the paper as an expression for the case where the dimension of the order parameter is m > 1.

β = 2 − ε

a
+ O(ε2), (3)

γ = 4

a
+ O(ε2). (4)

However, these relations are given for the case of models with
an order parameter with a dimension larger than one. It is
unclear from the text whether they are supposed to be valid
in the case of one-dimensional order parameter model as is
the case for the Ising model. Nevertheless, in this paper we
will compare our results for the critical exponents β and γ to
Eq. (3) and Eq. (4), respectively.

Contrary to the uncorrelated case, the results for the cor-
related disorder case in the literature are contradictory. While
in Refs. [22,23] the prediction given in Eq. (1) is supported at
least qualitatively, in Refs. [24,25] the authors get completely
different results for ν using both Monte Carlo and renormal-
ization group techniques. Motivated by this discrepancy, we
studied the model once again in Ref. [7]. We determined
the critical exponent ν and our outcome was that it matches
the proportionality ∝ 1/a but Eq. (1) is not matched exactly.
Additionally, the confluent correction exponent ω as well as
the critical temperatures in dependence of the concentration

of defects pd and the correlation exponent a were calculated
in Ref. [7] and a dedicated analysis of the underlying disorder
generation process and the resulting disorder realizations was
provided.

In this paper, we extend our analysis of the correlated
disorder Ising model and derive the critical exponents β and
γ . We will also present improved results for the exponent ν

and the correction exponent ω as compared to Ref. [7] as
well as more precise estimates for the critical temperatures.
This was possible since we included more simulation temper-
atures and thereby were able to get the observable peaks more
accurately.

As a final introductory remark, we note that site disorder
is not the only option to introduce disorder on the lattice.
Another possibility is bond disorder. It can be understood as a
random coupling between the sites Jx,y which can take differ-
ent values. Such models were studied, e.g., in Refs. [26–28].
Finally, the two-dimensional Ising model with uncorrelated
site or bond disorder cases was studied multiple times, e.g.,
in Refs. [29–40] while the correlated case was investigated in,
e.g., Refs. [41,42]. We compile the critical exponents as well
as some further details for the three-dimensional Ising model
with uncorrelated and correlated disorder obtained by various
groups in Table I.
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The rest of this paper is structured as follows. In Sec. II,
we will present the studied model and define the necessary
notation. We will also briefly sketch the analysis process and
give the details of the performed simulations. In Sec. III, we
will provide updated results for the critical exponent ν and the
confluent correction exponent ω. After that, we will derive the
critical exponents β and γ by using finite-size scaling analysis
and, finally, examine the validity of the hyperscaling relations
for different a. In Sec. IV, we will summarize and discuss the
results of this paper. In particular, the conjecture by Weinrib
and Halperin will be addressed.

II. MODEL AND SIMULATION DETAILS

A. Ising model with site disorder

The Hamiltonian of the Ising model with site disorder is
given by

H = −J
∑
〈xy〉

ηxηysxsy − h
∑

x

ηxsx, (5)

where the spins can take the values sx = ±1 and the first sum
runs over all nearest neighbors (denoted by 〈xy〉) of a three-
dimensional simple-cubic lattice of size V = L3 with periodic
boundary conditions. The defect variables are ηx = 1 when a
spin is present at site x and ηx = 0 when site x is empty. The
coupling constant is set to J = 1, fixing the energy scale, and
no external magnetic field is applied, i.e., h = 0. For a more
detailed description of the (pure) Ising model, we refer to, e.g.,
Refs. [45,46].

In this paper, we consider two different disorder types.
The first type is uncorrelated disorder or random disorder. In
this case, the defects are chosen randomly according to the
probability density

f (η) = pδ(η) + pdδ(η − 1), (6)

where p is the concentration of spins, pd = 1 − p is the con-
centration of defects, and δ is the Dirac-delta distribution.

The second type is correlated disorder. Here, the probabil-
ity density is still given by Eq. (6), but additionally the spatial
correlation between the defects decays according to a power
law,

〈ηxηy〉 ∝ 1

r(x, y)a
, (7)

where r(x, y) is the distance between sites x and y and a � 0
is the correlation exponent. In both cases, we use the grand-
canonical approach where the desired concentration of defects
pd is a mean value over all realizations. Examples of slices
of the Ising model lattice for different concentrations of de-
fects pd and different correlation exponents a are presented
in Fig. 1. They were taken from a simulation near the cor-
responding critical temperatures. The expected universality
classes for the three-dimensional Ising model according to the
Harris criterion and the extended Harris criterion discussed
above are schematically shown in Fig. 2.

B. Long-range site disorder generation

In this paper, we use the Fourier filter method for the gener-
ation of long-range power-law correlated site disorder. It was

FIG. 1. Slices of a three-dimensional Ising model lattice with
L = 128 simulated near the critical temperature for different corre-
lation exponents a and concentrations of defects pd . Red and blue
points represent the spin states sx = ±1 and white points represent
the defects ηx = 0. One can see that correlated defects tend to form
clusters of defects. Taken from Ref. [7].

first introduced by Makse et al. [48], but we used a slightly
modified version presented in Ref. [47] and the implemen-
tation therein. For technical reasons, the imposed correlation
function in the method of Ref. [47] is not the power law but a
slightly modified function of the form C(r) = (1 + r2)−2/a.
This fact and also the presence of finite-size effects make
the measurement of the true correlation exponents a after the
generation process an important analysis step. We carefully
determined the a in Ref. [7] and compile these values in
Table II. For details of the generation of correlated disorder,
we refer to Ref. [7].

FIG. 2. Universality classes of the three-dimensional Ising model
for different correlation exponents a and concentrations of defects
pd . The curve p̂d (a) = 1 − p̂(a) is the percolation threshold of the
defect concentration below which an infinite spin cluster exists for
L → ∞. It has been shown in Ref. [47] that for smaller a values, the
concentration of spins p can be chosen lower without destroying the
infinite cluster, thus pd increases for stronger correlations (smaller
a). Taken from Ref. [7].
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TABLE II. The measured correlation exponents a from Ref. [7]
and updated results of the critical exponent ν and the confluent
correction exponent ω.

a a ν ω

∞ 0.6831(30) 0.346(40)
3.5 3.30(18) 0.7117(49) 0.679(44)
3.0 2.910(96) 0.7484(52) 0.840(50)
2.5 2.451(26) 0.8719(96) 1.154(66)
2.0 1.979(18) 1.060(23) 1.087(81)
1.5 1.500(30) 1.421(55) 0.988(75)

C. Monte Carlo simulation details

The simulations used for this paper were organized as in
Ref. [7], but we mention them here briefly for completeness.
We performed Monte Carlo simulations of the Ising model
with site disorder employing the Swendsen-Wang multiple-
cluster update algorithm [49]. The linear lattice sizes of
our simple-cubic lattices were in the range between L = 8
and L = 256, and we chose periodic boundary conditions
in each direction. The correlation exponents were a = 1.5,
2.0, 2.5, 3.0, 3.5, and ∞, which we will use symbolically
for the uncorrelated case. For each a value, we simulated
eight concentrations of defects pd = 0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, and 0.4. We used Nc = 1000 disorder real-
izations for each parameter tuple (a, pd , L) and performed
N = 10 000 measurements after 500 thermalization sweeps
for each temperature βsim. We will use the inverse tempera-
ture β = 1/(kBT ) for the rest of the paper and call it simply
temperature.1 We measured the total energy E ,

E = −J
∑
〈xy〉

ηxηysxsy, (8)

and the total magnetization of the system M:

M =
∑

x

ηxsx. (9)

after each sweep and recorded these values in a time-series
file for further analyses.

D. Analysis process

We would like to briefly repeat the analysis steps which
were performed in Ref. [7] and which are discussed there in
great detail. We do this, because the analysis steps in this work
were identical except for the observables to which they were
applied. In our simulations, we used different temperatures
with narrow spacing to find the region of the peak of a cer-
tain observable O for each parameter tuple (a, pd , L). After
that, we used the single histogram reweighting technique as
described in Ref. [50] (initially introduced in Ref. [51]) to find
the peak value Ô and the corresponding temperature βmax. To
obtain the error of Ô, we used a jackknife resampling tech-
nique [52,53]. Finally, we used the finite-size scaling method

1Note that the inverse temperature and the critical exponent β share
the same notation in this paper. However, the correct quantity should
always be clear from the context.

FIG. 3. Updated results for the critical exponent ν from Ref. [7].
For our results, we use the measured a values from Table II. The
inset shows the uncorrelated case with a = ∞ and ν∞ indicates
the average over literature values for the uncorrelated case. MC:
Monte Carlo simulations, RG: renormalization group calculations,
∗: weighted mean over several pd .

to derive the critical exponents from global fits incorporating
the results for several disorder concentrations pd . The details
of the global fit ansatz and jackknife resampling can be found
in the Appendix of Ref. [7].

III. RESULTS

A. Updated results for exponent ν and ω

In Ref. [7], we already derived the critical exponent of the
correlation length ν and the confluent correction exponent ω

for the Ising model with long-range correlated site disorder.
However, recently we were able to further improve the results
by simulation at additional temperatures closer to the expected
peaks of the studied observables. Therefore, we would like
to provide updated results of ν and ω here, which we will
also use in the later analyses in this paper. The results are
summarized in Fig. 3 and Table II together with the measured
correlation exponents a. For a detailed description of the
derivation process, we refer to Ref. [7]. We only would like
to mention that ν and ω were obtained through a finite-size
scaling analysis similar to what is described in this paper for
the critical exponents β and γ .

The main outcome did not change much compared to
Ref. [7]. We see a clear proportionality of ν of the form
1/a and expect Eq. (1) to be the leading order. The con-
fluent correction exponent ω in the correlated cases is no
longer constant but otherwise remains in the same quanti-
tative region. It shows a maximum around a = 2.5, which
is in surprisingly good qualitative agreement with Ref. [54]
where the correction exponent was obtained through field-
theoretic renormalization group calculations. In the crossover
region around a ≈ 3.0, according to Ref. [18] the leading
correction exponent should go to zero. Right at the crossover
point, it vanishes and one expects the marginal case where
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FIG. 4. Examples of the fits to the ansatz in Eq. (12) for two
different a and the corresponding finally chosen Lmin. The values
χmax(L, pd ) are scaled by Lrγ , i.e., if there were no corrections to
scaling (Bpd = 0), the points would lie on a horizontal line in these
plots.

corrections-to-scaling might decay only logarithmically in L.
Our ω estimate apparently does not support this expectation,
but the relatively large deviation of the critical exponent from
the prediction ν = 2/a indeed reflects strong corrections-to-
scaling at the crossover point. It is likely that using a fit ansatz
of the form AL1/ν (1 + BL−ω ), which was used in Ref. [7], the
critical exponent is effectively shifted from its true asymp-
totic value while the correction exponent obtained from the
fit is essentially the exponent of the subleading correction.
In fact, the correlated cases with a � d should be governed
by two different correction-to-scaling terms with quite small
correction exponents [18]. Our present data are, however, not
precise enough to disentangle this subtle interplay of different
correction terms.

B. Critical exponent γ

For the derivation of the critical exponent γ , we used the
susceptibility χ as the observable. It is defined as

χ (β ) = βV
(
[〈m2〉] − [〈|m|〉2]

)
, (10)

where 〈·〉 and [·] denote the thermal and disorder averages,
respectively. The finite-size scaling behavior of the peaks
χmax(L) of χ (β ) for a given lattice size L is given in leading
order by

χmax(L) = ALγ /ν (1 + BL−ω ), (11)

where A and B are amplitudes and ω is the confluent cor-
rection exponent. Because the critical exponents are expected
to be independent of the concentration of defects pd in the
thermodynamic limit, we use a global fit ansatz and combine

FIG. 5. Fitted ratios rγ = γ /ν from the fits to the ansatz in
Eq. (12), with varying pmin

d and Lmin. The corresponding qualities of
fits χ 2

red are shown as a second plot for each a.

all pd in one fit by only letting the amplitudes depend on pd ,
i.e.,

χmax(L, pd ) = Apd Lrγ (1 + Bpd L−ω ), (12)

where rγ = γ /ν, and we fix the correction exponent ω to the
previously determined estimates from Table II.

We performed least-squares fits with the ansatz in Eq. (12)
and varied the minimum concentration of defects pmin

d and the
smallest lattice size Lmin. Two examples of the fits are shown
in Fig. 4 and the resulting rγ are presented in Fig. 5. Including
pd = 0.05 and pd = 0.1 into the global fit ansatz usually re-
sulted in bad fit qualities reflected by large chi-squared values
per degree of freedom χ2

red, and we finally chose pmin
d = 0.15

for all considered cases. Concerning the minimum lattice size,
we have chosen the smallest value, where the estimates for
pmin

d = 0.15 and pmin
d = 0.2 mostly overlapped due to the

size of their errors. This was done to account for the freely
adjustable parameter pmin

d . The finally selected Lmin can be
found in Table III.
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TABLE III. Results of the critical exponent γ . Additionally, the
fit parameters rγ and the calculated exponents η are provided. The
chosen minimum concentration of defects in the fits to ansatz in
Eq. (12) was pmin

d = 0.15.

a rγ γ = rγ ν η = 2 − rγ χ 2
red Lmin

∞ 1.9506(36) 1.3324(64) 0.0494(36) 1.12 20
3.5 2.039(14) 1.451(15) −0.039(14) 0.87 64
3.0 2.093(16) 1.566(16) −0.093(16) 0.99 64
2.5 2.045(14) 1.783(24) −0.045(14) 1.16 64
2.0 2.027(21) 2.149(51) −0.027(21) 1.29 64
1.5 2.061(56) 2.93(14) −0.061(56) 1.11 80

Before discussing the estimated critical exponents γ , let
us stick to the fitted ratios rγ = γ /ν for a moment. For the
chosen Lmin and pmin

d , they are shown in Fig. 6 and also listed
in Table III for completeness. For the uncorrelated case, we
get rγ = 1.9506(36). This is in good agreement with other
works, e.g., Refs. [4,6]. All ratios for correlated cases are
approximately constant with rγ ≈ 2.05(3). The largest value
is at a = 3.0 with rγ = 2.093(16). rγ = γ /ν > 2.0 implies
a negative exponent η = 2 − γ /ν < 0 which is a bit unusual
for an Ising model. Nevertheless, such negative values were
also observed in Refs. [24,25].2 Even for the uncorrelated
case, the pd -dependent estimates of η can be negative [55,56].
Heuer [55] explains the negative η values as being artifacts
of a crossover regime between the uncorrelated case and the
pure case. It is conceivable that the same could apply to the
crossover between the correlated and uncorrelated regimes.
This would coincide with our peak in rγ being at a = 3.0,
which is the crossover region. The error bars of rγ for a � 2.0
are quite large, so the ratios are not unlikely to become less
than two with a more precise measurement, e.g., on larger
lattice sizes or with more disorder realizations. On the other
hand, there is no rigorous statement known to us which would
restrict η > 0 for variations of the Ising model. In fact, η < 0
is known from other systems, like three-dimensional percola-
tion [57,58] or the three-dimensional cubic model [59]. Note,
that if Eqs. (1) and (4) hold, they imply η = 0.

Let us now move to the critical exponent γ itself. For
the uncorrelated case, we measure a value of γ = rγ ν =
1.3324(64), which is in a very good agreement with other
works, as can be seen in Fig. 7. Our value is placed be-
tween the estimates from Monte Carlo simulations and the
renormalization group calculations. For the correlated cases,
we see a behavior ∝ 1/a which is clear since we observed
approximately constant ratios rγ and ν ∝ 1/a. The values
follow close to the 4/a line, which is the predicted behavior
from Ref. [18], Eq. (4), as discussed in the Introduction. We
therefore can assume that Eq. (4) is the leading behavior
but needs correction terms, as was the case for the exponent
ν. Comparing our estimate for the case a = 2.0 with other
groups, we cannot see any agreement. The reason for this

2However, due to the discrepancies in the estimates for the critical
exponent ν between Refs. [24,25] and our paper, their estimates for
γ do not coincide with our paper.

FIG. 6. Ratios γ /ν = rγ for various correlation exponents a.
Except for the uncorrelated case with a = ∞, the ratios are γ /ν > 2
which implies η < 0.

discrepancy remains unclear to us, but it is noticeable that the
deviations are comparable to the estimates for the exponent
ν (Fig. 3). It indicates a systematic difference between our
analysis and other works, one of which is our usage of a global
fit approach.

C. Critical exponent β

In contrast to most other works listed in Table I where
the critical exponent β was only calculated through scaling
relations, we performed a dedicated analysis and obtained
independent estimates for β. The estimation of the critical
exponent β was done along the same lines as for γ . Here,
the observable of interest is the derivative with respect to β of
the magnetization:

∂β (|m|)(β ) = ∂

∂β
[〈|m|〉] = V ([〈|m|〉〈e〉] − [〈|m|e〉]). (13)

FIG. 7. Results of the critical exponent γ compared to the liter-
ature. For our results we use the measured a values from Table II.
The inset shows the uncorrelated case with a = ∞ and γ∞ indicates
the average over literature values for the uncorrelated case. MC:
Monte Carlo simulations, RG: renormalization group calculations,
†: calculated from η and ν, ∗: weighed mean over several pd .
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FIG. 8. Fitted ratios rβ = (1 − β )/ν from the fits to the ansatz in
Eq. (15), with varying pmin

d and Lmin. The corresponding qualities of
fits χ 2

red are shown as a second plot for each a.

The finite-size scaling behavior of the peaks ∂β (|m|)max(L) of
∂β (|m|)(β ) for a given lattice size L in leading order is [60]

∂β (|m|)max(L) = AL(1−β )/ν (1 + BL−ω ). (14)

Using the global ansatz for all pd , we get

∂β (|m|)max(L, pd ) = Apd Lrβ (1 + Bpd L−ω ), (15)

where rβ = (1 − β )/ν. As previously, we fixed the correction
exponent ω in the fits with Eq. (15) and varied the minimum
concentration of defects pmin

d and the smallest lattice size Lmin.
We present the results for rβ for all considered pmin

d and Lmin in
Fig. 8. Two examples of global fits with the ansatz in Eq. (15)
are shown in Fig. 9.

Concerning the minimum concentration of defects, pmin
d =

0.15 was a good choice as in the case for the exponent γ .
This was the lowest possible value which gave reasonable
fit qualities χ2

red ≈ 1. For the minimum lattice size, it was

FIG. 9. Examples of the fits to the ansatz in Eq. (15) for two dif-
ferent a and the corresponding finally chosen Lmin = 32. The values
∂β (|m|)max(L, pd ) are scaled by Lrβ , i.e., if there were no corrections
to scaling (Bpd = 0), the points would lie on a horizontal line in these
plots.

possible to select one value Lmin = 32 for all considered cases.
The final results are summarized in Fig. 11 and Table IV.

Before going into the discussion of the estimated critical
exponents β, we would like to take a look at the ratios β/ν

as we have done for the exponent γ . Unfortunately, the fit
parameter in the ansatz was rβ = (1 − β )/ν, so the ratios β/ν

were not directly measured but calculated by

β

ν
= rν − rβ, (16)

ε

(
β

ν

)
=

√
ε(rν )2 + ε(rβ )2, (17)

where ε denotes the errors and rν = 1/ν are the fitted ratios
for the exponent ν. The ratios are listed in Table IV and shown
in Fig. 10. Again, we can observe an approximately constant
value of β/ν ≈ 0.51(3) for all correlated cases except for

TABLE IV. Results of the critical exponent β. Minimum con-
centration of defects was pd = 0.15 and minimum lattice size was
Lmin = 32.

a rβ
β

ν
= 1

ν
− rβ β = 1 − rβν χ 2

red

∞ 0.9151(66) 0.5488(92) 0.3749(53) 0.88
3.5 0.8794(66) 0.526(12) 0.3741(64) 1.05
3.0 0.8026(60) 0.534(11) 0.3993(61) 1.12
2.5 0.6487(48) 0.498(14) 0.4344(75) 1.20
2.0 0.4526(59) 0.491(21) 0.520(12) 0.90
1.5 0.2565(73) 0.447(28) 0.635(18) 1.05
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FIG. 10. Ratios β/ν for various correlation exponents a. For all
correlated cases except for a = 1.5, an approximately constant value
can be seen.

a = 1.5, which clearly deviates from this behavior. The value
for the uncorrelated case with β/ν = 0.5488(92) is also close
to this constant. Using Eq. (1) and assuming Eq. (3) to be
valid, we would expect a constant ratio of β/ν = 1/2. Our
results get reasonably close to it.

Comparing the estimate for exponent β in the uncorrelated
case, we see a clear deviation from all other groups. It has
to be mentioned, though, that most of the other groups did
not measure β directly but instead calculated it from ν and γ

by using scaling relations (see Table I and marks in Fig. 11).
Therefore, the comparison is a bit vague. In our opinion, there
is no clear reason why our estimate deviates that much from
other groups since the fit quality is good and also the fitted
data look reasonably well (see Fig. 9). The result for pmin

d =
0.05 is much closer to other groups but because it does not
overlap with the results for higher pmin

d , we expect it to be
influenced by a crossover to the pure Ising model case.

FIG. 11. Results of the critical exponent β compared to the liter-
ature. For our results, we use the measured a values from Table II.
The inset shows the uncorrelated case with a = ∞ and β∞ indicates
the average over literature values for the uncorrelated case. MC:
Monte Carlo simulations, RG: renormalization group calculations,
†: calculated from γ and ν, ∗: weighed mean over several pd .

In the correlated cases, we observe a slightly different
behavior than for ν and γ . The deviation of β from 1/a
is significant for large a while at a = 2.0 β ≈ 1/a and for
a = 1.5 it even goes below 1/a. This behavior is also reflected
in the ratios in Fig. 10 which are not quite as constant as γ /ν

were. Considering the relatively large error for the strongest
correlated case with a = 1.5, it is possible that we see an
asymptotic behavior in β approaching 1/a for decreasing a.
Once again, this would be a consequence of the crossover
regime around a ≈ 3.0. These observations suggest that β =
1/a is the leading behavior, which, however, is affected by
even stronger corrections than for ν and γ . A further support-
ing reason for a stronger correction is the presence of the ε in
Eq. (3) while the exponents ν and γ have only higher-order
corrections of O(ε2).

D. Hyperscaling validation

As we know from theory, two critical exponents already
completely describe the universality class of a system and
all other exponents can be calculated by using scaling or
hyperscaling relations. As we are equipped with three expo-
nents, i.e., ν, γ , and β, we can check them for consistency.
In particular, Josephson’s law [61,62] and Rushbrooke’s law
[63], i.e.,

dν = 2 − α, (18)

2β + γ = 2 − α, (19)

respectively, can be combined to obtain

2β + γ = dν. (20)

Note, that Eqs. (18) and (20) are called hyperscaling relations
since they incorporate the dimensionality d of the system. As
we initially measured ratios instead of the critical exponents
themselves, it is advisable to reformulate Eq. (20) to use them
and not the final exponents which implicitly also suffer from
the error of the critical exponent ν. We can write Eq. (20) as

2

(
1

ν

)
− 2

(
1 − β

ν

)
+

(γ

ν

)
?= d, (21)

and check its validity for our three-dimensional case d = 3.
Note that in Eq. (21) all three terms in round brackets are the
directly fitted parameters, i.e., rν , rβ , and rγ , respectively. We
show the results for all considered a in Fig. 12.

FIG. 12. Check of the hyperscaling relation from Eq. (21) for
various considered correlation exponents a. The expected value is
the dimension of the system under consideration, i.e., d = 3 in this
work.
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Starting with the uncorrelated case, we observe a value of
3.05(2) which is slightly larger than d = 3 but, within error
bars, still compatible. We argue that this slight deviation has
the same origin as for the β exponent which is larger than the
one calculated by other groups. We would not consider our
result to suggest a hyperscaling violation in the uncorrelated
disorder case. Contrarily, in the crossover region a ≈ 3.0,
we see a larger deviation between calculated values and the
expected value for d = 3. For the strongest correlations with
a � 2.5, the results become compatible with the expectation
again. Combining the above observations, we arrive at the
conjecture that the hyperscaling relation may be violated or be
a consequence of strong corrections as discussed in Sec. III C
in the crossover region between the (effectively) uncorrelated
and correlated cases and is valid otherwise.

E. Critical temperatures

During the analysis process, we estimated the peaks Ô
of three observables, namely, ∂β (ln |m|), ∂β (|m|), and χ for
all parameter tuples (a, pd , L). Alongside these values, we
also got the corresponding temperatures βO,max at which the
peaks occurred. These temperatures obey a finite-size scaling
relation (neglecting correction terms) of the form

βO,max(L) = βc + AL−1/ν . (22)

By combining the estimates βO,max(L) for all considered ob-
servables into one global fit ansatz

βO,max(L) = βc + AOL−1/ν, (23)

with the amplitudes AO being dependent on O, we get an
estimate for the critical temperature βc for each correlation
exponent a and concentration of defects pd . In Eq. (23), we
used our previously estimated critical exponent ν as a fixed
parameter. To account for the error ε(ν), we additionally
performed each fit also with ν → ν ± ε(ν) and included the
larger of the two deviations,

εν (βc) = max
ν±ε(ν)

|βc(ν) − βc(ν ± ε(ν))|, (24)

as an additional contribution3 to the total error

ε(βc) =
√

εfit(βc)2 + εν (βc)2, (25)

where εfit(βc) is the fit error. Through the usage of the single
histogram reweighting technique, intrinsically each βO,max(L)
was more or less precise, depending on how close the simu-
lation temperature βsim was to the finally found βO,max(L).
This effect was mostly pronounced for larger concentrations
and stronger correlations due to the larger variation of the
critical temperatures for each individual disorder realization.
This made it impossible to study corrections-to-scaling terms
and also made the choice of Lmin less important. Our final
choice was Lmin = 32.

The usage of the global fit ansatz in Eq. (23) is an improve-
ment over the estimation which we carried out in Ref. [7],

3This proved to provide the same error estimates as the bootstrap
method which we used in Ref. [7] but with less effort.

TABLE V. Critical temperatures βc obtained from global fits
including all considered observables to the finite-size scaling ansatz
given in Eq. (22). The second number given is the quality of the fit
χ 2

red.

pd a = ∞ a = 3.5 a = 3.0

0.05 0.2345923(3) 2.6 0.2324144(4) 2.4 0.2316970(5) 2.4
0.1 0.2492899(3) 2.1 0.2431346(5) 3.1 0.2413960(8) 1.6
0.15 0.2661580(3) 2.2 0.2546172(7) 1.2 0.251678(2) 1.4
0.2 0.2857454(5) 1.1 0.2673096(9) 0.8 0.262985(2) 1.6
0.25 0.3088137(6) 1.7 0.281652(2) 1.3 0.275679(2) 1.3
0.3 0.3364315(7) 1.1 0.298162(2) 1.2 0.290219(3) 1.3
0.35 0.3701800(9) 1.3 0.317580(2) 1.4 0.307232(4) 1.7
0.4 0.412513(2) 1.7 0.340913(3) 1.8 0.327603(4) 1.7

pd a = 2.5 a = 2.0 a = 1.5

0.05 0.230679(1) 1.1 0.229204(4) 1.7 0.22717(2) 4.4
0.1 0.239069(2) 1.0 0.235935(7) 1.3 0.23196(2) 3.4
0.15 0.247880(3) 1.5 0.243025(9) 1.6 0.23700(3) 4.0
0.2 0.257528(3) 2.3 0.250714(7) 3.2 0.24243(3) 9.0
0.25 0.268290(4) 1.9 0.25935(2) 4.3 0.24877(2) 6.6
0.3 0.280630(5) 1.7 0.26916(2) 2.2 0.25599(4) 6.6
0.35 0.294890(7) 2.7 0.28046(2) 5.1 0.26414(4) 23.5
0.4 0.311875(8) 4.1 0.29414(2) 11.8 0.27357(3) 12.1

where we considered only one observable O = ∂β (ln |m|).
The critical temperatures are compiled in Table V together
with the corresponding qualities of the global fits χ2

red, which
we should carefully examine first. In general, the quality of
the fits is reasonably good. However, for the two strongest
correlation cases with a = 2.0 and a = 1.5, the quality is
bad for larger concentrations. Therefore, for these two cases
our estimates should be considered with great care. Our
estimates of the temperatures for the uncorrelated disorder
case are in excellent agreement with Refs. [2,6]. We also
agree on less accurate estimates from Refs. [3,5]. This is an
important verification of the estimation process. Note that
all the references stated above used site disorder. For bond
disorder, e.g., Ref. [4], the temperatures are different. For
the correlated cases, the critical temperatures depend on the
correlation exponent a and on the concentration of defects
pd but additionally also on the disorder generation method.
In particular, line defects (which correspond to a = 2.0 in
three dimensions) and pointlike methods (e.g., the Fourier
filter method used in this paper) do not share a common
critical temperature for a = 2.0 and the same pd [22]. Further,
using the Fourier filter method one still has various technical
parameters like the form of the correlation function and the
mapping procedure from continuous to discrete values which
influence the critical temperature. All these nuances in the
disorder generation make our temperature estimates for the
correlated cases incomparable with other works.

IV. CONCLUSIONS

In this paper, we have studied the three-dimensional Ising
model on simple-cubic lattices with long-range power-law
correlated (∝ r−a) site disorder. The main purpose of this
paper was to estimate the missing critical exponents β and
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TABLE VI. Complete list of measured critical exponents and
exponents calculated through scaling relations (marked with †). Ad-
ditionally, the confluent correction exponents ω and the measured
correlation exponents a from Ref. [7] are listed.

a a ν γ β

∞ − 0.6831(30) 1.3324(64) 0.3749(53)
3.5 3.30(18) 0.7117(49) 1.451(15) 0.3741(64)
3.0 2.910(96) 0.7484(52) 1.566(16) 0.3993(61)
2.5 2.451(26) 0.8719(96) 1.783(24) 0.4344(75)
2.0 1.979(18) 1.060(23) 2.149(51) 0.520(12)
1.5 1.500(30) 1.421(55) 2.93(14) 0.635(18)

a α† = 2 − dν η† = 2 − γ /ν δ† = γ /β + 1 ω

∞ −0.0493(90) 0.0494(36) 4.554(53) 0.346(40)
3.5 −0.135(15) −0.039(14) 4.878(76) 0.679(44)
3.0 −0.245(16) −0.093(16) 4.923(72) 0.840(50)
2.5 −0.616(29) −0.045(14) 5.105(89) 1.154(66)
2.0 −1.180(68) −0.027(21) 5.13(14) 1.087(81)
1.5 −2.26(17) −0.061(56) 5.61(25) 0.988(75)

γ of this model which were not observed in our previously
published study [7]. Additionally, we provided improved es-
timates of the critical exponent ν, the confluent correction
exponent ω, and updated the estimated critical temperatures
for various correlation exponents a and concentrations of
defects pd . All directly measured critical exponents as well
as critical exponents calculated through scaling relations are
summarized in Table VI.

The obtained critical temperatures agree with those esti-
mated by other groups for the uncorrelated disorder case.
However, the temperatures for the correlated disorder cases
are not compatible with other works. We expect that the

critical temperatures depend not only on the a and pd param-
eters but also on the subtle details of the disorder generation
process.

The main qualitative outcome of the study is the verifica-
tion of the conjecture by Weinrib and Halperin [18], Eqs. (1)
to (4), as the leading behavior for the long-range correlated
disorder case with a � 3.0 = d . Our results suggest that ad-
ditional terms need to be considered to improve the estimated
behavior of the critical exponents given in Eqs. (1)–(4). We
do not agree on the results from Refs. [24,25] which suggest
a behavior very different from Eqs. (1)–(4).

For the uncorrelated case with a = ∞, we agree with the
results observed by other groups to a great extent. An excep-
tion is the exponent β and the reason for this discrepancy
remains unclear to us. Further, we see a possible violation
of the hyperscaling relation in the crossover region around
a ≈ 3.0. Such a crossover effect would not be surprising, but
to be evident, further analyses of this region are needed. One
important problem at this point is that the correlation function
between the defects decays very fast in this region and hence
in principle, larger lattice sizes are needed to provide sufficient
statistics.
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